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Abstract

Functional MRI typically makes inferences about neural substrates of cognitive phenomena at the group level. We report
the use of a single-stimulus blood-oxygen-level-dependent (BOLD) response in the cingulate cortex that differentiates
individual children with autism spectrum disorder from matched typically developing control children with sensitivity
and specificity of 63.6% and 73.7%, respectively. The approach consists of passive viewing of self and other faces
from which an individual difference measure is derived from the BOLD response to the first self-face image only. The
method, penalized logistic regression, requires no averaging over stimulus presentations or individuals. These findings
show that single-stimulus functional MRI responses can be extracted from individual subjects and used profitably as
a neural individual difference measure. The results suggest that single-stimulus functional MRI can be developed to
produce quantitative neural biomarkers for other developmental disorders and may even be useful in the rapid typing
of cognition in healthy individuals.
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Functional MRI (fMRD has become a major tool in cogni-  for characterizing healthy or diseased cognition.

tive neuroscience in which blood-oxygen-level-dependent
(BOLD) measurements throughout the brain are used to
identify spatiotemporal neural dynamics associated with
variables of interest (Huettel, Song, & McCarthy, 2008).
This general approach is carried out almost exclusively in
terms of averages of BOLD responses over multiple pre-
sentations of stimuli because of relatively low signal-to-
noise issues in the raw BOLD signal. Averaging within a
single individual is often followed by averaging across
individuals to generate group-level summaries about
neural responses to stimuli. The presumed need for aver-
aging presents one barrier to using fMRI as a method for
generating rapid, individual difference responses useful

Moreover, the intrinsic sluggishness and spatial impreci-
sion of the BOLD response contributes to the general
perception that fMRI is a useful neuroimaging modality
only in “averaging mode.” Here, we present new results
that suggest that this view is incomplete and that fMRI
can be used to generate a single-stimulus measurement
useful as an individual difference measure and biomarker
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Eyes Closed Mental Imagery ROI
in Middle Cingulate Cortex

Fig. 1. Example stimulus display and region of interest (ROD. The
stimulus display (a) contains a picture of the subject (self) and a picture
of a single age-, gender-, and 1Q-matched individual (other). Images
were shown in random order with Poisson distributed interstimulus
intervals (A = 14). Demographics are reported in Table S2 in the Supple-
mental Material. The picture (b) shows independently identified mid-
dle cingulate cortex voxels from Kishida, Li, Schwind, and Montague
(2012)—specifically, a 10-voxel mask from an eyes-closed mental-imag-
ery task that defined an ROI in adults (Montreal Neurological Institute
coordinates).

in one of the most common neurodevelopmental
disorders—autism spectrum disorder (ASD).

Our investigation exploring the possibility of using a
single-stimulus approach in ASD stems from extensive
prior work, which has demonstrated that the middle cin-
gulate cortex (MCC) is particularly responsive during
social exchange in a manner that is consistent with the
hypothesis that this region is important for cognitive pro-
cesses related to perspective taking. Specifically, Tomlin
et al. (2006) showed that activity in the MCC tracked the
active agent (i.e., “me” vs. “not me”) during a social-
exchange experiment involving 100 pairs of subjects.
Following this work, Chiu et al. (2008) demonstrated that
one of these agent-specific responses (the “self-response”)
in the MCC was diminished in individuals diagnosed with
ASD. Chiu et al. also showed that diminished responses

in the MCC were positively correlated with symptom
severity in the ASD cohort. In the same report, Chiu et al.
performed a visual-imagery experiment with a sample of
81 accomplished athletes and 27 healthy adults. Using an
eyes-closed mental-imagery task, Chiu et al. showed that
the same pattern of activity (i.e., self-response along the
MCC) could be elicited during eyes-closed mental imag-
ery of first-person perspective taking but not during
third-person perspective taking. Kishida, Li, Schwind,
and Montague (2012) hypothesized that the region of the
MCC that was engaged during perspective taking (and
social exchange) and was diminished in the ASD cohort
could be specifically activated by showing subjects pic-
tures of themselves. Using a passive-picture-viewing task
in healthy adults and the region of interest (ROD defined
in the eyes-closed mental-imagery task, Kishida et al.
showed that, indeed, the MCC differentiated pictures of
“self faces” from pictures of “other faces.”

