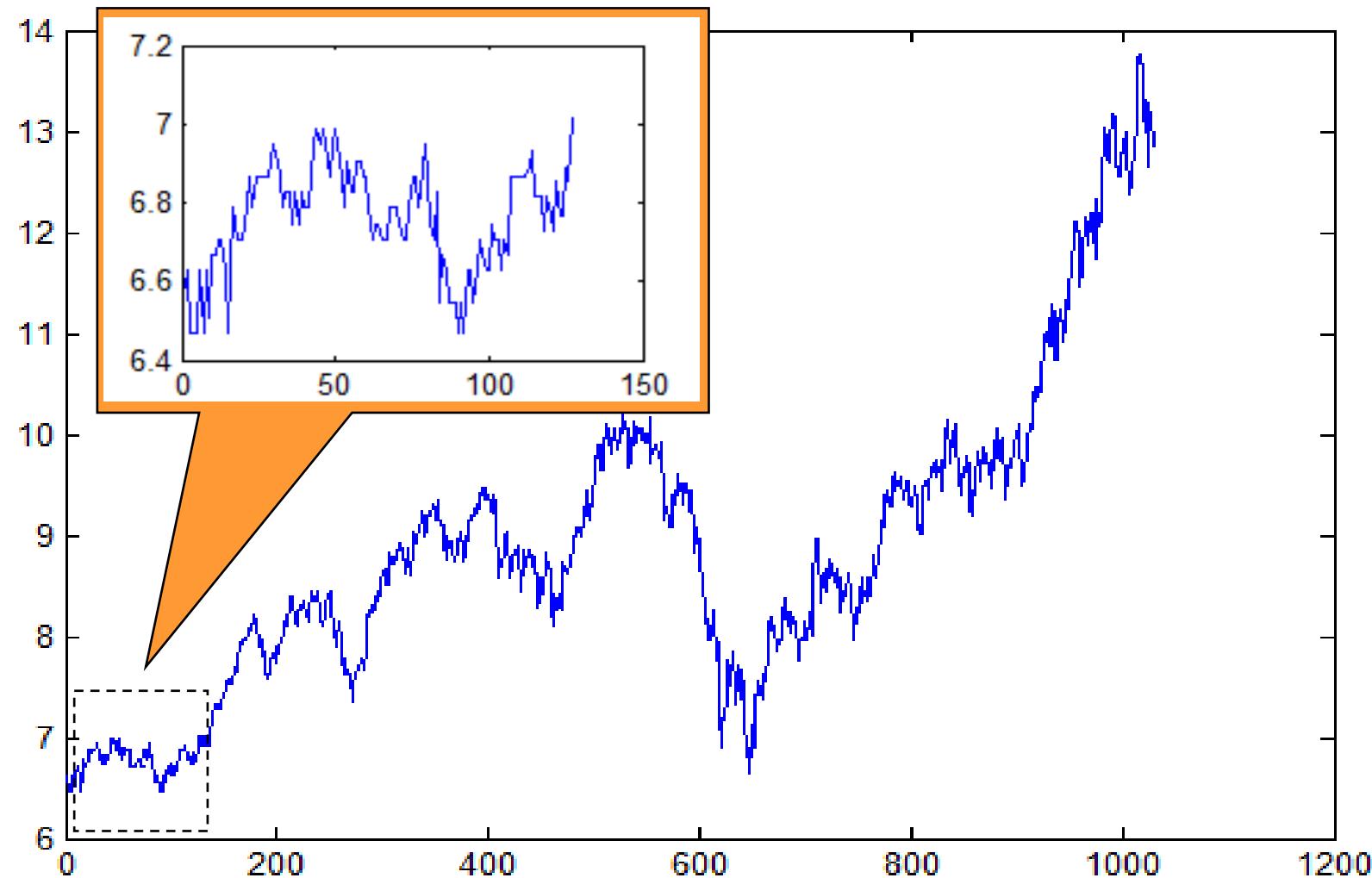


Multiscale Data Smoothing

April, 6th 2006

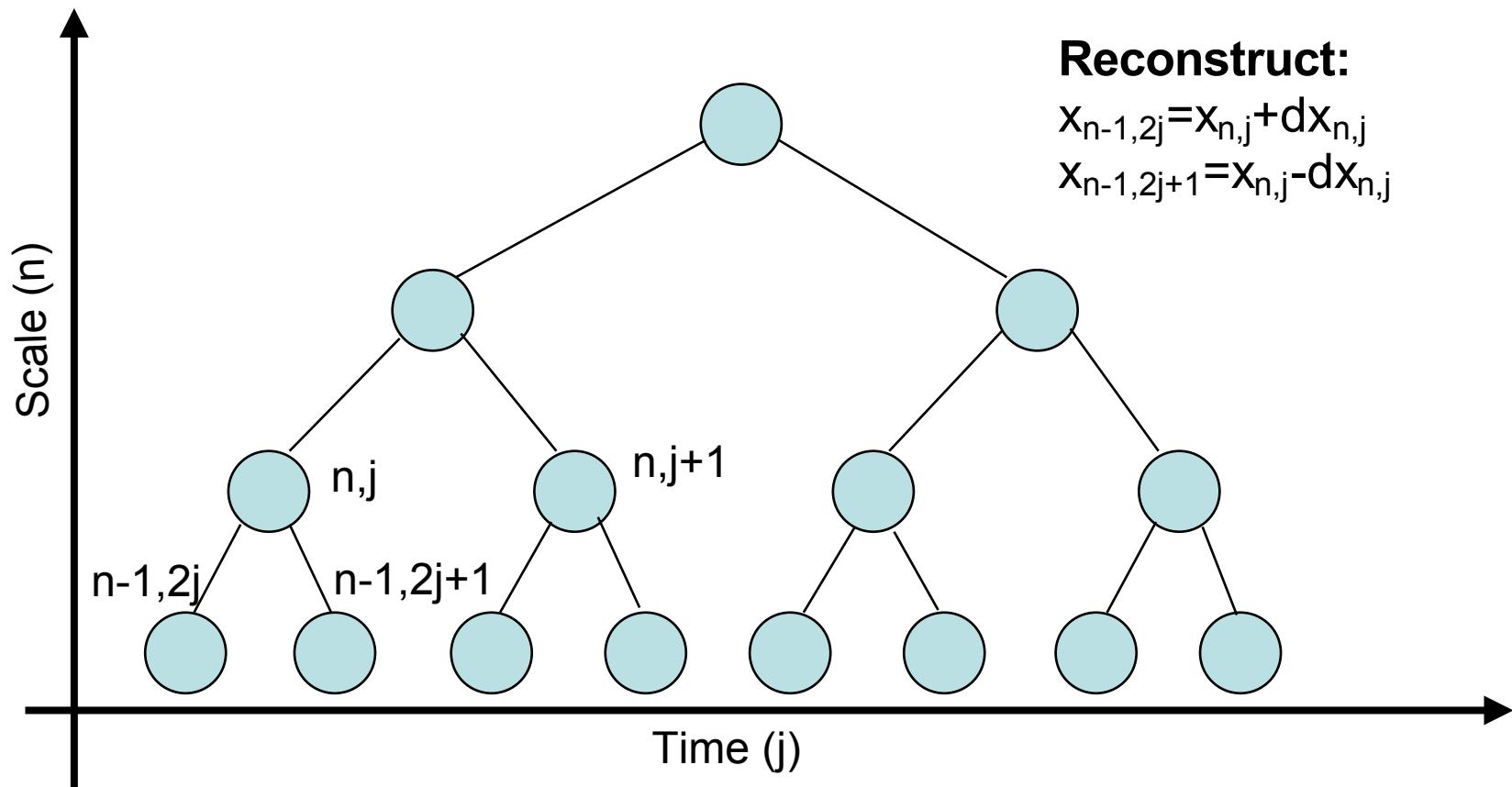
Orhan Karsligil

The original signal



The Multiscale Transformation

The unbalanced version



Transform:

