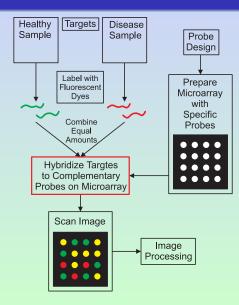
Modeling of Competitive Kinetics of DNA **Hybridization Reactions**

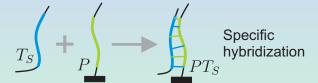

Mathematical Model

Vladimir Gantovnik and Cynthia Gibas

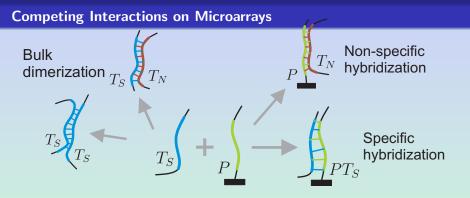
Department of Computer Science Bioinformatics Research Center University of North Carolina at Charlotte March 8, 2008

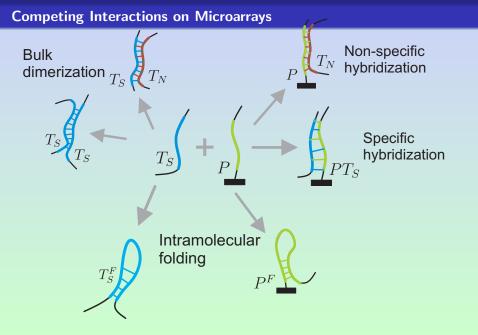
- Introduction
- 2 Competing Interactions on Microarrays
- Mathematical Model
- 4 Example
- **5** Conclusion

Introduction



Microarray Hybridization


The ultimate goal:


Accurate modeling of hybridization reactions on microarray taking into account competitive probe-target interactions and unimolecular folding.

Competing Interactions on Microarrays

Mathematical Model

Hybridization Models

1 Two-state models: One probe - one target duplex formation.

Mathematical Model

1 Two-state models: One probe - one target duplex formation.

Mathematical Model

Multi-state models: Single duplex formation competing with unimolecular folding. Mathews, Zuker, Turner. 1999. (Unifold, VisualOMP).

Hybridization Models

- 1 Two-state models: One probe one target duplex formation.
- Multi-state models: Single duplex formation competing with unimolecular folding. Mathews, Zuker, Turner. 1999. (Unifold, VisualOMP).
- Multiplex competitive models: Competitive reactions of duplex formations
 - (University of Pennsylvania) Zhang, Hammer, Graves. 2005.
 - (University of Utah) Bishop, Blair, Chagovetz. 2006.
 - (Portland State University) Horne, Fish, Benight. 2006.
 - (Russian Academy of Sciences) Chechetkin. 2007.

Hybridization Models

- **1** Two-state models: One probe one target duplex formation.
- Multi-state models: Single duplex formation competing with unimolecular folding. Mathews, Zuker, Turner. 1999. (Unifold, VisualOMP).
- Multiplex competitive models: Competitive reactions of duplex formations
 - (University of Pennsylvania) Zhang, Hammer, Graves. 2005.
 - (University of Utah) Bishop, Blair, Chagovetz. 2006.
 - (Portland State University) Horne, Fish, Benight. 2006.
 - (Russian Academy of Sciences) Chechetkin. 2007.
- Multiplex-multi-state models: Competitive reactions of duplex formations and unimolecular folding of probes and targets.

Chemical System

Table: Chemical reactions of microarray hybridization

Mathematical Model

Reaction	Equilibrium Constant	Rate Constants
$p_i + t_j \rightleftharpoons p_i t_j$	$K_{p_i t_j}$	$k_{p_it_i}^a, k_{p_it_i}^d$
$p_i + p_j \rightleftharpoons p_i p_j$	$K_{p_ip_j}$	$k_{p_ip_i}^a, k_{p_ip_i}^d$
$t_i + t_j \rightleftharpoons t_i t_j$	$K_{t_i t_j}$	$k_{t_it_i}^a, k_{t_it_i}^d$
$p_i ightleftharpoons p_i^f$	$K_{p_i^f}$	$k_{p_{i}^{f}}^{a}, k_{p_{i}^{f}}^{d}$
$t_i \rightleftharpoons t_i^f$	$K_{t_i^f}$	$k_{t_i^f}^a, k_{t_i^f}^d$

Kinetic Model

Assumptions

- System consists of two species types: probes p_i and targets t_j .
- Each p_i can react with every t_j forming $p_i t_j$ duplex.
- Each p_i and t_j can react with each of its counterparts of the same species, forming $p_i p_j$ and $t_i t_j$ complexes.
- The forward rate constants are assumed to be same for all species: $k_{p_it_i}^a = k_{p_ip_i}^a = k_{t_it_i}^a = k^a$.
- There are no diffusion barriers to the reaction process.

Initial conditions:

At $\tau = 0$

$$(\textit{C}_{\textit{p}_{i}},\textit{C}_{\textit{t}_{j}},\textit{C}_{\textit{p}_{i}^{\textit{f}}},\textit{C}_{\textit{t}_{i}^{\textit{f}}},\textit{C}_{\textit{p}_{i}\textit{p}_{j}},\textit{C}_{\textit{p}_{i}\textit{t}_{j}},\textit{C}_{\textit{t}_{i}\textit{t}_{j}}) = (\textit{C}_{\textit{p}_{i}}^{0},\textit{C}_{\textit{t}_{j}}^{0},0,0,0,0,0)$$

