Microalgal Biomass Production Using Industrial Wastewater

The University of Georgia

Senthil Chinnasamy and K.C.Das

UGA Biorefining and Carbon Cycling Program

Department of Biological and Agricultural Engineering

Driftmier Engineering Center

The University of Georgia, Athens

Converting rainforests, peatlands, savannas, or grasslands to produce foodbased BIOFUELS in Brazil, Southeast Asia, and the United States creates a 'biofuel CARBON DEBT' by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions these BIOFUELS provide by displacing fossil fuels.

Algae is a better biomass source for biofuels ...Unlike biofuel crops they do not contribute to carbon debt

Research Objective

To examine the potential of carpet industry wastewater as growth medium for microalgae cultivation production

Approach

- Characterization of wastewater (Raw and Treated)
- Isolation and identification of native strains of microalgae for biomass and biofuels production
- Studies on seasonal variations in species composition in carpet industry wastewater industrial wastewater
- Comparison of monoculture system with mixed culture system for biomass production using wastewater and standard growth medium through:
 - Preliminary screening of various algal strains
 - Timescale batch studies using selected algal strains

Seasonal Variations in Species Composition (%) of Raw and Treated Industrial Wastewaters

Strains identified	Spring			Fall	
	Treated	Raw	Treated	Raw	
Aphanocapsa delicatissima	nil	0.02	nil	nil	
Aphanothece spp.	nil	0.12	nil	nil	
Chroococcaceae spp.	0.02	0.81	nil	nil	
Chroococcus minutus	0.05	nil	nil	nil	
Leibleinia kryloviana	nil	nil	nil	22.87	
Limnothrix redekei	nil	nil	nil	13.5	
Lyngbya spp	36.74	nil	nil	nil	
Oscillatoria tenuis	1.59	nil	nil	nil	
Raphidiopsis curvata	nil	nil	71.11	0.55	
Synechococcus elongatus	nil	0.11	nil	nil	
Synechococcus sp.1	0.06	0.35	nil	nil	
Synechocystis spp	nil	0.17	nil	nil	
Cyanophyta contribution	38.46	1.58	71.11	36.92	
Eunotia spp	1.49	nil	nil	nil	
Navicula pelliculosa	3.12	nil	nil	nil	
Nitzschia palea	21.85	0.33	nil	nil	
Bacillariophyta contribution	26.46	0.33	Nil	Nil	

Seasonal Variations in Species Composition (%) of Raw and Treated Industrial Wastewaters

Strains identified	Spring		Fall	
Strains identified		Treated	Raw	
Chlamydomonas spp	nil	nil	1.21	57.71
Chlorella vulgaris	nil	nil	7.68	nil
Chlorococcaceae spp	12.79	0.72	nil	nil
Chlorococcum humicola	nil	nil	4.04	4.41
Coelastrum microporum	5.62	nil	2.42	nil
Gloeocystis vesiculosa	nil	nil	1.21	nil
Monoraphidium mirabile	nil	nil	3.84	nil
Oedogonium spp	0.23	nil	nil	nil
Oocystis lacustris	nil	nil	3.23	0.69
Scenedesmus abundans	0.09	nil	nil	nil
Scenedesmus acuminatus	2.61	nil	nil	nil
Scenedesmus acutus	3.42	11.84	nil	nil

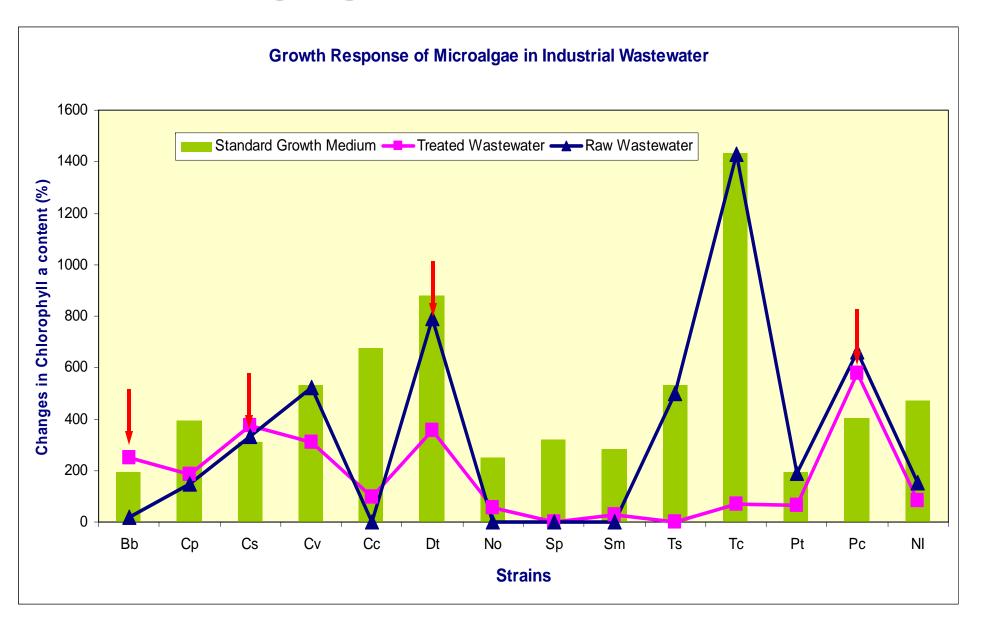
Seasonal Variations in Species Composition (%) of Raw and Treated Wastewaters