$$x_{n,j} = 1/2(x_{n-1,2j} + x_{n-1,2j+1})$$

$$dx_{n,j} = 1/2(x_{n-1,2j} - x_{n-1,2j+1})$$

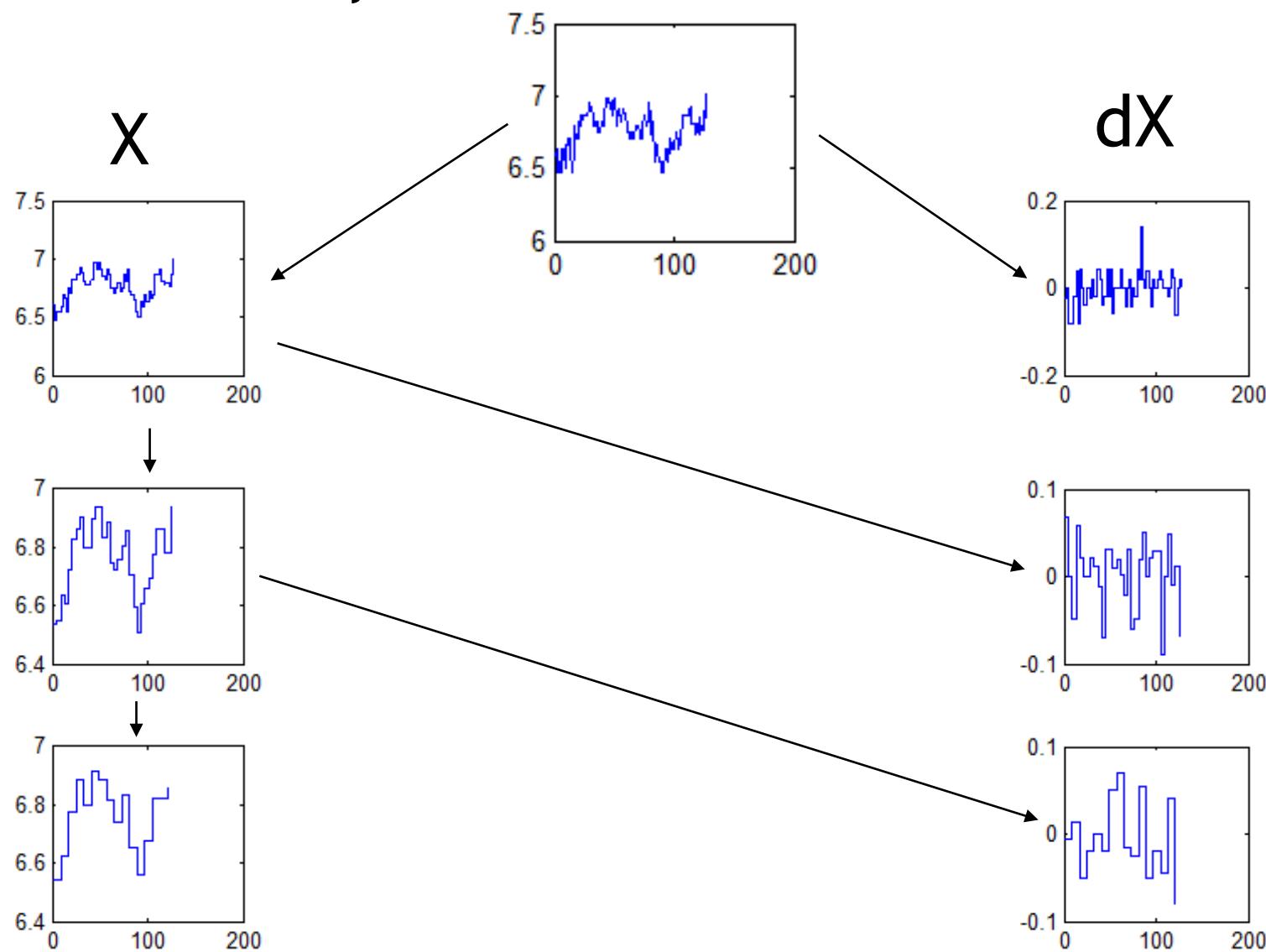
Reconstruct:

