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S. cerevisiae known to show various cellular responses to
temperature changes

Optimum temperature range for growth is between 25 and 35 degrees C
Suboptimal temperatures slow down enzyme kinetics

o Consequently slows down cellular processes such as growth phrase
Chemostat can be used to control specific growth rate and limiting
nutrients (Carbon or Nitrogen)
Our model estimates the dynamics of nutrients and biomass within the

chemostats until they reach steady-state
o Taietal. 2007
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Physiological characteristics of S. cerevisiae grown in ammonium- and

glucose-limited anaerobic chemostat cultures Tai et al. (2007)

Table 1. Physiological characteristics of S. cerevisiae grown in ammonium- and glucose-limited anaerobic chemostat cultures

Growth

Carbon Residual Residual
Limiting temperature YGiu/x recovery glucose ammonia
nutrient Q) (Bow * Bglucose ) Qone” Qron’ qeoz” (%) (mM) (mM)
Glucose 12 0.07 £ 0.01 -25+02 38+03 44+03 1003 28+1.1 652 +22
Glucose 30 0.07 + 0.00 -23+00 35+00 3802 95 +1 03+0.1 61.3+45
Ammonium 12 0.05 = 0.00 -36+02 6.1+03 60 %06 97 + 4 90.0 9.8 15+0.2
Ammonium 30 0.04 = 0.00 -4,0 0.1 6.8 +02 74+02 97 =2 85.1 =82 0.2+0.1

Cultures were grown at 30 and 12°C (D = 0.03 h™"). Values represent the mean + SD of data from three independent steady-state chemostat
cultivations. Y, x, biomass yield on glucose; DW, dry weight.

* Values expressed as mmol * gy ~' *h~




Differential equations that represent the rates of change of biomass, glucose,
and ammonium are used to see dynamics and find steady states

Each variable is in steady state when its differential equation is equal to zero.
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Models for all four conditions reach steady state by 200 hours

12 degree Glucose limited 30 degree Glucose limited
SSE = SSE =
1.8512e-05 2.9974e-05
3 T T 3 T
— cells — e ||S
w— g lUCOSE — gluCOSE . . .
ammo ammo e Differences in biomass
2f - 2f : and nutrient dynamics
g 1sf ] § 15) - vary most by limiting
! ] 1 : nutrient.
o 05/
"0 2‘0 4‘0 f;O 8‘0 100 12‘0 1:10 1(‘50 180 200 00 20 40 60 80 100 120 140 160 180 200
time time .
A2l i v e S i Ao M Steady-state biomass for
B o each respective model
18 T 4 T T 16 T T T T T
— |l — S ¥
16+ — G lUCOSE & 14} — G lUCOSE
al ol 4 1.718 g 1.746 g
e 10+
i 8, 15.95 g 15.18 g
B 8 w
6 e
6F
4l 4F
2 2H
00 20 40 60 80 100 120 140 160 180 200 D0 20 40 60 80 100 120 140 160 180 200
time time




Glucose efficiency dependent on glucose levels and temperature

dy Y%
= = _F _ +
dt f” W+ K)z+L) ©TI

e Linear equations for E at each temperature
E1s = 0.3637 % y + 14.1022

Es0 = 0.7012 % y + 14.2478



Replacing E and rerunning the model produces similar results
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Temperature Effect using Arrhenius’ Theory

e We want to predict what r can be at various temperatures
e Modeled by Arrhenius’ Theory:

r = Ae/(-B/RT)

m r=rate constant
e SeeTable2
m A =orientation
e 4.907*10M1
m B = activation energy for the reaction
e 68258.79
m R =Universal Gas Constant
e 8.3145)/mol
m T =Temperature in Kelvins
e SeeTable2
S



Observing the temperature effect using Arrhenius’ equation

Table 2: This table depicts the rates that were calculated using Arrhenius’
equation using the temperatures listed below

Temperature 12 15 20 25 30
("C)

rate 0.08 0.11 0.18 0.29 0.46
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Temperature Effect Results
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Discussion and Future Directions

Changing E and rerunning the model showed similar results in all graphs
which suggests that E is a function of y

As temperature increases, the rate increases

Majority of the figures approached steady state, suggesting the
parameters we used were good fits

Future Directions

o Test different parameters to see if we can get even better fits (some didn’t reach steady
state well)

o Run for ammonium limited temperatures and compare with what we did



Conclusion

Expected better fit model by making adjustments for temperature and
glucose concentration

Changed E and r parameters to see if more accurate

o Created linear equations for E
o Used Arrhenius equation to find r for any temperature

Ran the models and did not see many differences from original

Hope to continue to work on this model
o Keep changing parameters and conditions
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