Strains identified	Spring		Fall	
	Treated	Raw	Treated	Raw
Scenedesmus acutus alternans	0.75	nil	nil	nil
Scenedesmus bicaudatus	0.16	nil	nil	nil
Scenedesmus bijuga	1.59	nil	2.42	0.28
Scenedesmus bijuga alternans	0.23	nil	nil	nil
Scenedesmus denticulatus	0.13	nil	nil	nil
Scenedesmus dimorphus	1.87	nil	nil	nil
Scenedesmus obliquus	0.67	0.06	nil	nil
Scenedesmus quadricauda	1.29	nil	2.83	nil
Scenedesmus quadrispina	3.54	nil	nil	nil
Scenedesmus serratus	0.09	nil	nil	nil
Stigeoclonium spp	nil	38.84	nil	nil
Uroglena spp	nil	46.49	nil	nil
Chlorophyta contribution	35.08	97.95	28.88	63.09
Unknown	nil	0.14	nil	nil

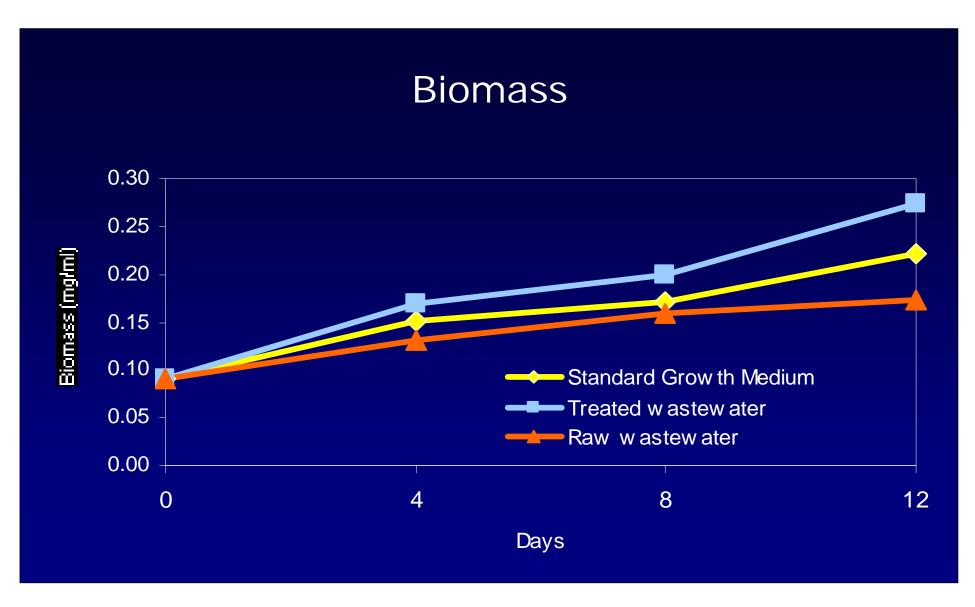
Preliminary Screening

Objective:

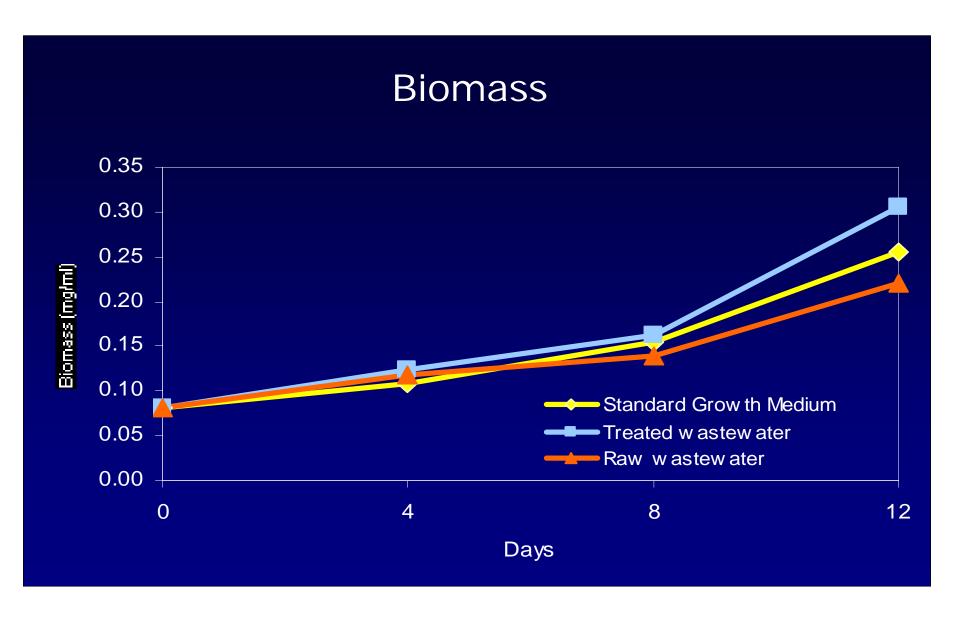
Assess various strains of microalgae for their growth potential in industrial wastewater.