$$x_{n-1,2j} = x_{n,j} + dx_{n,j}$$

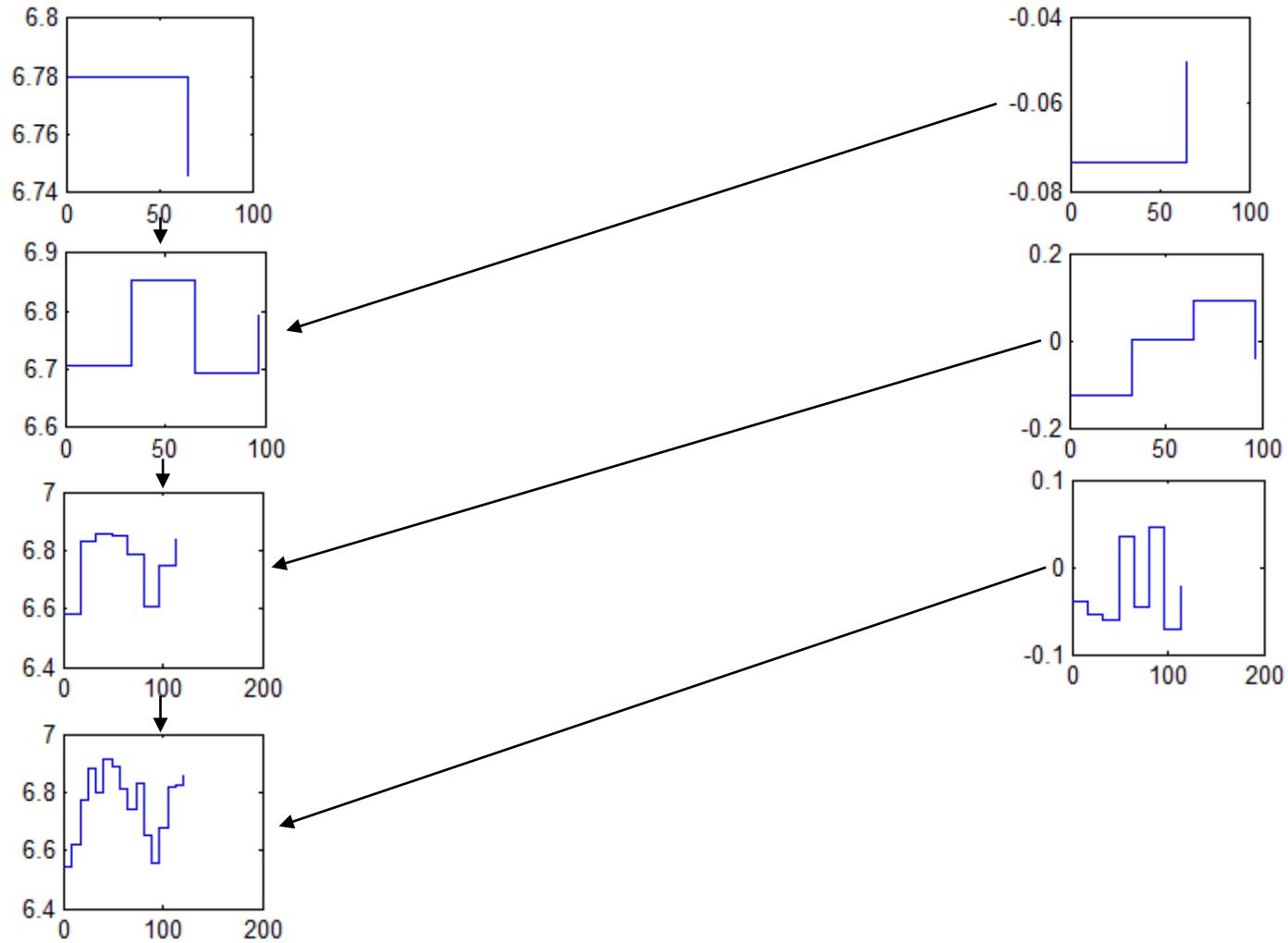
$$x_{n-1,2j+1} = x_{n,j} - dx_{n,j}$$

Multiscale Transformation of the Signal

The first 128 Points only



Multiscale Reconstruction



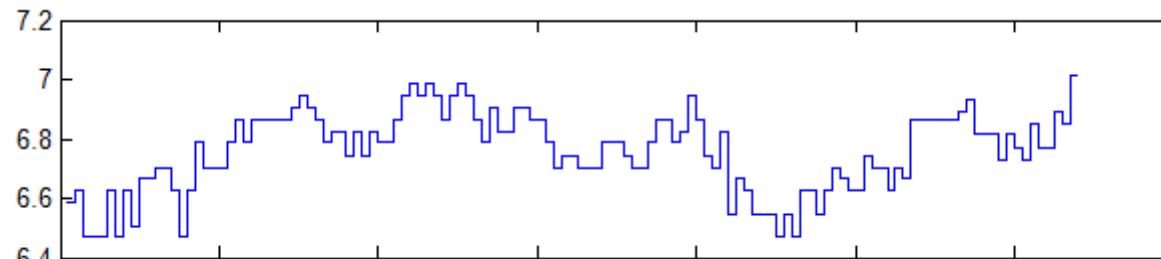
Some Important Points

- At all scales energy of the signal is preserved (the area under the x_j steps is the same at every scale).
- The number of data points are halved at each scale
- Lower scales (small n) corresponds to high frequency changes and higher scales (large n) corresponds to lower frequencies.

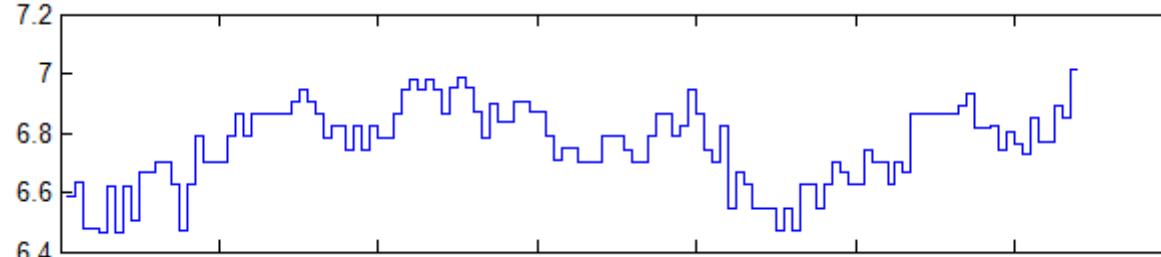
Thresholding (I)

If $\text{abs}(dx_j) < \varepsilon$ then $dx_j=0$

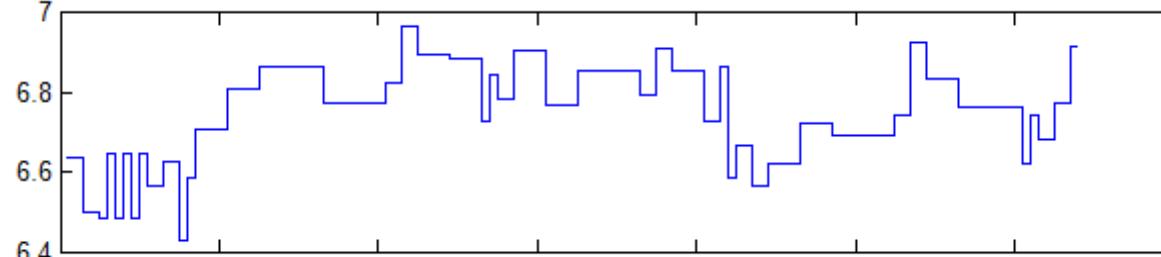
$\varepsilon=0$



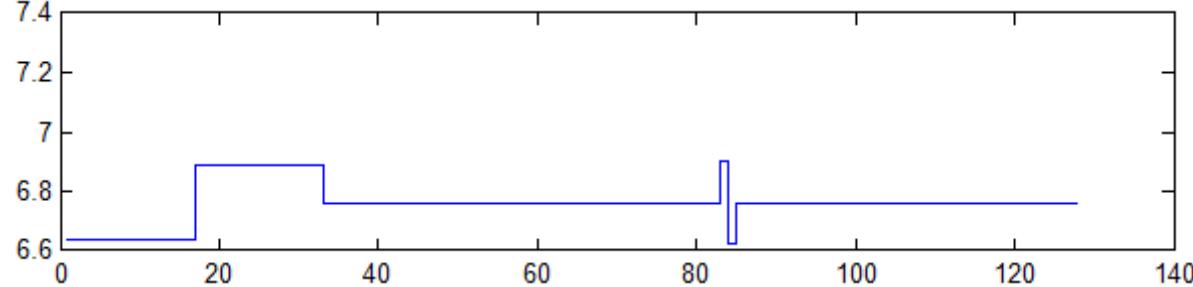
$\varepsilon=0.01$



$\varepsilon=0.05$



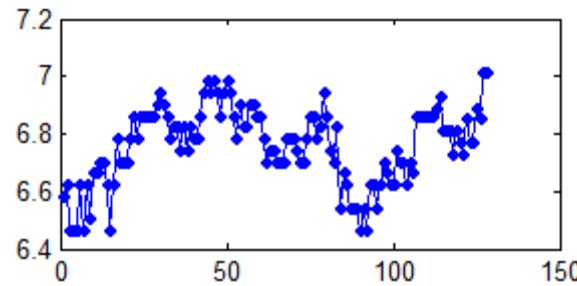
$\varepsilon=0.1$



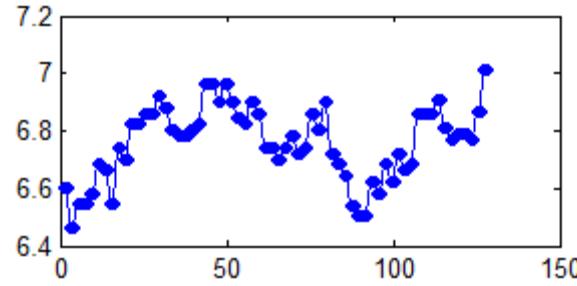
Thresholding (II)