Taken together, these results suggested the hypothesis
that a similar picture-viewing assay might elicit signals in
this same ROI strong enough to produce a neural mea-
sure that might also differentiate children diagnosed with
ASD from age-matched typically developing (TD) chil-
dren (cohort-level statistics are provided in Table S2 in
the Supplemental Material available online). We also
included adult controls to evaluate consistency with past
findings. We designed a full-length passive-picture-
viewing paradigm to test this hypothesis; however, two
empirical findings suggested the necessity of exploring a
reduced experimental design. First, the duration of the
full-length experiment (approximately 12 min) proved
too long for children diagnosed with ASD to remain still
in the fMRI scanning environment. Second, in both ASD
and TD children, an effect consistent with repetition sup-
pression of BOLD responses in the MCC to repeated pre-
sentations of both self and other images suggested that
an “average brain response” to multiple presentations
was very different from responses to a more reduced
design. Following these results, we tested the most
extreme version of a “reduced experimental design” and
demonstrated that a machine-learning approach and sin-
gle-stimulus fMRI data from an a priori-prescribed ROI
can produce results consistent with a rapidly assessable
individual difference measure for ASD.

Method

Stimuli

Photographs of each subject were taken prior to scan-
ning. Subjects were draped around the shoulders to
ensure image uniformity. They were instructed to gaze
directly at the camera while assuming different head
angles. Head angle was varied to reduce habituation to
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repeated presentations of face images. In the scanner,
subjects were shown 15 pictures of themselves (self face)
and 15 unique pictures of an age- and gender-matched
individual (other face; see Fig. la for example stimulus
display). A computer-controlled projector was used to
generate the images that were displayed to subjects using
an overhead mirror mounted on the radiofrequency coil.
Images were shown for 4 s in random order with random
interstimulus intervals drawn from a Poisson distribution
with parameter value (M) equal to 14 s. Thus, the starting
image for each subject was randomized. Subjects were
instructed to focus on the faces or on the white fixation
cross (displayed during the interstimulus window). Only
TD subjects were used as other (i.e., control) images.

Subjects

We recruited 39 adults with no known neuropsychiatric
disorders, 51 TD children, and 35 children with ASD (see
Table S2 in the Supplemental Material) from the Houston
metropolitan area by word of mouth and advertisements.
In addition, subjects with ASD were also referred from
the Texas Children’s Hospital’s Autism Center. After initial
assessment using basic fMRI exclusion criteria, we invited
the remaining qualified children (TD children: n = 45;
ASD children: n = 27) to Baylor College of Medicine for
familiarization with the scanning environment, scanning,
and assessments. Autism Diagnostic Observation Schedule
(ADOS) scores were available for 20 of the 27 children
with ASD (Lord, Rutter, DiLavore, & Risi, 2001). In 12 of
these 20 subjects, the diagnoses were reconfirmed by the
Autism Diagnostic Interview—Revised (ADI-R; Le Couteur,
Lord, & Rutter, 2003). The remaining 7 of these 27 patients
were evaluated in autism centers at tertiary hospitals and
diagnosed on the basis of clinical presentation and
developmental history. Last, scores from the Social
Responsiveness Scale (Constantino & Todd, 2003) and
the second edition of the Kaufman Brief Intelligence Test
(Kaufman & Kaufman, 2004) were obtained for a subset
of ASD and TD subjects (see Table S2 in the Supplemental
Material). The institutional review board at Baylor College
of Medicine approved the study protocol. Parents signed
informed written consent and children provided assent.

Image acquisition

Imaging was performed using a 3-T Siemens Allegra
head-only scanner and 3-T Siemens Trio full-body scan-
ner; 39 of the 45 TD children and 26 of the 27 ASD chil-
dren were scanned in the Trio scanner. An analysis of
peak differences between and within ASD and TD popu-
lations showed that no differences in hemodynamic
responses were found to be attributable to the employed
scanner. A localizer image was acquired first followed by

