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Functional MRI (fMRI) has become a major tool in cogni-
tive neuroscience in which blood-oxygen-level-dependent 
(BOLD) measurements throughout the brain are used to 
identify spatiotemporal neural dynamics associated with 
variables of interest (Huettel, Song, & McCarthy, 2008). 
This general approach is carried out almost exclusively in 
terms of averages of BOLD responses over multiple pre-
sentations of stimuli because of relatively low signal-to-
noise issues in the raw BOLD signal. Averaging within a 
single individual is often followed by averaging across 
individuals to generate group-level summaries about 
neural responses to stimuli. The presumed need for aver-
aging presents one barrier to using fMRI as a method for 
generating rapid, individual difference responses useful 

for characterizing healthy or diseased cognition. 
Moreover, the intrinsic sluggishness and spatial impreci-
sion of the BOLD response contributes to the general 
perception that fMRI is a useful neuroimaging modality 
only in “averaging mode.” Here, we present new results 
that suggest that this view is incomplete and that fMRI 
can be used to generate a single-stimulus measurement 
useful as an individual difference measure and biomarker 
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Abstract
Functional MRI typically makes inferences about neural substrates of cognitive phenomena at the group level. We report 
the use of a single-stimulus blood-oxygen-level-dependent (BOLD) response in the cingulate cortex that differentiates 
individual children with autism spectrum disorder from matched typically developing control children with sensitivity 
and specificity of 63.6% and 73.7%, respectively. The approach consists of passive viewing of self and other faces 
from which an individual difference measure is derived from the BOLD response to the first self-face image only. The 
method, penalized logistic regression, requires no averaging over stimulus presentations or individuals. These findings 
show that single-stimulus functional MRI responses can be extracted from individual subjects and used profitably as 
a neural individual difference measure. The results suggest that single-stimulus functional MRI can be developed to 
produce quantitative neural biomarkers for other developmental disorders and may even be useful in the rapid typing 
of cognition in healthy individuals.
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in one of the most common neurodevelopmental 
disorders—autism spectrum disorder (ASD).

Our investigation exploring the possibility of using a 
single-stimulus approach in ASD stems from extensive 
prior work, which has demonstrated that the middle cin-
gulate cortex (MCC) is particularly responsive during 
social exchange in a manner that is consistent with the 
hypothesis that this region is important for cognitive pro-
cesses related to perspective taking. Specifically, Tomlin 
et al. (2006) showed that activity in the MCC tracked the 
active agent (i.e., “me” vs. “not me”) during a social-
exchange experiment involving 100 pairs of subjects. 
Following this work, Chiu et al. (2008) demonstrated that 
one of these agent-specific responses (the “self-response”) 
in the MCC was diminished in individuals diagnosed with 
ASD. Chiu et al. also showed that diminished responses 

in the MCC were positively correlated with symptom 
severity in the ASD cohort. In the same report, Chiu et al. 
performed a visual-imagery experiment with a sample of 
81 accomplished athletes and 27 healthy adults. Using an 
eyes-closed mental-imagery task, Chiu et al. showed that 
the same pattern of activity (i.e., self-response along the 
MCC) could be elicited during eyes-closed mental imag-
ery of first-person perspective taking but not during 
third-person perspective taking. Kishida, Li, Schwind, 
and Montague (2012) hypothesized that the region of the 
MCC that was engaged during perspective taking (and 
social exchange) and was diminished in the ASD cohort 
could be specifically activated by showing subjects pic-
tures of themselves. Using a passive-picture-viewing task 
in healthy adults and the region of interest (ROI) defined 
in the eyes-closed mental-imagery task, Kishida et al. 
showed that, indeed, the MCC differentiated pictures of 
“self faces” from pictures of “other faces.”

Taken together, these results suggested the hypothesis 
that a similar picture-viewing assay might elicit signals in 
this same ROI strong enough to produce a neural mea-
sure that might also differentiate children diagnosed with 
ASD from age-matched typically developing (TD) chil-
dren (cohort-level statistics are provided in Table S2 in 
the Supplemental Material available online). We also 
included adult controls to evaluate consistency with past 
findings. We designed a full-length passive-picture-
viewing paradigm to test this hypothesis; however, two 
empirical findings suggested the necessity of exploring a 
reduced experimental design. First, the duration of the 
full-length experiment (approximately 12 min) proved 
too long for children diagnosed with ASD to remain still 
in the fMRI scanning environment. Second, in both ASD 
and TD children, an effect consistent with repetition sup-
pression of BOLD responses in the MCC to repeated pre-
sentations of both self and other images suggested that 
an “average brain response” to multiple presentations 
was very different from responses to a more reduced 
design. Following these results, we tested the most 
extreme version of a “reduced experimental design” and 
demonstrated that a machine-learning approach and sin-
gle-stimulus fMRI data from an a priori–prescribed ROI 
can produce results consistent with a rapidly assessable 
individual difference measure for ASD.

