Day 6: Ligation

Learning Objective: In this lab you will learn what components go into a ligation reaction and the conditions under which T4 DNA ligase is able to join DNA pieces.

Background: In earlier weeks you learned how DNA can be cleaved in specific locations by restriction endonucleases. The opposite process, *ligation* joins DNA strands together. Enzymes called ligases can join two double-stranded pieces of DNA together or a single double-stranded piece of DNA to itself. There are two general varieties of ligation, *blunt-end* ligation and *sticky-end* ligation, which refer to the absence or presence overhangs on the ends of the DNA being ligated. Blunt-end ligation has the benefit of being very general applicable, while sticky-end has the benefit of high specificity and efficiency.

The exercise: You will be doing a "three-way" ligation to put together all of your cloning parts in a bio-bricks style assembly. This will finalize the work you do directly with DNA.

Materials: Vector, pSB4A5 (digested with EcoRI and PstI)

Promoters, J231xx (treated with kinase)

RBS-PCR Product, B003x.LacZa-GFP (digested with XbaI & PstI)

T4 DNA Ligase

T4 DNA Ligase Buffer (10X) 1.5 mL Microcentrifuge Tubes

Deionized water

Protocol

- 1. For each combination of vector (1), promoter (2), and RBS-PCR Product (2), label a 1/5 mL microcentrifuge tube.
- 2. Add 10 ng of each: vector, promoter, and RBS-PCR (1 uL each)
- 3. To each tube add 1 uL of the 10X T4 DNA ligase buffer
- 4. Bring total volume in each tube up to 4.5 uL with sterile deionized water
- 5. Add 0.5 uL T4 DNA Ligase Enzyme to each reaction mixture
- 6. Mix by vortexing and spin to collect the liquid drop at the bottom of the tube
- 7. Incubate the ligations at room temperature for 2 hours