When $n < m$ set $dX_n=0$

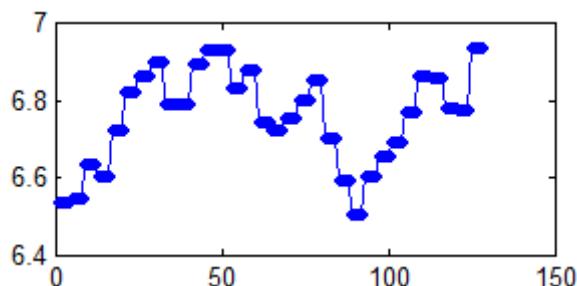
$m=1$



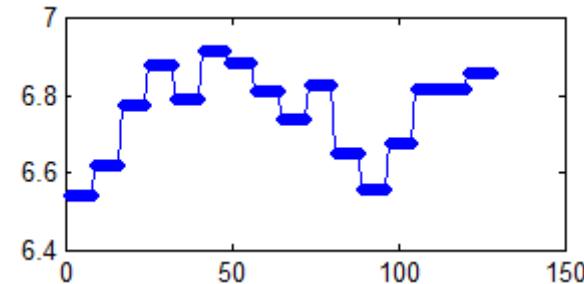
$m=2$



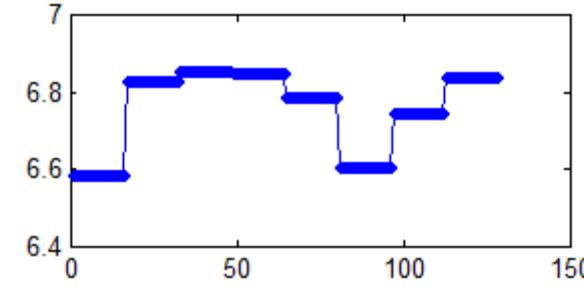
$m=3$



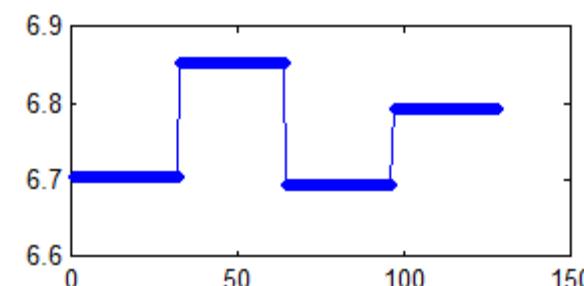
$m=4$



$m=5$



$m=6$



Conclusions

- Thresholding introduces artificial local jumps into the data.
- Local variations are accumulated at the edges of local zones.
- In many cases a smooth, continuous function with well behaved first and second derivatives is required.

Multiscale Smoothing

- Take any of the thresholding (II) results.
- Formulate the following optimization problem

$$\min x'Qx$$

subject to

$$Ax=b$$

where $Q=R'R$ and

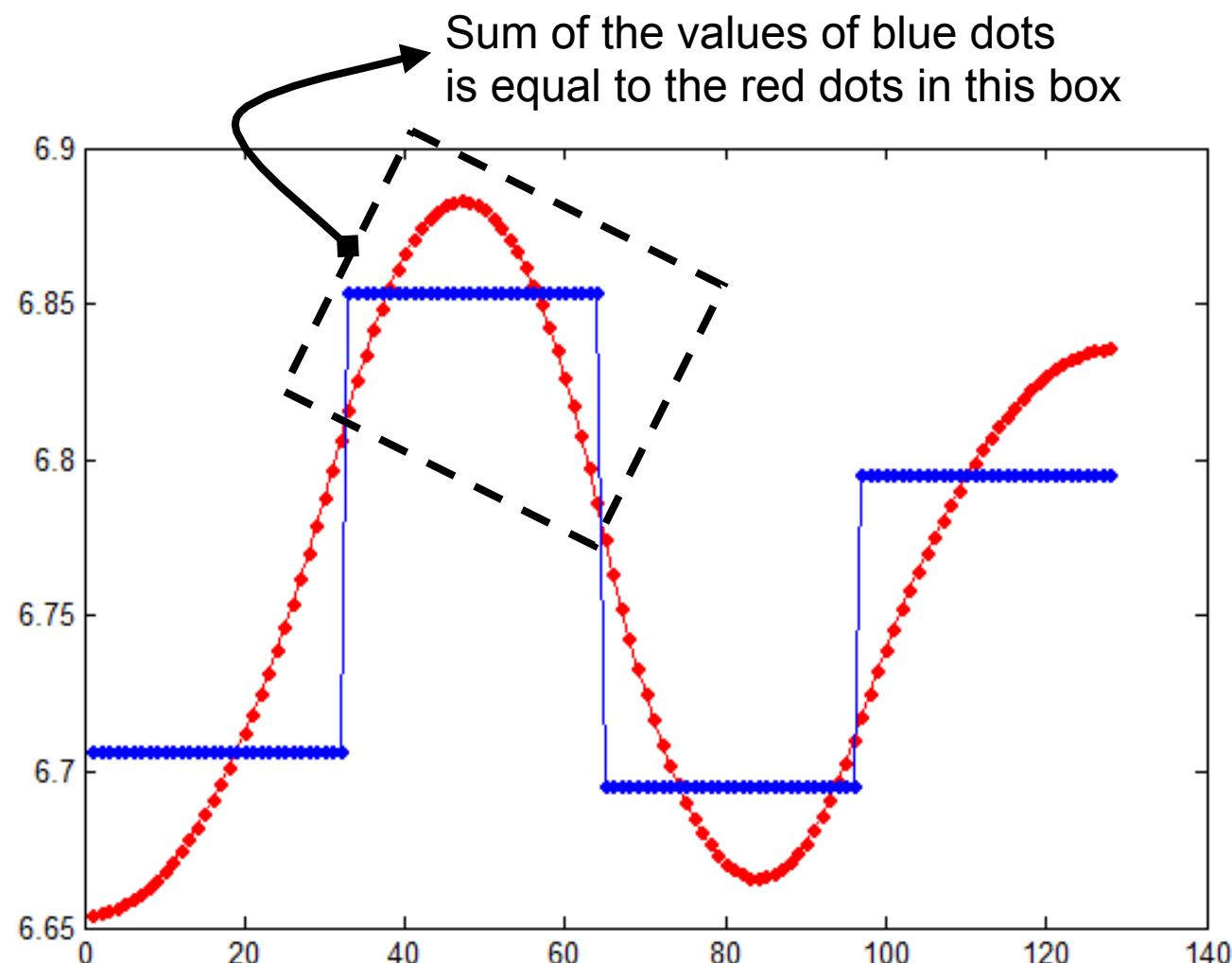
$$R = \begin{matrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 \end{matrix} \quad \rightarrow$$