Method

Stimuli

Photographs of each subject were taken prior to scan-
ning. Subjects were draped around the shoulders to 
ensure image uniformity. They were instructed to gaze 
directly at the camera while assuming different head 
angles. Head angle was varied to reduce habituation to 

Fig. 1.  Example stimulus display and region of interest (ROI). The 
stimulus display (a) contains a picture of the subject (self) and a picture 
of a single age-, gender-, and IQ-matched individual (other). Images 
were shown in random order with Poisson distributed interstimulus 
intervals (λ = 14). Demographics are reported in Table S2 in the Supple-
mental Material. The picture (b) shows independently identified mid-
dle cingulate cortex voxels from Kishida, Li, Schwind, and Montague 
(2012)—specifically, a 10-voxel mask from an eyes-closed mental-imag-
ery task that defined an ROI in adults (Montreal Neurological Institute 
coordinates).

 at HAM TMC on April 19, 2016cpx.sagepub.comDownloaded from 

http://cpx.sagepub.com/


424	 Lu et al.

repeated presentations of face images. In the scanner, 
subjects were shown 15 pictures of themselves (self face) 
and 15 unique pictures of an age- and gender-matched 
individual (other face; see Fig. 1a for example stimulus 
display). A computer-controlled projector was used to 
generate the images that were displayed to subjects using 
an overhead mirror mounted on the radiofrequency coil. 
Images were shown for 4 s in random order with random 
interstimulus intervals drawn from a Poisson distribution 
with parameter value (λ) equal to 14 s. Thus, the starting 
image for each subject was randomized. Subjects were 
instructed to focus on the faces or on the white fixation 
cross (displayed during the interstimulus window). Only 
TD subjects were used as other (i.e., control) images.

Subjects

We recruited 39 adults with no known neuropsychiatric 
disorders, 51 TD children, and 35 children with ASD (see 
Table S2 in the Supplemental Material) from the Houston 
metropolitan area by word of mouth and advertisements. 
In addition, subjects with ASD were also referred from 
the Texas Children’s Hospital’s Autism Center. After initial 
assessment using basic fMRI exclusion criteria, we invited 
the remaining qualified children (TD children: n = 45; 
ASD children: n = 27) to Baylor College of Medicine for 
familiarization with the scanning environment, scanning, 
and assessments. Autism Diagnostic Observation Schedule 
(ADOS) scores were available for 20 of the 27 children 
with ASD (Lord, Rutter, DiLavore, & Risi, 2001). In 12 of 
these 20 subjects, the diagnoses were reconfirmed by the 
Autism Diagnostic Interview–Revised (ADI-R; Le Couteur, 
Lord, & Rutter, 2003). The remaining 7 of these 27 patients 
were evaluated in autism centers at tertiary hospitals and 
diagnosed on the basis of clinical presentation and 
developmental history. Last, scores from the Social 
Responsiveness Scale (Constantino & Todd, 2003) and 
the second edition of the Kaufman Brief Intelligence Test 
(Kaufman & Kaufman, 2004) were obtained for a subset 
of ASD and TD subjects (see Table S2 in the Supplemental 
Material). The institutional review board at Baylor College 
of Medicine approved the study protocol. Parents signed 
informed written consent and children provided assent.

Image acquisition

Imaging was performed using a 3-T Siemens Allegra 
head-only scanner and 3-T Siemens Trio full-body scan-
ner; 39 of the 45 TD children and 26 of the 27 ASD chil-
dren were scanned in the Trio scanner. An analysis of 
peak differences between and within ASD and TD popu-
lations showed that no differences in hemodynamic 
responses were found to be attributable to the employed 
scanner. A localizer image was acquired first followed by 

high-resolution T1-weighted structural images (192 slices; 
in-plane resolution: 256 × 256; field of view: 245 mm; 
slice thickness: 1 mm). Continuous whole-brain imaging 
was then performed as subjects viewed self and other 
faces on the screen. Regional brain activation was mea-
sured using changes in BOLD fMRI signal. The parame-
ters for the functional sequence are as follows: echo-planar 
imaging, gradient recalled echo; repetition time = 2,000 ms; 
echo time = 30 ms; flip angle = 90; 64 × 64 matrix (in-
plane resolution); 34 (4-mm) axial slices positioned 30° 
to the anterior commissure/posterior commissure line.