high-resolution T1-weighted structural images (192 slices;
in-plane resolution: 256 x 256; field of view: 245 mm;
slice thickness: 1 mm). Continuous whole-brain imaging
was then performed as subjects viewed self and other
faces on the screen. Regional brain activation was mea-
sured using changes in BOLD fMRI signal. The parame-
ters for the functional sequence are as follows: echo-planar
imaging, gradient recalled echo; repetition time = 2,000 ms;
echo time = 30 ms; flip angle = 90; 64 x 64 matrix (in-
plane resolution); 34 (4-mm) axial slices positioned 30°
to the anterior commissure/posterior commissure line.
Data were preprocessed and analyzed using the SPM8
software package (see http://www: fil.ion.ucl.ac.uk/spm/
software/spm8/; Friston, Penny, Ashburner, Kiebel, &
Nichols, 2006). During preprocessing, functional brain
images were temporally realigned using linear interpola-
tion to correct for variability in the timing of slice acquisi-
tion, spatially realigned using a 6-parameter rigid-body
transformation to correct for head movements, and coreg-
istered onto high-resolution/high-contrast  structural
images. In adults, images are typically spatially normalized
to a Montreal Neurological Institute template (SPM’s echo-
planar imaging template) by applying a 12-parameter
affine transformation to facilitate intersubject comparison.
For the children in our study, we generated custom-
ized Tl-template and tissue-probability maps (i.e., gray
matter, white matter, and cerebrospinal fluid priors) using
the SPM8 toolbox Template-O-Matic (see https://irc
.cchmc.org/software/tom.php). This toolbox is based on
data obtained from 404 children as part of the normal-
brain-development study of the National Institutes of
Health (Wilke, Holland, Altaye, & Gaser, 2008). The tool-
box takes in the ages and gender of the sample popula-
tion as input and automatically generates reference
images based on parameters obtained from the National
Institutes of Health cohort. Children’s images were then
segmented and normalized using the unified-segmenta-
tion model. During normalization, bounding-box param-
eters of structural and functional images were matched to
the adult masks to ensure that image dimensions and
origin were the same. Normalized images, in all cohorts,
were then spatially smoothed using an 8-mm Gaussian
kernel and temporally filtered (cutoff period of 128 s).

ROI analysis

ROI analysis was performed using independently iden-
tified MCC voxels from Kishida et al. (2012; see Fig. 1b).
This MCC ROI, which was generated from adult patients,
was resliced to our custom children’s template using
nearest-neighbor interpolation. Axial, coronal, and sag-
ittal cuts of the ROI overlaid on the standard adult
template and on our child templates generated with the
Template-O-Matic toolbox are shown in Figure S8 in the
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Supplemental Material. Raw time courses for this ROI
were extracted using SPM functions, detrended, and
then averaged. Time series were captured for the period
from 6 s prior to stimulus presentation to 16 s after
stimulus presentation, including the 4-s presentation
interval. Data in this period were linearly interpolated
(using MATLAB function interpl.m). Time series were
captured for the first presentation of the self and other
images for each individual. BOLD responses were pre-
sented as percentage signal change from baseline BOLD
rates (-6 s to 0 s, where ¢ = 0 is the stimulus presenta-
tion). The peak activation was defined as the mean
response 6 s to 8 s after stimulus presentation relative to
the response measured just prior to the stimulus onset
(=6 st0 0 s).

Subject inclusion criteria

One adult of 39 was excluded from analysis because of
technical problems during image acquisition (adults: 7 =
38; 14 males, 24 females; mean age = 29.9 years, £9.5). Of
the 51 TD children originally recruited, 6 were initially
excluded from analysis: 2 because of technical problems
during scanning; 1 as a result of the subject’s decision to
discontinue with the study; 1 because the subject fell asleep
during the task; and 3 because of excessive head move-
ment (more than 3.5 mm), resulting in 45 TD subjects. Out
of the 35 subjects with ASD, 8 were initially excluded (27
remaining) from the analysis: 1 because of atypical brain
morphology; 5 because of excessive head movement
(exclusion criteria was instantaneous head motions greater
than +/- 3.5 mm during the first presentations of self and
other pictures (6 s pre-stimulus and 16 s post-stimulus);
and 2 as a result of technical issues related to scanning that
prevented recording of these subjects’ brain responses to
the first stimulus presentation.

For the ROI analysis, a second inclusion criterion was
used to remove hypervariable hemodynamic responses
to ensure data quality. Subjects with high MCC signal
variability on the first presentation of the self or other
image were excluded from analysis to ensure that outlier
values did not dominate the BOLD response and con-
found the results. Removal of BOLD responses that may
be contaminated with noise can be especially important
when looking at a single-stimulus response.