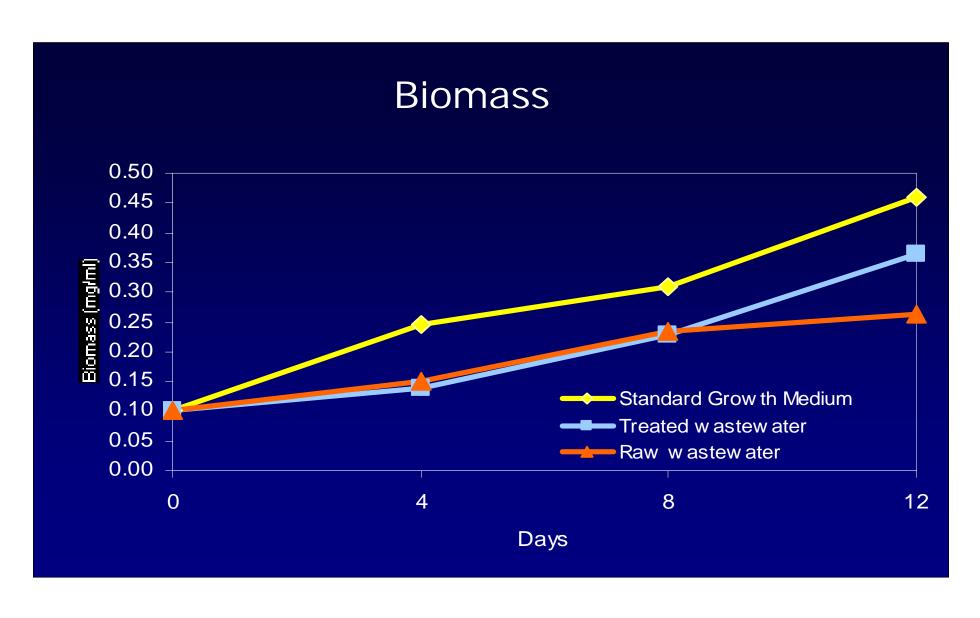

Strains Used for Preliminary Screening

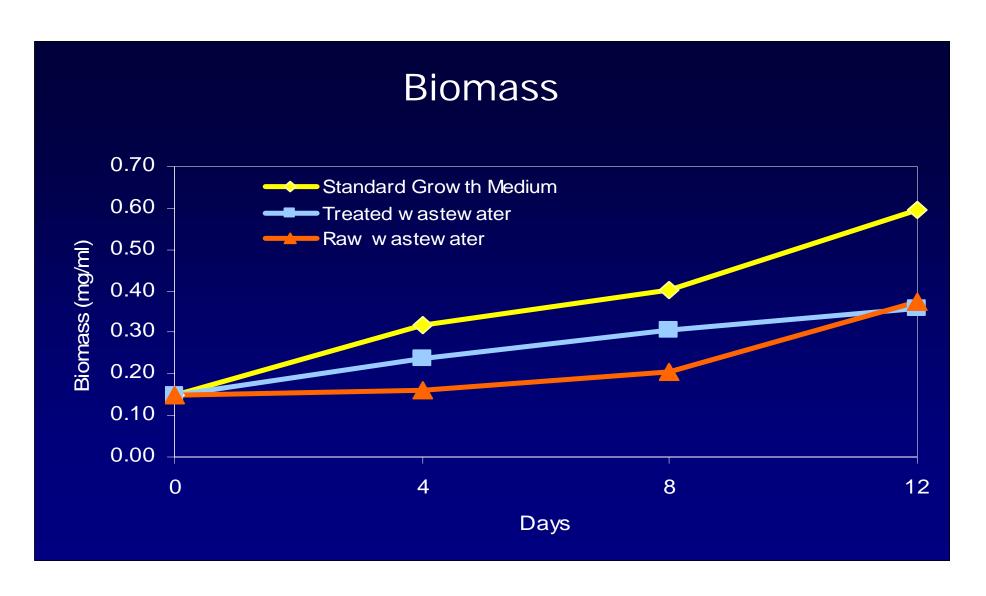
Strain	Form	Standard Growth Medium
Botryococcus braunii UTEX 572	Fresh water	BG11
Chlorella protothecoides UTEX 25	Fresh water	BG11
Chlorella saccharophila var. saccharophila UTEX 2469	Fresh water	BG11
Chlorella vulgaris UTEX 2714	Fresh water	BG11
Cricosphaera carterae UTEX LB1014	Marine	Modified BG medium
Dunaliella tertiolecta UTEX LB999	Marine	Modified BG medium
Nannochloris oculata UTEX LB1998	Marine	Modified BG medium
Spirulina platensis UTEX LB1926	Marine algae	Modified CFTRI