Data were preprocessed and analyzed using the SPM8 
software package (see http://www.fil.ion.ucl.ac.uk/spm/
software/spm8/; Friston, Penny, Ashburner, Kiebel, & 
Nichols, 2006). During preprocessing, functional brain 
images were temporally realigned using linear interpola-
tion to correct for variability in the timing of slice acquisi-
tion, spatially realigned using a 6-parameter rigid-body 
transformation to correct for head movements, and coreg-
istered onto high-resolution/high-contrast structural 
images. In adults, images are typically spatially normalized 
to a Montreal Neurological Institute template (SPM’s echo-
planar imaging template) by applying a 12-parameter 
affine transformation to facilitate intersubject comparison.

For the children in our study, we generated custom-
ized T1-template and tissue-probability maps (i.e., gray 
matter, white matter, and cerebrospinal fluid priors) using 
the SPM8 toolbox Template-O-Matic (see https://irc 
.cchmc.org/software/tom.php). This toolbox is based on 
data obtained from 404 children as part of the normal-
brain-development study of the National Institutes of 
Health (Wilke, Holland, Altaye, & Gaser, 2008). The tool-
box takes in the ages and gender of the sample popula-
tion as input and automatically generates reference 
images based on parameters obtained from the National 
Institutes of Health cohort. Children’s images were then 
segmented and normalized using the unified-segmenta-
tion model. During normalization, bounding-box param-
eters of structural and functional images were matched to 
the adult masks to ensure that image dimensions and 
origin were the same. Normalized images, in all cohorts, 
were then spatially smoothed using an 8-mm Gaussian 
kernel and temporally filtered (cutoff period of 128 s).

ROI analysis

ROI analysis was performed using independently iden-
tified MCC voxels from Kishida et al. (2012; see Fig. 1b). 
This MCC ROI, which was generated from adult patients, 
was resliced to our custom children’s template using 
nearest-neighbor interpolation. Axial, coronal, and sag-
ittal cuts of the ROI overlaid on the standard adult 
template and on our child templates generated with the 
Template-O-Matic toolbox are shown in Figure S8 in the 

 at HAM TMC on April 19, 2016cpx.sagepub.comDownloaded from 

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
https://irc
https://irc.cchmc.org/software/tom.php
http://cpx.sagepub.com/


Single-Stimulus Functional MRI	 425

Supplemental Material. Raw time courses for this ROI 
were extracted using SPM functions, detrended, and 
then averaged. Time series were captured for the period 
from 6 s prior to stimulus presentation to 16 s after 
stimulus presentation, including the 4-s presentation 
interval. Data in this period were linearly interpolated 
(using MATLAB function interpl.m). Time series were 
captured for the first presentation of the self and other 
images for each individual. BOLD responses were pre-
sented as percentage signal change from baseline BOLD 
rates (–6 s to 0 s, where t = 0 is the stimulus presenta-
tion). The peak activation was defined as the mean 
response 6 s to 8 s after stimulus presentation relative to 
the response measured just prior to the stimulus onset 
(–6 s to 0 s).

Subject inclusion criteria

One adult of 39 was excluded from analysis because of 
technical problems during image acquisition (adults: n = 
38; 14 males, 24 females; mean age = 29.9 years, ±9.5). Of 
the 51 TD children originally recruited, 6 were initially 
excluded from analysis: 2 because of technical problems 
during scanning; 1 as a result of the subject’s decision to 
discontinue with the study; 1 because the subject fell asleep 
during the task; and 3 because of excessive head move-
ment (more than 3.5 mm), resulting in 45 TD subjects. Out 
of the 35 subjects with ASD, 8 were initially excluded (27 
remaining) from the analysis: 1 because of atypical brain 
morphology; 5 because of excessive head movement 
(exclusion criteria was instantaneous head motions greater 
than +/– 3.5 mm during the first presentations of self and 
other pictures (6  s pre-stimulus and 16  s post-stimulus); 
and 2 as a result of technical issues related to scanning that 
prevented recording of these subjects’ brain responses to 
the first stimulus presentation.

For the ROI analysis, a second inclusion criterion was 
used to remove hypervariable hemodynamic responses 
to ensure data quality. Subjects with high MCC signal 
variability on the first presentation of the self or other 
image were excluded from analysis to ensure that outlier 
values did not dominate the BOLD response and con-
found the results. Removal of BOLD responses that may 
be contaminated with noise can be especially important 
when looking at a single-stimulus response.