Signal variability was measured as the standard devia-
tion of the BOLD time course from 6 s prior to presenta-
tion to 16 s postpresentation. Outliers for signal variability
were defined as having a standard deviation greater than
median (of population) plus or minus 3 times the inner
quartile range for all hemodynamic responses (see Fig. S9
and Table S3 in the Supplemental Material). Given that
signal variations in ASD and TD children were not statis-
tically different (data not shown), these data were

combined and analyzed as a single “child” population.
Subjects with MCC signal standard deviation of more
than 0.80% for TD and ASD subjects and 0.53% for adults
were removed from our single-stimulus ROI analysis.
Thus, 33 of 38 adults, 38 of 45 TD children, and 22 of 27
ASD children were retained for our ROI analysis.
Individuals excluded from analysis did not have single-
stimulus hemodynamic trajectories that resemble typical
BOLD responses (see Fig. S10 in the Supplemental
Material). In fact, many appeared to have large negative
inflections or a sinusoidal pattern. Incidentally, all indi-
viduals who were excluded for wvariable self-face
responses were also independently excluded for high-
variability other-face responses. This finding further rein-
forced the hypothesis that the variability in these BOLD
trajectories were due to a common factor, such as head
movement (Power, Barnes, Snyder, Schlaggar, & Petersen,
2012), or some other unknown factor.

Classifier development for penalized
regression model

Penalized regressions were computed using the glmnet
package (R 2.15.1; Friedman, Hastie, Hofling, & Tibshirani,
2007; Friedman, Hastie, & Tibshirani, 2010; Tibshirani,
1996). Receiver operating characteristic (ROC) curves
were plotted on MATLAB 2012b using the perfcurve
function. Before computing parameter values, we first
reweighted the value of individual samples such that the
optimization used “equal-sized” populations. Given our
sample numbers of 38 TD children and 22 ASD children,
this was akin to increasing the value of each ASD sample
by 1.72 (38/22). By reweighting the samples, we improved
sensitivity and specificity of the classifier for the minor
population (Cramer, 2013).

Penalized regression is a variable selection technique
that shrinks some coefficients and sets others to 0. The
least absolute shrinkage and selection operator, or lasso
function, is a variable selection technique that utilizes an
L'-norm penalty. The L'-norm penalty alters the standard
cross-entropy loss objective function (see the Methods
section in the Supplemental Material) to the following:

1\7
E(w)=- Z {y,Inc(XP)+A -y, In(d-oc(XP)}

n=1

P
A IBy|
k=1

where A is a nonnegative regularization parameter or
amount of penalization. Akin to choosing the number of
predictors in a regression model, lambda is changed to
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increase or decrease the number of nonzero compo-
nents. Larger values of lambda result in more beta coef-
ficients being set to 0. The value of lambda that minimizes
misclassification error can be computed using K-fold
cross-validation (Friedman et al., 2007; see Fig. S11 in the
Supplemental Material).

Cross-validation. Cross-validation for different levels
of penalization also allows one to visualize how models
with different amounts of covariates perform on inde-
pendent data sets. In K-fold cross-validation (Bishop,
20006), the data are partitioned into K subsets. For K
repeats, one subset is selected as the “validation set,” and
the remaining K — 1 subsets are iteratively used to train
the model and tested against the validation set. The test
statistic, misclassification error or deviance, is computed
for each repeat and then averaged to provide a single
estimate. Using cross-validation, one can determine
lambda such that the desired statistic is optimized. Cross-
validation is included in the glmnet computational pack-
age; lambda is selected using the “lse” heuristic. This
heuristic favors a more parsimonious model in which the
expected error is within 1 SE cross-validation error
(Friedman et al., 2010) of the minimal error.

Computation of coefficients. Computation of coeffi-
cients in the lasso in the glmnet package is completed
using coordinate descent (Friedman et al., 2007; Friedman
et al., 2010). Parameter estimation and cross-validation is
automated as part of the glmnet package (Friedman,
Hastie, & Rob, n.d.).

Results

In a passive-viewing paradigm, adults, TD children, and
children diagnosed with ASD were shown 15 presenta-
tions each of images of themselves (self) and an age- and
sex-matched individual (other; see Fig. 1a). These images
were presented in a randomized order such that the start-
ing image for each subject occurred by chance. BOLD
responses to self- and other-image presentations were
then extracted using the eyes-closed mental-imagery ROI
in the MCC (see Fig. 1b). Consistent with previous find-
ings by Kishida et al. (2012), results from the present
study indicated that adults (#z = 33) showed greater
response to self faces than to other faces with averaging
of all presentations and with a single-stimulus response
(see Fig. S1 in the Supplemental Material).