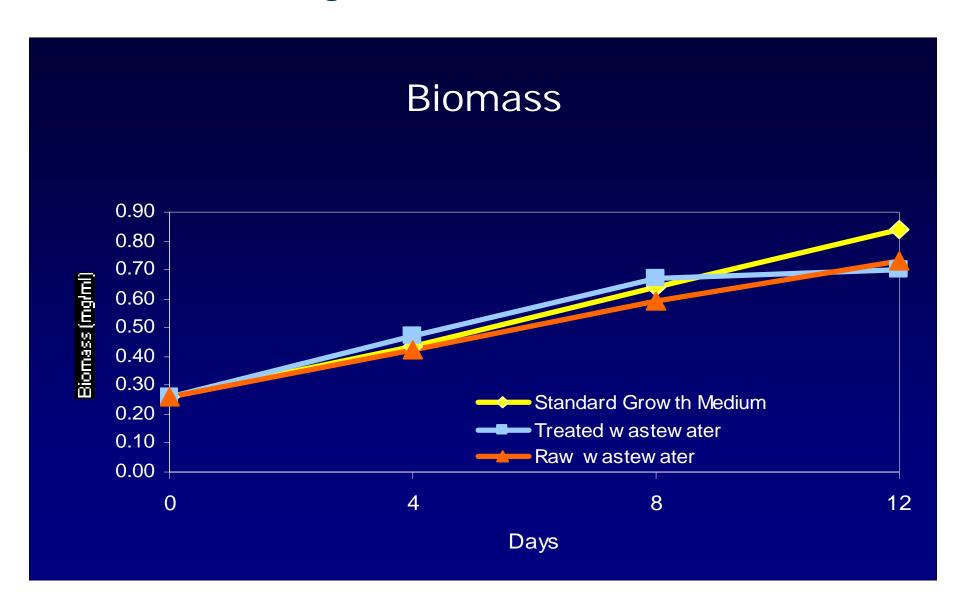

Strains used for Preliminary Screening

Strain	Form	Standard Growth Medium
Spirulina maxima UTEX LB2342	Fresh water	Modified CFTRI
Tetraselmis suecica UTEX LB2286	Marine	Modified BG medium
Tetraselmis chuii UTEX LB232	Marine	Modified BG medium
Phaeodactylum tricornutum UTEX 646	Marine	Modified BG medium
Pleurochrysis carterae CCMP 647	Marine	Modified BG medium
Consortium of native isolates from industrial wastewater	Fresh water	BG11


Changes in chlorophyll content (%) of various strains of microalgae grown in industrial wastewater


Time dependent changes in biomass content of *B.braunii* grown in industrial wastewater


Time dependent changes in biomass content of C.saccharophila grown in industrial wastewater


Time dependent changes in biomass content of *D.tertiolecta* grown in industrial wastewater

Time dependent changes in biomass content of *P.carterae* grown in industrial wastewater

Time dependent changes in biomass of consortium of natural isolates grown in industrial wastewater

Summary

- Growth performance of strains *Botryococccus braunii and Chlorella saccharophila* was better in treated wastewater than standard growth medium and raw wastewater in terms of biomass production
- Species belonging to Chlorophyta (green algae) and Cyanophyta (blue green algae) dominate carpet industry wastewater
- Consortium of native isolates of carpet industry wastewater showed great potential for biomass production
- Treated carpet industry wastewater used in the experiment is a good growth medium for microalgae cultivation

Future Work

- Detailed studies on seasonal variation in species composition in the treated wastewater
- Standardization of ideal consortium composition for cultivation of algae in wastewater for biomass and biofuels production
- Continuous scale studies with various levels of CO₂ to evaluate biomass and lipid production of selected algal cultures and mixed consortium of native isolates using carpet industry wastewater

Acknowledgements:

Dalton Utilities, Dalton for funding support Mark Marlowe, Dalton Utilities

Ryan W Hunt Andrew Dunn Brian Gandy Praveen Kolar Umakanth Jena

Biorefining and Carbon Cycling Program

Department of Biological and Agricultural Engineering

The University of Georgia