Signal variability was measured as the standard devia-
tion of the BOLD time course from 6 s prior to presenta-
tion to 16 s postpresentation. Outliers for signal variability 
were defined as having a standard deviation greater than 
median (of population) plus or minus 3 times the inner 
quartile range for all hemodynamic responses (see Fig. S9 
and Table S3 in the Supplemental Material). Given that 
signal variations in ASD and TD children were not statis-
tically different (data not shown), these data were 

combined and analyzed as a single “child” population. 
Subjects with MCC signal standard deviation of more 
than 0.80% for TD and ASD subjects and 0.53% for adults 
were removed from our single-stimulus ROI analysis. 
Thus, 33 of 38 adults, 38 of 45 TD children, and 22 of 27 
ASD children were retained for our ROI analysis. 
Individuals excluded from analysis did not have single-
stimulus hemodynamic trajectories that resemble typical 
BOLD responses (see Fig. S10 in the Supplemental 
Material). In fact, many appeared to have large negative 
inflections or a sinusoidal pattern. Incidentally, all indi-
viduals who were excluded for variable self-face 
responses were also independently excluded for high-
variability other-face responses. This finding further rein-
forced the hypothesis that the variability in these BOLD 
trajectories were due to a common factor, such as head 
movement (Power, Barnes, Snyder, Schlaggar, & Petersen, 
2012), or some other unknown factor.

Classifier development for penalized 
regression model

Penalized regressions were computed using the glmnet 
package (R 2.15.1; Friedman, Hastie, Höfling, & Tibshirani, 
2007; Friedman, Hastie, & Tibshirani, 2010; Tibshirani, 
1996). Receiver operating characteristic (ROC) curves 
were plotted on MATLAB 2012b using the perfcurve 
function. Before computing parameter values, we first 
reweighted the value of individual samples such that the 
optimization used “equal-sized” populations. Given our 
sample numbers of 38 TD children and 22 ASD children, 
this was akin to increasing the value of each ASD sample 
by 1.72 (38/22). By reweighting the samples, we improved 
sensitivity and specificity of the classifier for the minor 
population (Cramer, 2013).

Penalized regression is a variable selection technique 
that shrinks some coefficients and sets others to 0. The 
least absolute shrinkage and selection operator, or lasso 
function, is a variable selection technique that utilizes an 
L1-norm penalty. The L1-norm penalty alters the standard 
cross-entropy loss objective function (see the Methods 
section in the Supplemental Material) to the following:
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where λ is a nonnegative regularization parameter or 
amount of penalization. Akin to choosing the number of 
predictors in a regression model, lambda is changed to 
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increase or decrease the number of nonzero compo-
nents. Larger values of lambda result in more beta coef-
ficients being set to 0. The value of lambda that minimizes 
misclassification error can be computed using K-fold 
cross-validation (Friedman et al., 2007; see Fig. S11 in the 
Supplemental Material).

Cross-validation.  Cross-validation for different levels 
of penalization also allows one to visualize how models 
with different amounts of covariates perform on inde-
pendent data sets. In K-fold cross-validation (Bishop, 
2006), the data are partitioned into K subsets. For K 
repeats, one subset is selected as the “validation set,” and 
the remaining K – 1 subsets are iteratively used to train 
the model and tested against the validation set. The test 
statistic, misclassification error or deviance, is computed 
for each repeat and then averaged to provide a single 
estimate. Using cross-validation, one can determine 
lambda such that the desired statistic is optimized. Cross-
validation is included in the glmnet computational pack-
age; lambda is selected using the “1se” heuristic. This 
heuristic favors a more parsimonious model in which the 
expected error is within 1 SE cross-validation error 
(Friedman et al., 2010) of the minimal error.

Computation of coefficients.  Computation of coeffi-
cients in the lasso in the glmnet package is completed 
using coordinate descent (Friedman et al., 2007; Friedman 
et al., 2010). Parameter estimation and cross-validation is 
automated as part of the glmnet package (Friedman, 
Hastie, & Rob, n.d.).

Results

In a passive-viewing paradigm, adults, TD children, and 
children diagnosed with ASD were shown 15 presenta-
tions each of images of themselves (self) and an age- and 
sex-matched individual (other; see Fig. 1a). These images 
were presented in a randomized order such that the start-
ing image for each subject occurred by chance. BOLD 
responses to self- and other-image presentations were 
then extracted using the eyes-closed mental-imagery ROI 
in the MCC (see Fig. 1b). Consistent with previous find-
ings by Kishida et al. (2012), results from the present 
study indicated that adults (n = 33) showed greater 
response to self faces than to other faces with averaging 
of all presentations and with a single-stimulus response 
(see Fig. S1 in the Supplemental Material).