A is the local average matrix and b is the local average values

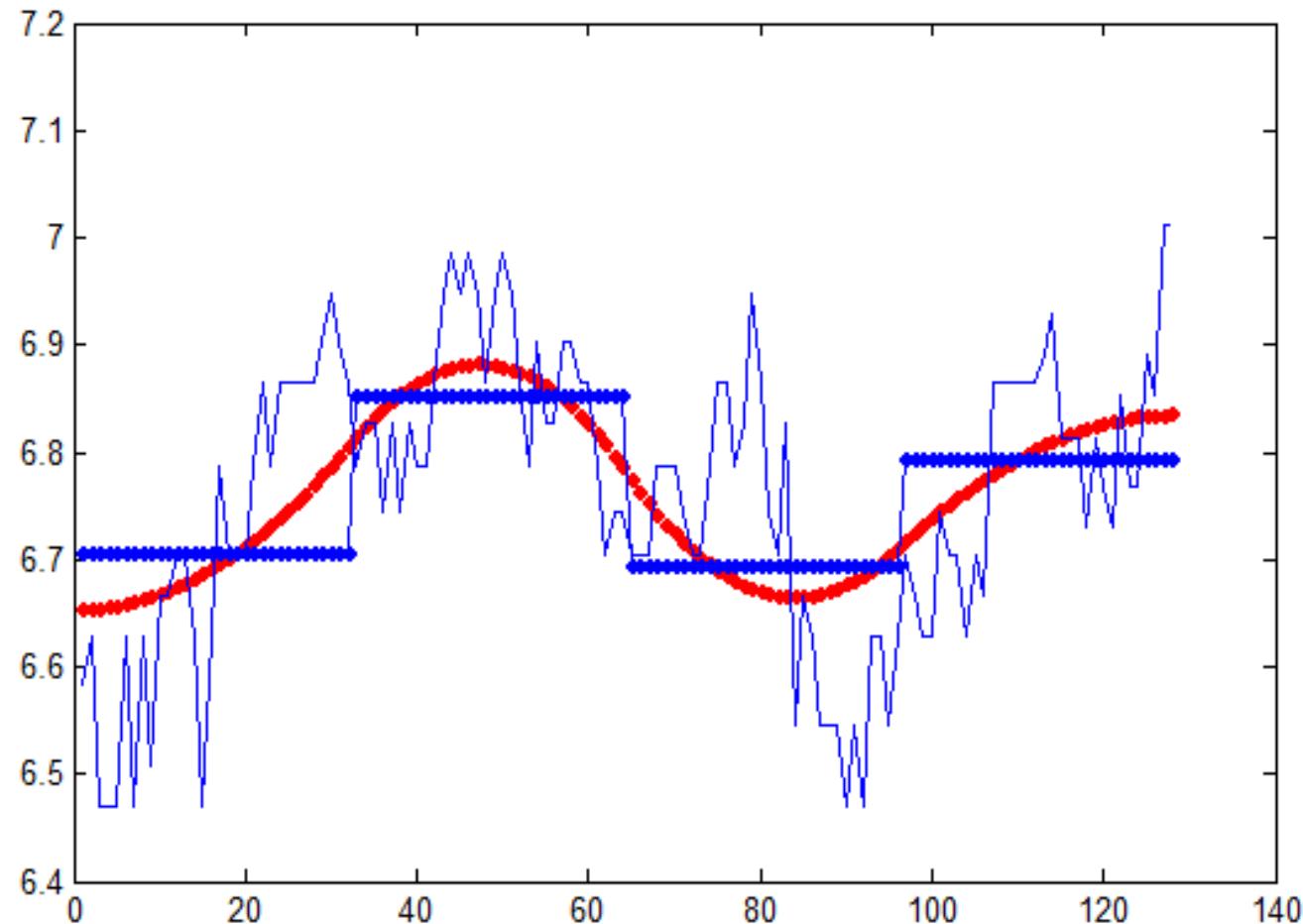
Multiscale Smoothing

- The objective is to minimize the distance between neighbouring points while preserving the local averages.

Results

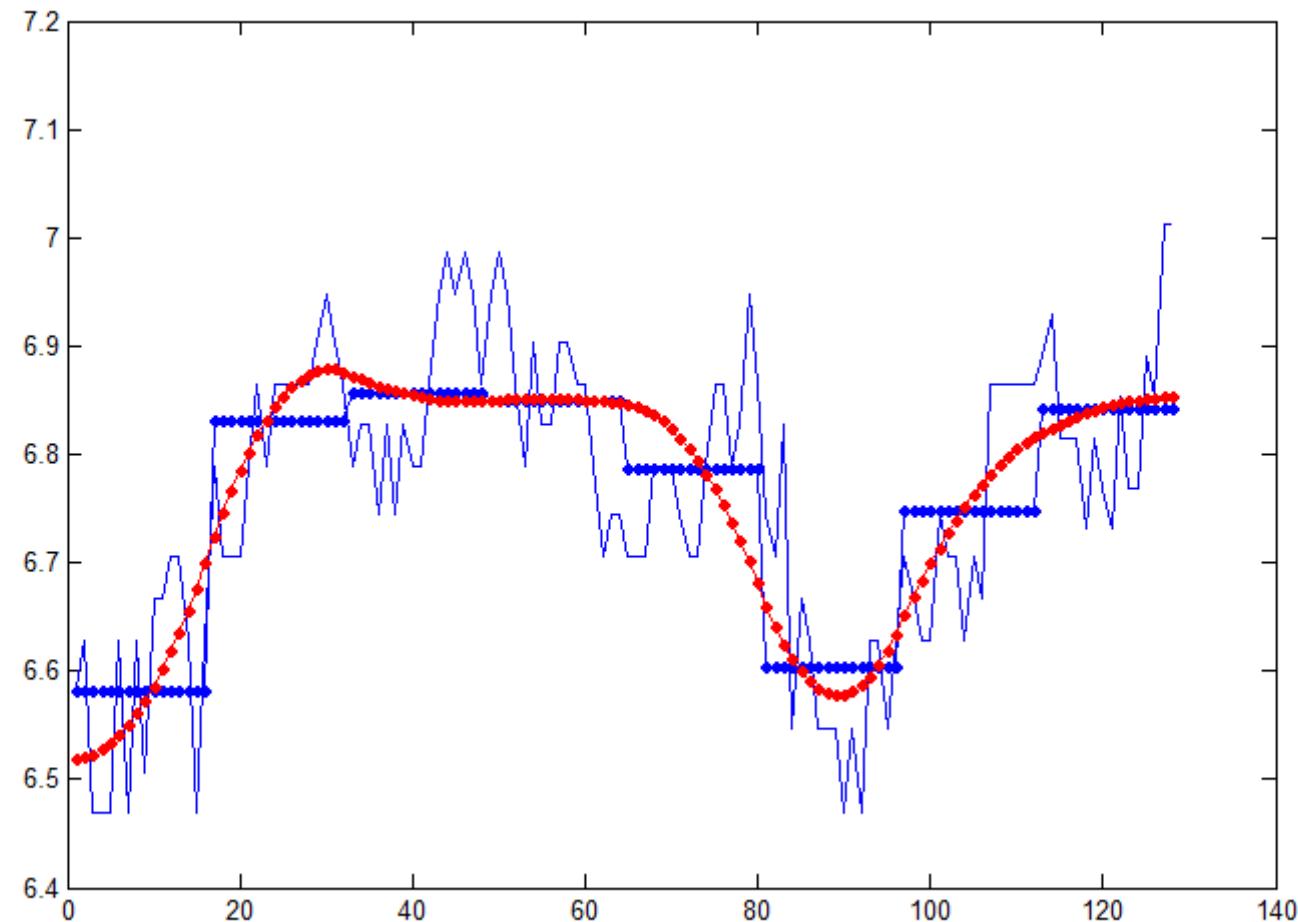


Results (with the original signal)

