20.180 Exam 1 Name:

Answer Key

23 March 2006
50 minutes, closed book

Question 1 (40 points):

BioBricks & Mortar, Inc. has been having some staffing problems in their Department of
Abstraction; they’ve produced the following set of bizarre genetic devices:

Genetic NAND Gate 2-Output Genetic NOT Gate

Using only the parts from these devices, remake three functionally independent and
reusable inverters — include a sketch for how each inverter device works, including labels
on device input and output signals and internal device logic. Then, sketch (at the device
level) two different ring oscillator systems that can be built from your inverters. Finally,
note that a simpler oscillator can be made connecting the output of an amplifier device to
its own input, while simultaneously regulating the input to the amplifier via an inverter
that is also connected to the amplifier’s output. Define a reusable amplifier device and

sketch (at the device-level) a two-device oscillator.

Three functionally independent and reusable inverter devices made from the above parts:

Operator Repressor A
c ORF

Genetic Amplifier Gate

Repressor
A

Two different ring oscillators built from the above inverters:

‘ . INVERTER INVERTER INVERTER
A D B

A PoPS-based amplifier device and a two-device oscillator:

INVERTER
A

INVERTER
B

INVERTER
D

Question 2 (30 points):

General Biologics, Inc. has asked you to design a microorganism that can detect and
respond to levels of TNT in the environment. Above some threshold level of TNT (T),),
and only if nutrients are present in the local environment, the microorganism should turn
orange and express enzymes that degrade TNT. However, if the TNT level is above T,
but nutrients are not present in the environment, the microorganism should do nothing
except turn red. In the absence of TNT (i.e., for TNT < T,) the organism should be
green. Using PoPS-based devices, sketch out the device-level block diagram for the
design of such an engineered biological system. Do not define the individual parts that
make up the devices.

TN_T Green
Receiver Generator

(TNT>T)

Orange Enzyme

Generator Generator

Mutrients

Receiver > Red
Generator

20.180 Exam 1 Name: Answer Key

Question 3 (30 points):

Pfizer, Inc. has given you the sequence of a genome containing many open reading
frames (ORFs). Each of the genome’s ORFs starts with “ATG” and ends with
“UAGUGA.” They want you to find each ORF and append the DNA sequence
“TAGTGCTA? to the end (you’re told not to worry about minimum ORF length).
Meanwhile, you and your friends have designed another genome that contains 50 new
synthetic DNA binding proteins. Each of these DNA binding protein ORFs starts with
“ATG” and ends with “UAAUAA.” Your friends want you to find each DNA binding
protein ORF and add the DNA sequence “GTGTAGATCA” to the end. Write down a
single Python program that can perform both of these tasks. Please note any instances of
reusable code.

#
Declare two reusable functions, one for finding ORFs and a second for suffixing.
#
ORF finding function
#
def find ORFs(seq, start_seq, stop_seq):

found ORFs = [] # start a new list

tmp = seq # create temporary variable to store sequence

while True: # create loop

start = tmp.find(start seq) # look for a start, set start to first occurence

if start == -1: break # if no start sequence found break loop
tmp = tmp[start:len(seq)] # redefine tmp sequence
stop = tmp.find(stop_seq) # look for a stop, set stop to first occurence
if stop == -1: break # if no stop sequence found break loop
tmpORF= tmp[0:stop+len(stop_seq)] # create tmpORF from start & stop points (keep stop)
if len(tmpORF)%3==0: # check is stop sequence is in frame
found ORFs.append(tmpORF)# if OK then add to found orf list
tmp = tmp [3:] # set new starting boundary of sequence to downstream of last found start
return found ORFs # send the ORFs back to main
#
ORF suffixing function
#
def suffix ORFs(ORF_list, suffix seq):
suffixed ORFs = [] # start a new list
for i in range(len(ORF_list)): # for all the found ORFs
suffixed ORFs.append(ORF_list[i]+suffix seq) # add the suffix
return suffixed ORFs # send the modified ORFs back to main
#
Main Program
#
Read in genome sequences; define start, stop, and suffix sequences
#
friends = open('friends.txt').read()
friends_start = 'atg'
friends_stop = 'uaauaa'
friends_suffix = 'gtgtagatca'

call ORF finding function
friends_ORFs = find ORFs(friends, friends_start, friends_stop)
new_friends_ORFs = suffix ORFs(friends_ORFs, friends_suffix)

#

Repeat the above for other like tasks (i.e., Pfizer)

#