In analyzing data for TD and ASD children, we focused 
on the hemodynamic response to the first presentation of 
either self or other stimuli for two reasons: repetition 
suppression and task length. Repetition suppression is 
the reduction of neural responses to repeated stimuli due 
to stimulus recognition and learning (Grill-Spector, 

Henson, & Martin, 2006; Henson & Rugg, 2003; Segaert, 
Weber, de Lange, Petersson, & Hagoort, 2013). In our 
experimental paradigm, repetition suppression of the 
BOLD signal was evident by the second image presenta-
tion (see Fig. S1 in the Supplemental Material). We found 
that for all subjects, cohort-level differences in peak 
hemodynamic response for self and other images were 
maximal after the first stimulus presentation and did not 
improve with multiple presentations (data not shown for 
adult cohort; for data on TD and ASD cohorts, see Figs. 
S2a and S2b, respectively, in the Supplemental Material).

In addition, we found that longer experimental para-
digms reduced the cohort of individuals that were avail-
able for analysis. Using an instantaneous movement 
threshold of plus or minus 3.5 mm, we plotted a Kaplan 
Meier curve for experimental completion for all partici-
pating subjects (see Fig. S3 in the Supplemental Material) 
by total scanning time. Our task was approximately 12 
min in total length. Unlike adult and TD subjects, who 
were able to voluntarily lie still for extended periods, 
ASD children showed significant head movement. After 5 
min of scanning time, more than 40% of the data from the 
ASD population could not be analyzed as a result of 
excessive head movement. However, by reducing scan-
ning time to less than 2 min (i.e., single-stimulus 
responses), we could retain data from more than 75% of 
the subjects with ASD.

The challenges associated with full-length experi-
ments in children diagnosed with ASD motivated the 
exploration of a reduced experimental design; in the 
extreme, eliciting a reliable brain response to a single 
stimulus would provide dramatically increased flexibility 
in the kinds of fMRI experiments that could be designed. 
Figure 2a and 2b and Figure S3 in the Supplemental 
Material show the cohort-level hemodynamic response to 
the first presentation of a self-face image displayed along-
side the analogous time series for the first presentation of 
the other-face image for TD children (n = 38; Fig. 2a), 
ASD children (n = 22; Fig. 2b), and adult subjects (n = 33; 
Fig. S3). These data show two clear features at the cohort 
level. First, single-stimulus responses elicit a large BOLD 
response in the MCC. In the TD cohort, the peak hemo-
dynamic response differentiates between self-face versus 
other-face images (p = .04, right-sided t test; see Fig. 2a 
and 2c); this result is consistent with analyses of adults in 
the present study (p = .03, right-sided t test; see Fig. S3) 
and previously reported findings in adults (Kishida et al., 
2012). Second, unlike TD children, single-stimulus peak 
BOLD responses in the ASD cohort did not differentiate 
self from other images (p = .16, right-sided t test). When 
we compared the TD and ASD cohorts, results showed 
that peak responses to self-face images differentiated the 
TD and ASD cohorts (p = .04, right-sided t test), but 
responses to other-face images did not (p = .22, right-sided 

 at HAM TMC on April 19, 2016cpx.sagepub.comDownloaded from 

http://cpx.sagepub.com/


Single-Stimulus Functional MRI	 427

t test). Thus, differences across the two populations arose 
specifically for the time-series responses for the self-face 
picture (see Fig. 2c).

To test whether TD and ASD subjects were actively 
viewing the face-image stimuli, we extracted responses 
from bilateral fusiform face area (FFA) in 21 control adults 
in a separate task using a passive-viewing paradigm of 
faces and objects (see Fig. S5 in the Supplemental 
Material; Kanwisher & Yovel, 2006). Using a general lin-
ear model contrast, we assessed visual responses in the 
fusiform gyrus with particular attention paid to the FFA to 

determine whether subjects viewed the images. We found 
that the bilateral FFA activated robustly in both cohorts in 
response to self and other face images. Although some 
studies have reported decreased FFA activity in ASD 
patients (Deeley et al., 2007; Humphreys, Hasson, Avidan, 
Minshew, & Behrmann, 2008), other studies have shown 
that familiarity (Pierce, Haist, Sedaghat, & Courchesne, 
2004), age (Pierce & Redcay, 2008), and attention 
(Hadjikhani et al., 2004) engage the FFA in autism. The 
lack of differences in FFA activation between TD and 
ASD children (see Fig. S5 in the Supplemental Material) 