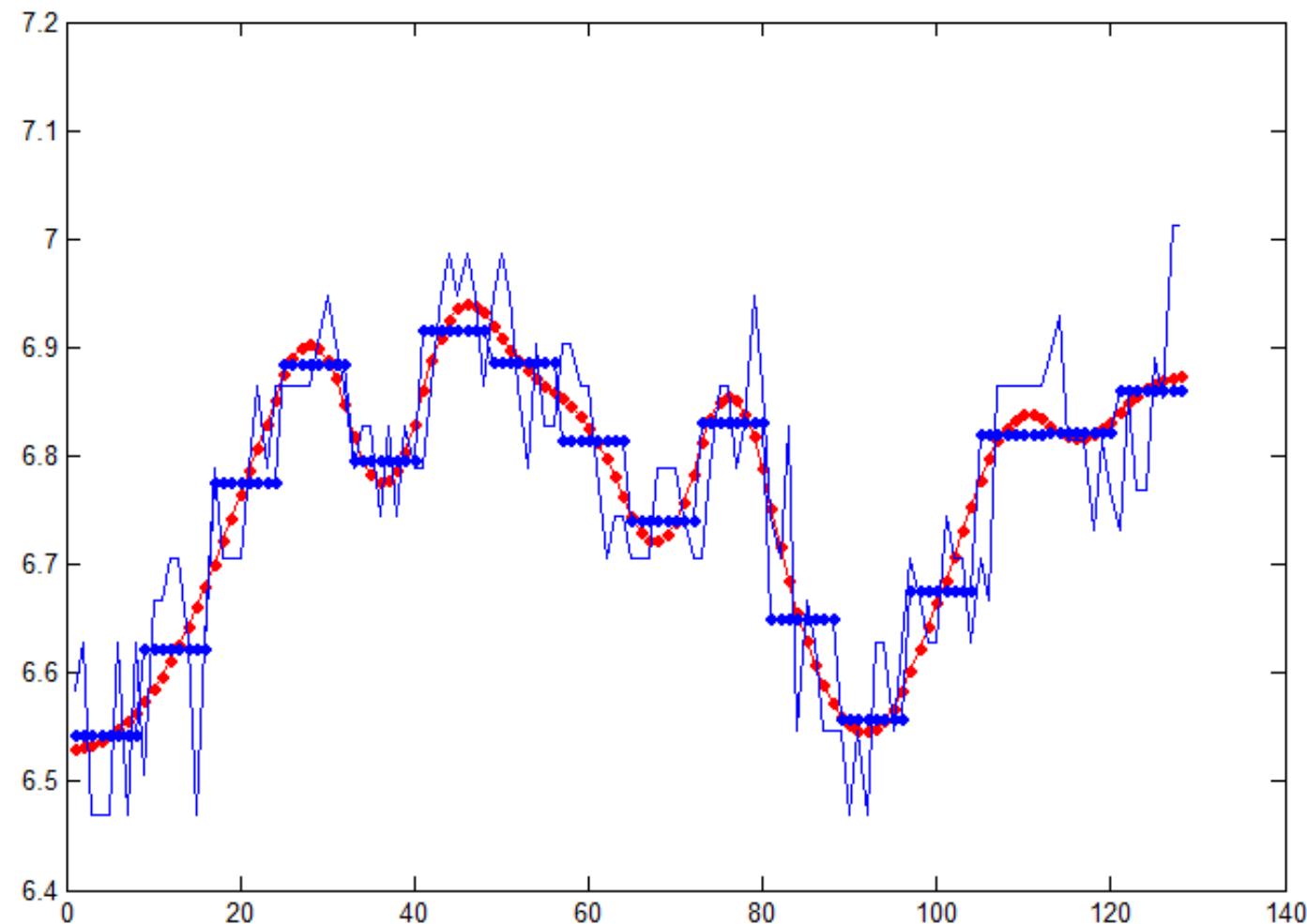


Keep in mind that this is a very low resolution (scale 5) approximation

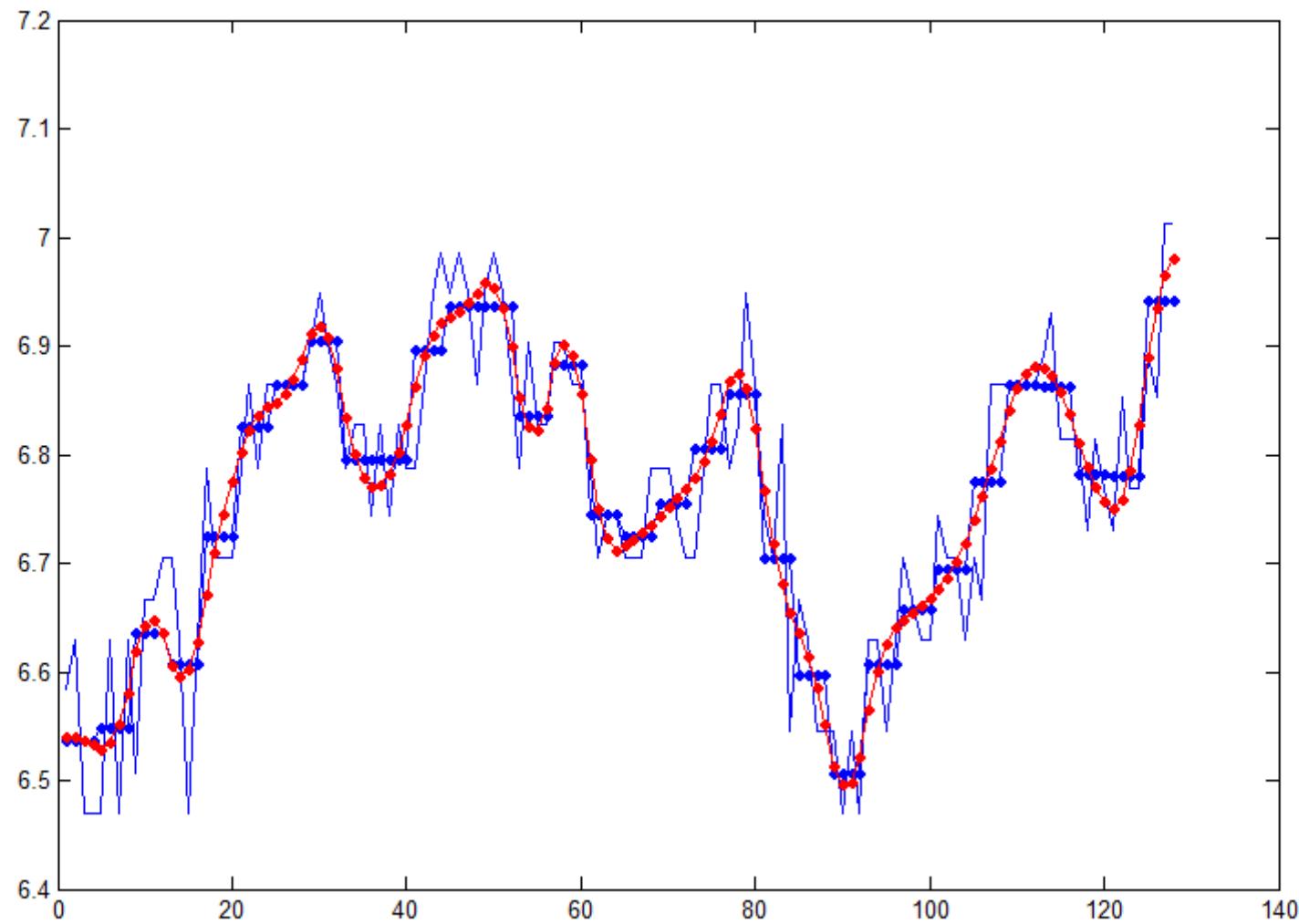
Results (scale 4)