In analyzing data for TD and ASD children, we focused
on the hemodynamic response to the first presentation of
either self or other stimuli for two reasons: repetition
suppression and task length. Repetition suppression is
the reduction of neural responses to repeated stimuli due
to stimulus recognition and learning (Grill-Spector,

Henson, & Martin, 2006; Henson & Rugg, 2003; Segaert,
Weber, de Lange, Petersson, & Hagoort, 2013). In our
experimental paradigm, repetition suppression of the
BOLD signal was evident by the second image presenta-
tion (see Fig. S1 in the Supplemental Material). We found
that for all subjects, cohort-level differences in peak
hemodynamic response for self and other images were
maximal after the first stimulus presentation and did not
improve with multiple presentations (data not shown for
adult cohort; for data on TD and ASD cohorts, see Figs.
S2a and S2b, respectively, in the Supplemental Material).

In addition, we found that longer experimental para-
digms reduced the cohort of individuals that were avail-
able for analysis. Using an instantaneous movement
threshold of plus or minus 3.5 mm, we plotted a Kaplan
Meier curve for experimental completion for all partici-
pating subjects (see Fig. S3 in the Supplemental Material)
by total scanning time. Our task was approximately 12
min in total length. Unlike adult and TD subjects, who
were able to voluntarily lie still for extended periods,
ASD children showed significant head movement. After 5
min of scanning time, more than 40% of the data from the
ASD population could not be analyzed as a result of
excessive head movement. However, by reducing scan-
ning time to less than 2 min (i.e., single-stimulus
responses), we could retain data from more than 75% of
the subjects with ASD.

The challenges associated with full-length experi-
ments in children diagnosed with ASD motivated the
exploration of a reduced experimental design; in the
extreme, eliciting a reliable brain response to a single
stimulus would provide dramatically increased flexibility
in the kinds of fMRI experiments that could be designed.
Figure 2a and 2b and Figure S3 in the Supplemental
Material show the cohort-level hemodynamic response to
the first presentation of a self-face image displayed along-
side the analogous time series for the first presentation of
the other-face image for TD children (nz = 38; Fig. 2a),
ASD children (n = 22; Fig. 2b), and adult subjects (1 = 33;
Fig. S3). These data show two clear features at the cohort
level. First, single-stimulus responses elicit a large BOLD
response in the MCC. In the TD cohort, the peak hemo-
dynamic response differentiates between self-face versus
other-face images (p = .04, right-sided ¢ test; see Fig. 2a
and 20); this result is consistent with analyses of adults in
the present study (p = .03, right-sided ¢ test; see Fig. S3)
and previously reported findings in adults (Kishida et al.,
2012). Second, unlike TD children, single-stimulus peak
BOLD responses in the ASD cohort did not differentiate
self from other images (p = .16, right-sided ¢ test). When
we compared the TD and ASD cohorts, results showed
that peak responses to self-face images differentiated the
TD and ASD cohorts (p = .04, right-sided ¢ test), but
responses to other-face images did not (p = .22, right-sided
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Fig. 2. Results: single-stimulus responses. The graphs show (a) time series for single-stimulus presentation averaged over TD children (1 = 38),
(b) time series for single-stimulus presentation averaged over ASD children (12 = 22), (¢) peak hemodynamic response for ASD and TD children
for single-stimulus self and other images (asterisk indicates p < .05), and (d) hemodynamic responses to single-stimulus self-face images for single
ASD and TD individuals. Trajectories for all subjects are shown in Figure S2 in the Supplemental Material. MCC = middle cingulate cortex; BOLD =
blood-oxygen-level-dependent; TD = typically developing; ASD = autism spectrum disorder. Error bars represent the standard error.

¢ test). Thus, differences across the two populations arose
specifically for the time-series responses for the self-face
picture (see Fig. 20).