Fig. 2.  Results: single-stimulus responses. The graphs show (a) time series for single-stimulus presentation averaged over TD children (n = 38), 
(b) time series for single-stimulus presentation averaged over ASD children (n = 22), (c) peak hemodynamic response for ASD and TD children 
for single-stimulus self and other images (asterisk indicates p < .05), and (d) hemodynamic responses to single-stimulus self-face images for single 
ASD and TD individuals. Trajectories for all subjects are shown in Figure S2 in the Supplemental Material. MCC = middle cingulate cortex; BOLD = 
blood-oxygen-level-dependent; TD = typically developing; ASD = autism spectrum disorder. Error bars represent the standard error.

 at HAM TMC on April 19, 2016cpx.sagepub.comDownloaded from 

http://cpx.sagepub.com/


428	 Lu et al.

during image presentations suggests that both cohorts’ 
brains detected the face images throughout the task (punc 
< .005, k = 10; Pessoa, McKenna, Gutierrez, & Ungerleider, 
2002).

Across the ASD and TD cohorts, the hemodynamic-
time-series differences to self-face images (Fig. 2a and 
2b) provided an opportunity to develop an individual 
difference measurement, that is, a single parameter value 

that summarizes an individual’s BOLD-response time 
series to a single-stimulus self-face image (Fig. 2d and 
Fig. S4). One simple approach is to discriminate the TD 
and ASD populations using the peak response. 
Discriminant classification of disease status based solely 
on the percentage signal change in the peak activation of 
the BOLD response resulted in sensitivity and specificity 
of 54.6% and 57.9%, respectively, and an area under the 

Fig. 3.  Differences in blood-oxygen-level-dependent middle cingulate cortex responses to single-stimulus self-face images classifies individual 
subjects. The graph in (a) shows ROC curves for a full logistic model and a model based on averaging peak responses. The graph in (b) shows mis-
classification error versus penalization in a penalized logistic regression model. Lambda is the amount of penalization. The top of the graph shows 
the number of variables (i.e., degrees of freedom) included in the model as penalization changes. Less penalization, log(lambda), results in more 
degrees of freedom. Two vertical lines are plotted: The left line is the penalization that produced minimal misclassification error; the right line is the 
penalization (“1se”) that is within 1 standard cross-validation error of the minimum error. Lambda is selected using the 1se rule, given that the error 
is statistically equivalent, but the model is more parsimonious. Error bars represent the standard error. The graph in (c) shows ROC curves for a 
penalized logistic regression model using a leave-one-out cross-validation. The penalized cross-validated model uses data from only eight covariates. 
The graph in (d) shows histograms of individual difference measurements, p(status = ASD | M), given the penalized model (M). The D′ between 
the ASD and TD cohorts is 1.50 for the single-shot measurements and 1.61 for the full model. ROC = receiver operating characteristic; AUC = area 
under the curve; ASD = autism spectrum disorder; TD = typically developing.
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curve (AUC) of 0.591 (see Table S1, Fig. 3a and Fig. S6 in 
the Supplemental Material); this is a subpar classification 
of disease state for individuals. However, we found that 
we could improve classification by including more data 
from the time series. Using only data captured by a peak 
hemodynamic response discards information encoded 
elsewhere in the dynamics of the ROI response. In addi-
tion, the hemodynamic response to any stimulus already 
includes a profound smoothing effect that is compounded 
by further averaging. To improve classification, we used 
the information of an entire time series in the preselected 
ROI and employed a penalized logistic regression. This 
classification method generates, for each time-series sam-
ple after a self-picture presentation, the probability of 
being assigned to the ASD group, for example, p(status = 
ASD | M), given the model (M).

In ordinary logistic regression, the objective function 
is the cross-entropy loss (see the Methods section in the 
Supplemental Material; Bishop, 2006). Although this 
method is commonly used and results in low bias classi-
fication, models that include a large number of covariates 
often have high variance due to overfitting. Such over
parameterized models can have low prediction accuracy 
for future data sets (Tibshirani, 1996). Accordingly, we 
used a variable selection technique that employs an L1 
penalization, which shrinks some coefficients and sets 
others to 0. One variation of this method is called lasso. 
The lasso objective function includes a penalty term (λ), 
which is a nonnegative regularization parameter (Count, 
2010; see the Method section). Akin to choosing the 
number of predictors in a regression model, lambda is 
changed to increase or decrease the number of nonzero 
(p) components. Larger values of lambda result in more 

beta coefficients being set to 0. The value of lambda that 
minimizes misclassification error can be computed using 
K-fold cross-validation. Penalization created a reduced 
model that excluded covariates that do not affect the out-
come variable. In a practical sense, if a model contains 
multiple correlated covariates, as we would expect for 
time-series data, most coefficients will be set to 0 (see the 
Methods section in the Supplemental Material for more 
details).