Results (scale 3)

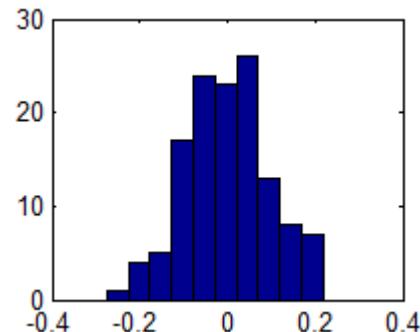


Results (scale 2)

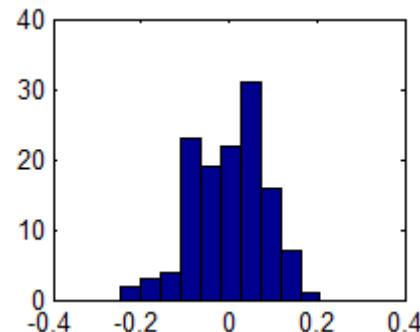


Some statistics

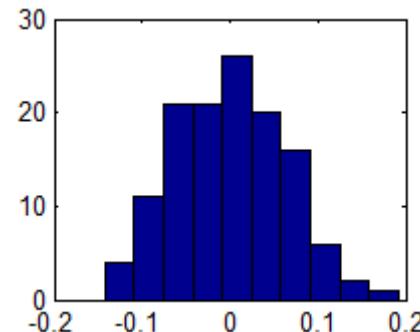
Distribution of the approximation error of smoothing process



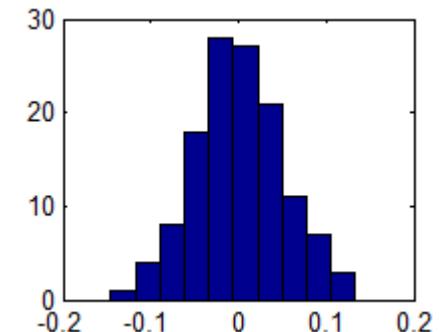
scale 5



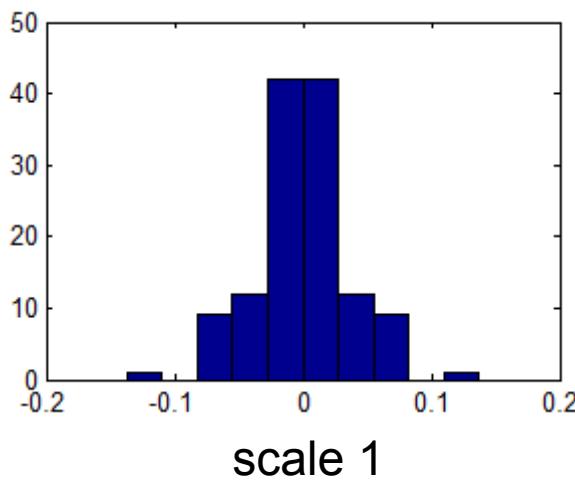
scale 4



scale 3

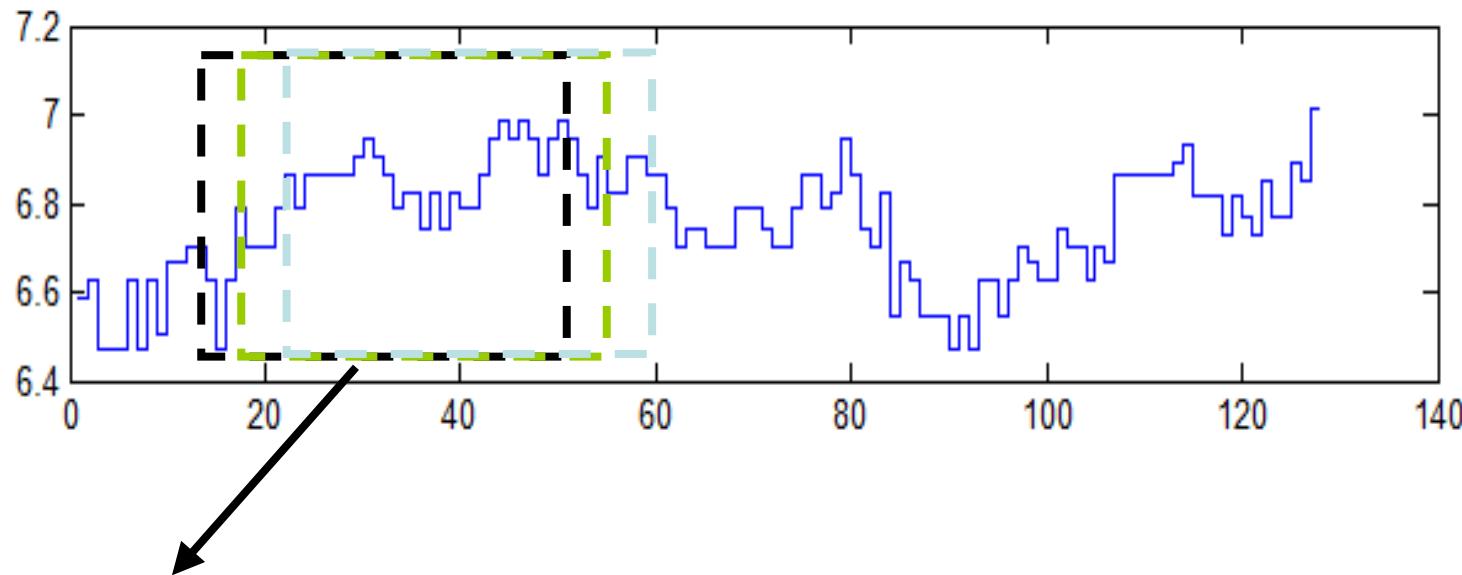


scale 2



scale 1

Moving window smoothing



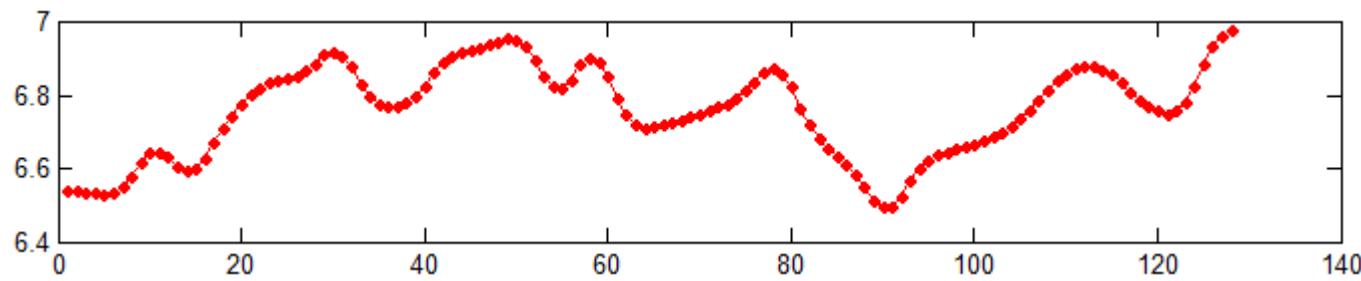
For each of these windows calculate the smoothing results and see if they overlap and how previous points are affected by the new points