To test whether TD and ASD subjects were actively
viewing the face-image stimuli, we extracted responses
from bilateral fusiform face area (FFA) in 21 control adults
in a separate task using a passive-viewing paradigm of
faces and objects (see Fig. S5 in the Supplemental
Material; Kanwisher & Yovel, 2006). Using a general lin-
ear model contrast, we assessed visual responses in the
fusiform gyrus with particular attention paid to the FFA to

determine whether subjects viewed the images. We found
that the bilateral FFA activated robustly in both cohorts in
response to self and other face images. Although some
studies have reported decreased FFA activity in ASD
patients (Deeley et al., 2007; Humphreys, Hasson, Avidan,
Minshew, & Behrmann, 2008), other studies have shown
that familiarity (Pierce, Haist, Sedaghat, & Courchesne,
2004), age (Pierce & Redcay, 2008), and attention
(Hadjikhani et al., 2004) engage the FFA in autism. The
lack of differences in FFA activation between TD and
ASD children (see Fig. S5 in the Supplemental Material)
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subjects. The graph in (a) shows ROC curves for a full logistic model and a model based on averaging peak responses. The graph in (b) shows mis-
classification error versus penalization in a penalized logistic regression model. Lambda is the amount of penalization. The top of the graph shows
the number of variables (i.e., degrees of freedom) included in the model as penalization changes. Less penalization, log(lambda), results in more
degrees of freedom. Two vertical lines are plotted: The left line is the penalization that produced minimal misclassification error; the right line is the
penalization (“1se”) that is within 1 standard cross-validation error of the minimum error. Lambda is selected using the 1se rule, given that the error
is statistically equivalent, but the model is more parsimonious. Error bars represent the standard error. The graph in (¢) shows ROC curves for a
penalized logistic regression model using a leave-one-out cross-validation. The penalized cross-validated model uses data from only eight covariates.
The graph in (d) shows histograms of individual difference measurements, p(status = ASD | M), given the penalized model (M). The D' between
the ASD and TD cohorts is 1.50 for the single-shot measurements and 1.61 for the full model. ROC = receiver operating characteristic; AUC = area
under the curve; ASD = autism spectrum disorder; TD = typically developing.

during image presentations suggests that both cohorts’
brains detected the face images throughout the task (p,,.
<.005, k= 10; Pessoa, McKenna, Gutierrez, & Ungerleider,
2002).

Across the ASD and TD cohorts, the hemodynamic-
time-series differences to self-face images (Fig. 2a and
2b) provided an opportunity to develop an individual
difference measurement, that is, a single parameter value

that summarizes an individual’s BOLD-response time
series to a single-stimulus self-face image (Fig. 2d and
Fig. S4). One simple approach is to discriminate the TD
and ASD populations using the peak response.
Discriminant classification of disease status based solely
on the percentage signal change in the peak activation of
the BOLD response resulted in sensitivity and specificity
of 54.6% and 57.9%, respectively, and an area under the

Downloaded from cpx.sagepub.com at HAM TMC on April 19, 2016


http://cpx.sagepub.com/

Single-Stimulus Functional MRI

429

Table 1. Comparison of Coefficients for the Full Logistic Regression Model With

Coefficients From the Penalized Model

Full model (logit)

Penalized model

1D Coefficient Estimate PrC>|z ) Estimate
0 Intercept 2.917 (0.937) 0.002 1.487
1 Age —-0.216 (0.069) 0.002 -0.104
2 First-or-not-first 1.102 (0.509) 0.030 0.443
3 ~2.00 24,100 (56,430) 0.669 0.000
4 0 (Presentation) 24,100 (56,430) 0.669 0.000
5 2.00 24,100 (56,430) 0.669 0.000
6 4.00 5.327 (1.358) 0.000 1.591
7 6.00 —4.998 (1.393) 0.000 -2.270
8 8.00 —-1.729 (1.008) 0.086 -0.226
9 10.00 2.345 (0.916) 0.010 0.362
10 12.00 0.012 (0.979) 0.991 0.000
11 14.00 0.586 (0.726) 0.419 0.474
12 16.00 0.301 (0.536) 0.574 0.122

Note: Standard errors are shown in parentheses. The model is over parameterized; parameters
for time since onset (seconds = -2, 0, and 2) cannot be computed with precision.

curve (AUC) of 0.591 (see Table S1, Fig. 3a and Fig. S6 in
the Supplemental MateriaD); this is a subpar classification
of disease state for individuals. However, we found that
we could improve classification by including more data
from the time series. Using only data captured by a peak
hemodynamic response discards information encoded
elsewhere in the dynamics of the ROI response. In addi-
tion, the hemodynamic response to any stimulus already
includes a profound smoothing effect that is compounded
by further averaging. To improve classification, we used
the information of an entire time series in the preselected
ROI and employed a penalized logistic regression. This
classification method generates, for each time-series sam-
ple after a self-picture presentation, the probability of
being assigned to the ASD group, for example, p(status =
ASD | M), given the model (M).