We used age, a “first-or-not-first” covariate that indi-
cates whether the first stimulus was also the starting 
image, and the time-series data for the BOLD response 
for the self-face image as 12 covariates in our model. To 
evaluate classification, we initially performed a logistic 
regression using a standard general linear model package 
in R. As expected, the full model is overparameterized 
because of autocorrelation that results in poorly esti-
mated parameters (see Table 1) and is difficult to inter-
pret. AUC for the ROC curve for this full model was 0.816 
(see Fig. 3a). To improve parameter estimation, we 
employed leave-one-out cross-validation and penaliza-
tion to identify a model that minimizes misclassification 
(Friedman et al., 2010). We found that the optimal model 
reduced the number of covariates from 12 to 8 (see Fig. 
3b). AUC for this reduced model was 0.773 (see Fig. 3c), 
and sensitivity and specificity for this model were 63.6% 
and 73.7%, respectively (see Table 2). The coefficients 
emphasize not only the difference in amplitude in self-
face responses but also differences in the relaxation and 
latency of the BOLD response (see Fig. 2a and 2b). An 
evaluation of misclassification error for different numbers 
of variables revealed that the penalized model would 
have similar expected misclassification error on future 

Table 1.  Comparison of Coefficients for the Full Logistic Regression Model With 
Coefficients From the Penalized Model

ID Coefficient

Full model (logit) Penalized model

Estimate Pr(>|z|) Estimate

0 Intercept 2.917 (0.937) 0.002 1.487
1 Age −0.216 (0.069) 0.002 −0.104
2 First-or-not-first 1.102 (0.509) 0.030 0.443
3 −2.00 24,100 (56,430) 0.669 0.000
4 0 (Presentation) 24,100 (56,430) 0.669 0.000
5 2.00 24,100 (56,430) 0.669 0.000
6 4.00 5.327 (1.358) 0.000 1.591
7 6.00 −4.998 (1.393) 0.000 −2.270
8 8.00 −1.729 (1.008) 0.086 −0.226
9 10.00 2.345 (0.916) 0.010 0.362
10 12.00 0.012 (0.979) 0.991 0.000
11 14.00 0.586 (0.726) 0.419 0.474
12 16.00 0.301 (0.536) 0.574 0.122

Note: Standard errors are shown in parentheses. The model is over parameterized; parameters 
for time since onset (seconds = −2, 0, and 2) cannot be computed with precision.
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data sets as would a full model (see Fig. 3b). The com-
puted individual difference measurements for each indi-
vidual can be aggregated into separate distributions; D′ 
between the two cohorts was computed to be 1.50 in the 
reduced model (see Fig. 3d).

To evaluate the specificity of our response to the 
single-stimulus self-face image, we also repeated the pro-
cedure for the first presentation of the other-face image. 
After applying the same leave-one-out cross-validation 
and penalization, we found that the generated model did 
not include any time-series information from the other-
face images (coefficients were set to 0; see Fig. S7a in the 
Supplemental Material). This model included only a con-
stant and the age covariate. It generated a ROC curve 
with an AUC of 0.607 (see Fig. S7b in the Supplemental 
Material). These results are consistent with (although not 
definitive) the specificity of self faces, but not other faces, 
for eliciting differentiating responses in the MCC across 
TD and ASD individuals.

Discussion

ASD is a highly heterogeneous (Lichtenstein, Carlström, 
Råstam, Gillberg, & Anckarsäter, 2010; Schaaf & Zoghbi, 
2011) disorder with concomitant diagnostic complexities. 
Neuroimaging and neuropathology studies have revealed 
that brain growth and organization are fundamentally dif-
ferent in ASD (Johnson & Myers, 2007); thus, usage of 
MRI as a biological assay holds great interest as a supple-
ment to current diagnostic techniques. Researchers have 
used anatomical differences in grey- and white-matter 
volume (Neeley et al., 2007) and in cortical thickness 
( Jiao et al., 2010) and whole-brain pattern classification 
(Ecker et al., 2010) to classify TD and ASD children. Like 
many of these previous proof-of-concept studies on 
alternative assays to diagnose ASD, our study is not pow-
ered to evaluate test-and-retest reliability.