Kinetic Model

$$\begin{split} \frac{dC_{p_{i}}}{d\tau} &= \sum_{j=1}^{N_{t}} \left(k_{p_{i}t_{j}}^{d} C_{p_{i}t_{j}} - k^{a} C_{p_{i}} C_{t_{j}} \right) + \sum_{j=1}^{N_{p}} \left(k_{p_{i}p_{j}}^{d} C_{p_{i}p_{j}} - k^{a} C_{p_{i}} C_{p_{j}} \right) + \\ &\quad + \left(k_{p_{i}}^{d} C_{p_{i}^{f}} - k_{p_{i}^{f}}^{a} C_{p_{i}} \right), \quad i = 1, \dots, N_{p} \\ \frac{dC_{t_{j}}}{d\tau} &= \sum_{i=1}^{N_{p}} \left(k_{p_{i}t_{j}}^{d} C_{p_{i}t_{j}} - k^{a} C_{p_{i}} C_{t_{j}} \right) + \sum_{i=1}^{N_{t}} \left(k_{t_{i}t_{j}}^{d} C_{t_{i}t_{j}} - k^{a} C_{t_{i}} C_{t_{j}} \right) + \\ &\quad + \left(k_{t_{j}^{f}}^{d} C_{t_{j}^{f}} - k_{t_{j}^{a}}^{a} C_{t_{j}} \right), \quad j = 1, \dots, N_{t} \\ \frac{dC_{p_{i}p_{j}}}{d\tau} &= k_{p_{i}p_{j}}^{d} C_{p_{i}p_{j}} - k^{a} C_{p_{i}} C_{p_{j}} \quad \frac{dC_{p_{i}t_{j}}}{d\tau} = k_{p_{i}t_{j}}^{d} C_{p_{i}t_{j}} - k^{a} C_{p_{i}} C_{t_{j}} \\ \frac{dC_{t_{i}t_{j}}}{d\tau} &= k_{t_{i}t_{j}}^{d} C_{t_{i}t_{j}} - k^{a} C_{t_{i}} C_{t_{j}} \\ \frac{dC_{p_{i}^{f}}}{d\tau} &= k_{p_{i}^{f}}^{d} C_{p_{i}^{f}} - k_{p_{i}^{f}}^{a} C_{p_{i}} \quad \frac{dC_{t_{j}^{f}}}{d\tau} = k_{t_{j}^{f}}^{d} C_{t_{j}^{f}} - k_{t_{j}^{f}}^{a} C_{t_{j}} \end{split}$$

Problem Complexity

Total number of equations

$$\frac{1}{2}\left(5+N_{p}+N_{t}\right)\left(N_{p}+N_{t}\right)$$

N_p	N_t	Number of equations
1	1	7
5	5	75
10	10	250
100	100	20500
1000	1000	2005000

For larger systems the simulation is computationally expensive. (Need for parallel ODE solver)

 Equation describing the potential interactions between distinct species of probes could be eliminated from the system

$$\frac{dC_{p_ip_j}}{d\tau} = k_{p_ip_j}^d C_{p_ip_j} - k^a C_{p_i} C_{p_j}$$

Problem-Size Reduction

Introduction

• Equation describing the potential interactions between distinct species of probes could be eliminated from the system

$$\frac{dC_{p_ip_j}}{d\tau} = k_{p_ip_j}^d C_{p_ip_j} - k^a C_{p_i} C_{p_j}$$

- Not all probes and targets have equal potential to react and form stable duplexes.
 - Sequence filtering and screening based on different criteria.
 (>15 consecutive base-pairs, >75% similarity, etc., Kane, 2000).
 - Subsystem of reactions which can occur in a given mixture.

Kinetic Model

Inputs

- Number of probes and targets: N_p and N_t .
- Temperature: T.
- Initial concentrations of probes and targets: $C_{p_i}^0$ and $C_{t_i}^0$
- Forward rate constants: k^a , $k^a_{p^f_i}$, $k^a_{t^f_j}$.
- Thermodynamic parameters for all DNA complexes.

Outputs

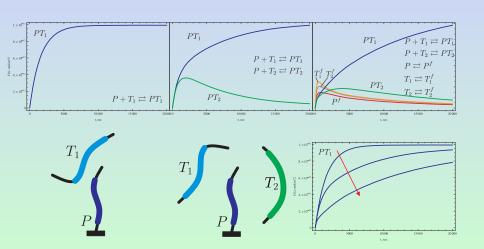
ullet Concentrations of probes, targets, and duplexes at any given time au including equilibrium concentrations.

Duplex Thermodynamics

• Thermodynamic transition parameters ΔH , ΔS , and ΔG are determined from published sequence-dependent thermodynamic parameters (SantaLucia's group).

Total free energy

$$\Delta G = \Delta H - T \Delta S$$


$$T_m = \Delta H / \Delta S$$

$$\Delta G = \Delta H (1 - T / T_m)$$

Equilibrium constant and reverse rate constant

$$K^{eq} = \exp\left(-\frac{\Delta G}{RT}\right)$$
 $k^d = \frac{k^a}{K^{eq}}$

Example: Probe + Specific Target + Nonspecific Target

Conclusion

- A general analytical description of multiplex-multi-state model is developed.
- This model describes the kinetic behavior of system with competitive reactions between target mixture, probe set, and corresponding conformations of probes and targets.

Introduction

Introduce diffusion of target strands across the probe surface as governed by Second Ficks law:

$$\frac{\partial C_t}{\partial \tau} = D\nabla^2 C_t = D \left[\frac{\partial^2 C_t}{\partial x^2} + \frac{\partial^2 C_t}{\partial y^2} + \frac{\partial^2 C_t}{\partial z^2} \right]$$

2 Implementation of parallel solver for the large ODE systems.

Acknowledgements

Bioinformatics Research Center at UNCC:

Prof. Cynthia Gibas

Prof. Jennifer Weller

Dr. Raji Balasubramaniyan

GS. Vladyslava Ratushna

GS. Raad Gharaibeh