Moving window smoothing

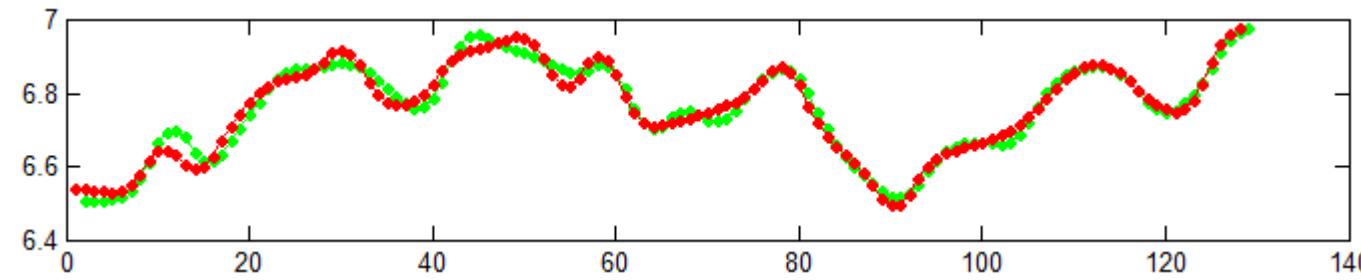
- Use scale 2 smoothing for most detail.
- Use [1:128], [2:129], [3:130], [4:131] etc
- Then compare all m windows in the $[2+m:128+m]$ range

Mowing Window Smoothing

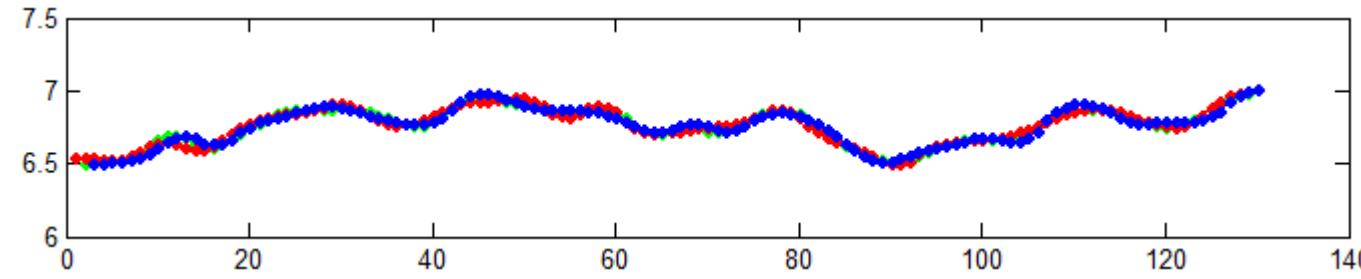
1:128



1:128 and
2:129



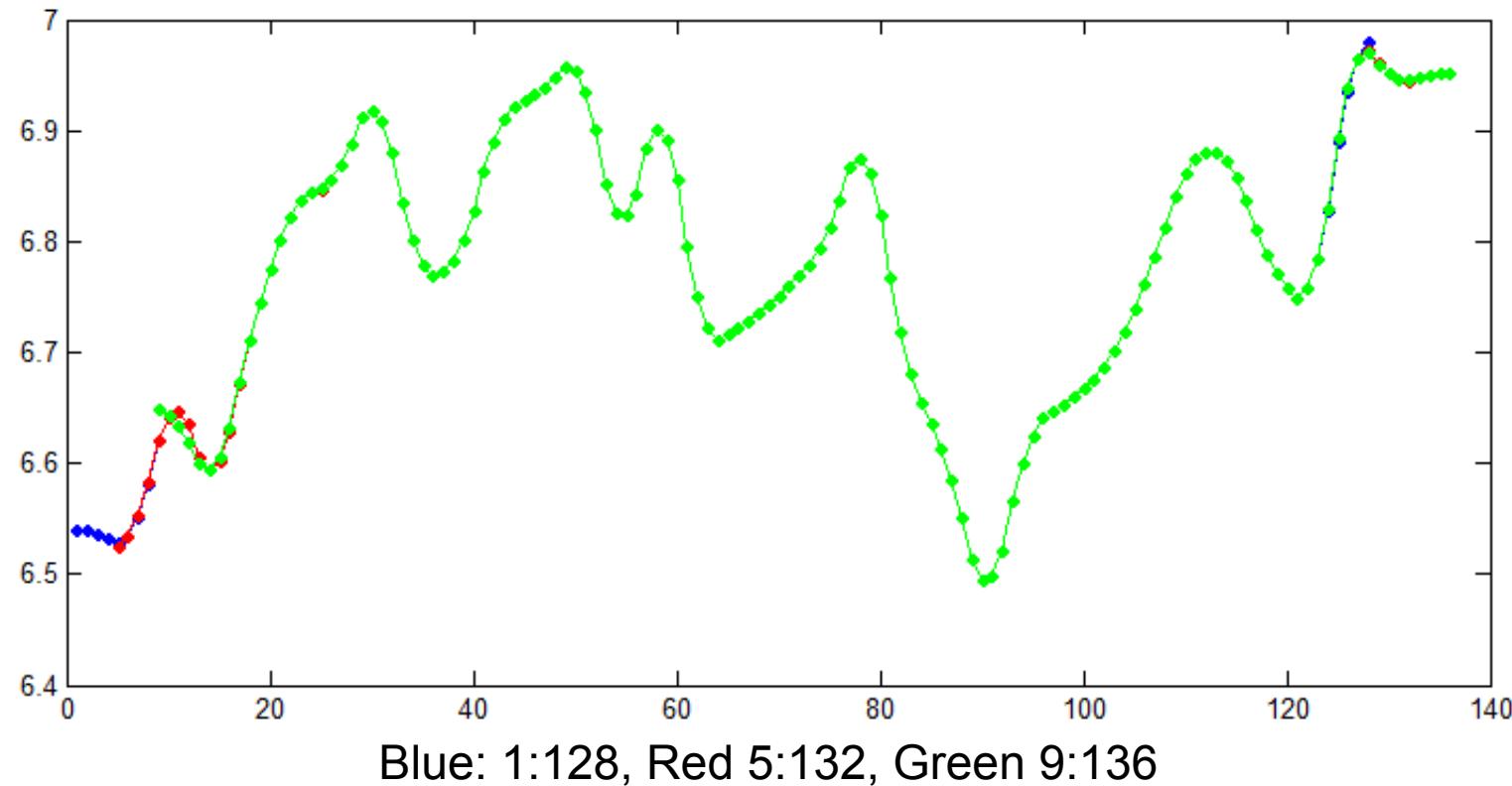
1:128 and
2:129 and
3:130



Mowing Window Smoothing

- As one can see new points change the smoothing results of previous points drastically in some cases.
- This happens since the averages change.
- If this is done in blocks this would not be an issue: [1:128],[5:132],[9:136] etc..

Mowing Windows Smoothing (blocks)



Full overlap within the 9:128 range and some edge effects

Mowing Window Smoothing Results

- New points affect past points because of the global effect of the optimization.
- When blocks corresponding to the scale is used (scale 2=4 points, scale 3=8 points, scale $m=2^m$ points) then this effect disappears because local averages remain the same in each window.