Prior fMRI work has relied primarily on averaging over 
multiple presentations to determine group-level responses 
to stimuli. To our knowledge, this is the first fMRI experi-
ment to exploit a single-stimulus-induced BOLD time 

series that also produced a neural individual difference 
measure. Our successful elicitation of a  single-stimulus 
result in part relies heavily on our prior work that defined 
the ROI, the cognitive variable, and their relationship to 
the population of interest. We present evidence of repeti-
tion suppression in our ROI, which begins to occur by 
the second presentation. The literature (Henson & Rugg, 
2003) and our data suggest that it is not yet clear how the 
meaning of a stimulus changes with repeated presenta-
tions within a subject’s experimental trial. At a minimum, 
these results raise unanswered questions about how the 
cognitive interpretation of a stimulus changes over 
repeated presentations and how brain responses change 
respectively. Future work is needed to further explore the 
difference between single- and multiple-presentation 
paradigms.

Although our measurement provided only moderate 
discrimination, we in fact expected that a proportion of 
ASD and TD samples would be misclassified. First, hemo-
dynamic responses to stimuli vary across the population, 
and our study numbers are not powered to properly map 
this variation. Second, the MCC has been linked to per-
spective taking in individuals (Lombardo et al., 2010), an 
ability that matures with age (Mitchell & O’Keefe, 2008; 
Sally & Hill, 2006). One plausible interpretation is that the 
conflation of disease status and cognitive maturation 
hampered our ability to discriminate between ASD and 
TD individuals. Third, although our measurement may 
map loosely onto Diagnostic and Statistical Manual of 
Mental Disorders (4th ed.; DSM–IV; American Psychiatric 
Association, 1994) clinical criteria for ASD, in particular 
the axis regarding poor social interaction, these axes 
leave substantial room for interpretation and have already 
changed in DSM–5 (American Psychiatric Association, 
2013). Last, given the heterogeneity in ASD presentations 
(Ronald et al., 2006), we suspect that the most relevant 
finding in this single-stimulus experiment may be the 
relatively low misclassification rate of putatively TD 
children.

In several studies, researchers have explored the sen-
sitivity and specificity of well-known ASD surveys 
(ADOS and ADI-R) and diagnosis of ASD in comparison 
with “gold-standard” clinical assessment (Gray, Tonge, 
& Sweeney, 2008; Ventola et al., 2006). In these studies, 
patients suspected (by survey) of ASD have yielded sen-
sitivity of and specificity of 0.88 to 0.99 and 0.67 to 0.82 
(ADOS) and 0.53 to 0.77 and 0.61 to 0.70 (ADI-R), 
respectively. Although our results appear comparable at 
first glance, they may be skewed favorably by selection 
and model bias. Namely, our enrolled subjects were 
already diagnosed with ASD by gold-standard clinical 
assessment, whereas evaluations of ADOS/ADI-R are 
conducted on suspected patients with blinded physi-
cians. Proper external validation of this paradigm and 

Table 2.  Two-by-Two Classification for the Cross-Validated 
Penalized Model

Prediction

Actual

ASD children TD children Total

ASD children 14 10 24
TD children 8 28 36
Total 22 38 60
Sensitivity (%) 63.64  
Specificity (%) 73.68  

Note: ASD = autism spectrum disorder; TD = typically developing.
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model will require a large subject pool recruited using a 
screening tool, blinding of the evaluating physicians, and 
model validation using an external cohort, not just inter-
nal cross-validation.

The clinical adoption of an MRI biomarker for psycho-
pathology will require, at a minimum, reliable and accu-
rate classification of disease. Furthermore, the success of 
any potential clinical diagnostic strategy depends on oper-
ational reliability—reliability that often derives from simple 
and cost-effective procedures. Although the simplicity and 
brevity of single-stimulus paradigms should reduce opera-
tor variability, this question has not been adequately 
explored. Our work suggests that single-stimulus method-
ologies, in an MCC ROI that was previously identified in 
several hundred normal individuals in self and other tasks 
(Chiu et al., 2008; King-Casas et al., 2005; Kishida, King-
Casas, & Montague, 2011; Tomlin et al., 2006), may pro-
vide accurate classification of disease in ASD patients. 
Moreover, BOLD time-series data from simple and short 
paradigms, which had previously been thought to be 
highly smoothed and noise ridden, may nonetheless pro-
vide useful diagnostic information. We are cautiously opti-
mistic that this work may provide a small step toward 
developing MRI-based applications for screening of psy-
chopathology or other cognitive phenotypes.
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