In ordinary logistic regression, the objective function
is the cross-entropy loss (see the Methods section in the
Supplemental Material; Bishop, 2006). Although this
method is commonly used and results in low bias classi-
fication, models that include a large number of covariates
often have high variance due to overfitting. Such over-
parameterized models can have low prediction accuracy
for future data sets (Tibshirani, 1996). Accordingly, we
used a variable selection technique that employs an L1
penalization, which shrinks some coefficients and sets
others to 0. One variation of this method is called lasso.
The lasso objective function includes a penalty term (),
which is a nonnegative regularization parameter (Count,
2010; see the Method section). Akin to choosing the
number of predictors in a regression model, lambda is
changed to increase or decrease the number of nonzero
(p) components. Larger values of lambda result in more

beta coefficients being set to 0. The value of lambda that
minimizes misclassification error can be computed using
K-fold cross-validation. Penalization created a reduced
model that excluded covariates that do not affect the out-
come variable. In a practical sense, if a model contains
multiple correlated covariates, as we would expect for
time-series data, most coefficients will be set to 0 (see the
Methods section in the Supplemental Material for more
details).

We used age, a “first-or-not-first” covariate that indi-
cates whether the first stimulus was also the starting
image, and the time-series data for the BOLD response
for the self-face image as 12 covariates in our model. To
evaluate classification, we initially performed a logistic
regression using a standard general linear model package
in R. As expected, the full model is overparameterized
because of autocorrelation that results in poorly esti-
mated parameters (see Table 1) and is difficult to inter-
pret. AUC for the ROC curve for this full model was 0.816
(see Fig. 3a). To improve parameter estimation, we
employed leave-one-out cross-validation and penaliza-
tion to identify a model that minimizes misclassification
(Friedman et al., 2010). We found that the optimal model
reduced the number of covariates from 12 to 8 (see Fig.
3b). AUC for this reduced model was 0.773 (see Fig. 30),
and sensitivity and specificity for this model were 63.6%
and 73.7%, respectively (see Table 2). The coefficients
emphasize not only the difference in amplitude in self-
face responses but also differences in the relaxation and
latency of the BOLD response (see Fig. 2a and 2b). An
evaluation of misclassification error for different numbers
of variables revealed that the penalized model would
have similar expected misclassification error on future
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Table 2. Two-by-Two Classification for the Cross-Validated
Penalized Model

Actual
Prediction ASD children  TD children Total
ASD children 14 10 24
TD children 8 28 36
Total 22 38 60
Sensitivity (%) 03.64
Specificity (%) 73.68

Note: ASD = autism spectrum disorder; TD = typically developing.

data sets as would a full model (see Fig. 3b). The com-
puted individual difference measurements for each indi-
vidual can be aggregated into separate distributions; D’
between the two cohorts was computed to be 1.50 in the
reduced model (see Fig. 3d).

To evaluate the specificity of our response to the
single-stimulus self-face image, we also repeated the pro-
cedure for the first presentation of the other-face image.
After applying the same leave-one-out cross-validation
and penalization, we found that the generated model did
not include any time-series information from the other-
face images (coefficients were set to 0; see Fig. S7a in the
Supplemental Material). This model included only a con-
stant and the age covariate. It generated a ROC curve
with an AUC of 0.607 (see Fig. S7b in the Supplemental
Material). These results are consistent with (although not
definitive) the specificity of self faces, but not other faces,
for eliciting differentiating responses in the MCC across
TD and ASD individuals.

Discussion

ASD is a highly heterogeneous (Lichtenstein, Carlstrom,
Réstam, Gillberg, & Anckarsiter, 2010; Schaaf & Zoghbi,
2011) disorder with concomitant diagnostic complexities.
Neuroimaging and neuropathology studies have revealed
that brain growth and organization are fundamentally dif-
ferent in ASD (Johnson & Myers, 2007); thus, usage of
MRI as a biological assay holds great interest as a supple-
ment to current diagnostic techniques. Researchers have
used anatomical differences in grey- and white-matter
volume (Neeley et al., 2007) and in cortical thickness
(Jiao et al., 2010) and whole-brain pattern classification
(Ecker et al., 2010) to classify TD and ASD children. Like
many of these previous proof-of-concept studies on
alternative assays to diagnose ASD, our study is not pow-
ered to evaluate test-and-retest reliability.

