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The original signal
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The unbalanced version

The Multiscale Transformation
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Transform:
xn,j=1/2(xn-1,2j+xn-12j+1)
dxn,j=1/2(xn-1,2j-xn-1,2j+1)

Reconstruct:
xn-1,2j=xn,j+dxn,j
xn-1,2j+1=xn,j-dxn,j
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Multiscale Transformation of the SignalThe first 128 Points only

X dX
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Multiscale Reconstruction
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Some Important Points

At all scales energy of the signal is preserved 
(the area under the xj steps is the same at 
every scale).

•

The number of data points are halved at each 
scale

•

Lower scales (small n) corresponds to high 
frequency changes and higher scales (large n) 
corresponds to lower frequencies.

•
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Thresholding (I) If abs(dxj) < ε then dxj=0

ε=0 

ε=0.01 

ε=0.05 

ε=0.1 
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Thresholding (II) When n < m set dXn=0

m=1

m=2

m=3

m=4

m=5

m=6
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Conclusions

Thresholding introduces artificial local jumps 
into the data.

•

Local variations are accumulated at the edges 
of local zones.

•

In many cases a smooth, continuous function 
with well behaved first and second derivatives 
is required.

•
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Multiscale Smoothing

Take any of the thresholding (II) results.•
Formulate the following optimization problem•

min x'Qx
subject to 
Ax=b

where Q=R'R and
R= 

 A is the local average matrix and b is the local average 

values  
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Multiscale Smoothing

The objective is to minimize the distance 
between neighbouring points while 
preserving the local averages.

•
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Results
Sum of the values of blue dots
is equal to the red dots in this box
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Results (with the original signal)

Keep in mind that this is a very low resolution (scale 5) approximation
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Results (scale 4)
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Results (scale 3)
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Results (scale 2)
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Some statistics
Distribution of the approximation error of smoothing process

scale 5 scale 4 scale 3 scale 2

scale 1
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Moving window smoothing

For each of these windows calculate the smoothing 
results and see if they overlap and how previous points 
are affected by the new points
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Moving window smoothing

Use scale 2 smoothing for most detail.•

Use [1:128], [2:129], [3:130], [4:131] etc•

Then compare all m windows in the 
[2+m:128+m] range

•
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Mowing Window Smoothing

1:128

1:128 and
2:129

1:128 and
2:129 and
3:130
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Mowing Window Smoothing

As one can see new points change the 
smoothing results of previous points 
drastically in some cases.

•

This happens since the averages change.•

If this is done in blocks this would not be 
an issue: [1:128],[5:132],[9:136] etc..

•
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Mowing Windows Smoothing (blocks)

Blue: 1:128, Red 5:132, Green 9:136

Full overlap within the 9:128 range and some edge effects
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Mowing Window Smoothing Results

New points affect past points because of 
the global effect of the optimization.

•

When blocks corresponding to the scale is 
used (scale 2=4 points, scale 3=8 points, 
scale m=2^m points) then this effect 
disappears because local averages remain 
the same in each window.

•