Prior fMRI work has relied primarily on averaging over
multiple presentations to determine group-level responses
to stimuli. To our knowledge, this is the first fMRI experi-
ment to exploit a single-stimulus-induced BOLD time

series that also produced a neural individual difference
measure. Our successful elicitation of a single-stimulus
result in part relies heavily on our prior work that defined
the ROI, the cognitive variable, and their relationship to
the population of interest. We present evidence of repeti-
tion suppression in our ROI, which begins to occur by
the second presentation. The literature (Henson & Rugg,
2003) and our data suggest that it is not yet clear how the
meaning of a stimulus changes with repeated presenta-
tions within a subject’s experimental trial. At a minimum,
these results raise unanswered questions about how the
cognitive interpretation of a stimulus changes over
repeated presentations and how brain responses change
respectively. Future work is needed to further explore the
difference between single- and multiple-presentation
paradigms.

Although our measurement provided only moderate
discrimination, we in fact expected that a proportion of
ASD and TD samples would be misclassified. First, hemo-
dynamic responses to stimuli vary across the population,
and our study numbers are not powered to properly map
this variation. Second, the MCC has been linked to per-
spective taking in individuals (Lombardo et al., 2010), an
ability that matures with age (Mitchell & O’Keefe, 2008;
Sally & Hill, 2006). One plausible interpretation is that the
conflation of disease status and cognitive maturation
hampered our ability to discriminate between ASD and
TD individuals. Third, although our measurement may
map loosely onto Diagnostic and Statistical Manual of
Mental Disorders (4th ed.; DSM-IV; American Psychiatric
Association, 1994) clinical criteria for ASD, in particular
the axis regarding poor social interaction, these axes
leave substantial room for interpretation and have already
changed in DSM-5 (American Psychiatric Association,
2013). Last, given the heterogeneity in ASD presentations
(Ronald et al., 2006), we suspect that the most relevant
finding in this single-stimulus experiment may be the
relatively low misclassification rate of putatively TD
children.

In several studies, researchers have explored the sen-
sitivity and specificity of well-known ASD surveys
(ADOS and ADI-R) and diagnosis of ASD in comparison
with “gold-standard” clinical assessment (Gray, Tonge,
& Sweeney, 2008; Ventola et al., 2000). In these studies,
patients suspected (by survey) of ASD have yielded sen-
sitivity of and specificity of 0.88 to 0.99 and 0.67 to 0.82
(ADOS) and 0.53 to 0.77 and 0.61 to 0.70 (ADI-R),
respectively. Although our results appear comparable at
first glance, they may be skewed favorably by selection
and model bias. Namely, our enrolled subjects were
already diagnosed with ASD by gold-standard clinical
assessment, whereas evaluations of ADOS/ADI-R are
conducted on suspected patients with blinded physi-
cians. Proper external validation of this paradigm and
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model will require a large subject pool recruited using a
screening tool, blinding of the evaluating physicians, and
model validation using an external cohort, not just inter-
nal cross-validation.

The clinical adoption of an MRI biomarker for psycho-
pathology will require, at a minimum, reliable and accu-
rate classification of disease. Furthermore, the success of
any potential clinical diagnostic strategy depends on oper-
ational reliability—reliability that often derives from simple
and cost-effective procedures. Although the simplicity and
brevity of single-stimulus paradigms should reduce opera-
tor variability, this question has not been adequately
explored. Our work suggests that single-stimulus method-
ologies, in an MCC ROI that was previously identified in
several hundred normal individuals in self and other tasks
(Chiu et al., 2008; King-Casas et al., 2005; Kishida, King-
Casas, & Montague, 2011; Tomlin et al., 2006), may pro-
vide accurate classification of disease in ASD patients.
Moreover, BOLD time-series data from simple and short
paradigms, which had previously been thought to be
highly smoothed and noise ridden, may nonetheless pro-
vide useful diagnostic information. We are cautiously opti-
mistic that this work may provide a small step toward
developing MRI-based applications for screening of psy-
chopathology or other cognitive phenotypes.
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