COMPREHENSIVE PEG-PC GEL PROTOCOL

Last updated 2/4/2013 by W.H., 1/5/2016 by A.S., 8/28/17 by E.B.

MATERIALS

2-Methacryloyloxyethyl phosphorylcholine (Sigma) Poly(ethylene) glycol dimethacrylate, $M_N \sim 750$ (Sigma) PBS 0.22 μ m PES syringe filters Luer-lock syringes microcentrifuge tubes vortexer

For UV curing on coverslips: Irgacure 2959 (Ciba), a high-intensity UV light source, methacrylate silane-treated coverslips

For thermal curing: ammonium persulfate and TEMED (Bio-Rad), vacuum oven/chamber, N₂ gas, methacrylate silane-treated glass-bottom 96-well plates

For UV curing on in 96-well plates: Lithium phenyl(2,4,6-trimethylbenzoyl)phosphinate (LAP, TCI Chemicals), a high-intensity UV light source, methacrylate silane-treated glass-bottom 96-well plate

PREPARATION OF PRE-POLYMER SOLUTION

- 1. Make a solution of 20% (w/v) MPC in PBS i.e. 200 mg MPC per mL of PBS (actual w/v after volume change is ~17%) and vortex to dissolve. Calculate the volume to make on a basis of 75 μ L pre-polymer solution per 18mm coverslip, 50 μ L per 15mm coverslip or 40 μ l/well in a 96-well plate.
- 2. Distribute 20% MPC solution into microcentrifuge tubes for each PEG-PC concentration to be made.
- 3. Add the appropriate amount of PEGDMA. For example, if making 3% PEG-PC and you measured out 300 μ L of 20% MPC, add 3% of that volume as PEGDMA i.e. 0.03 * 300 μ L = 9 μ L of PEGDMA. Mix thoroughly by vortexing. (**N.B.:** If making PEG-PC over 10%, the % of MPC and PEGDMA is calculated differently because the volume changes are substantial).
- 4. If gels are to be used for cell culture experiments, syringe filter each solution.
- 5. Degas each solution with ultrapure (grade 5) N_2 for ~30 seconds (this is especially important for thermal curing). Be sure to sterilize the degassing needle with 70% ethanol to keep the solutions clean, and run ethanol through the needle when finished so it does not get clogged.

POLYMERIZATION ON COVERSLIPS

1. Make *fresh* 20% w/v Irgacure 2959 in 70% ethanol, vortex to dissolve (it takes a lot of vortexing). Degassing this solution is not usually necessary, but it cannot hurt.

- 2. Add 40 µL of 20% Irgacure per 1 mL of polymer solution. Mix gently, by inverting or pipetting, so as to not reintroduce dissolve oxygen into the solution.
- 3. Place 50 or 75 µL aliquots of pre-polymer solution on methacrylate silane-treated cover slips. Carefully cover with an untreated cover slip.
- 4. Treat with UV at 2-3" distance for 15-20 minutes.
- 5. Let the untreated coverslip float off in PBS overnight. You may need to gently remove it with forceps the next day.

POLYMERIZATION IN 96-WELL PLATES with APS and TEMED

- 1. Make *fresh* 20% ammonium persulfate (APS) in deionized water, vortex to dissolve. Degassing this solution is not usually necessary, but it cannot hurt.
- 2. To polymerize, add 20% APS to pre-polymer solutions at a 1:80 ratio, and add TEMED 1:800. i.e. 1000 μ L pre-polymer / 80 = 12.5 μ L 20% APS and (1000/800) = 1.25 μ L TEMED. **N.B.:** After addition of APS and TEMED it is possible for the solution to polymerize on the bench top, so it is recommended that each PEG-PC concentration be done separately i.e. don't add APS and TEMED to every pre-polymer solution before aliquoting into wells.
- 3. After addition of APS and TEMED, aliquot 40 μl/well into the wells of a methacrylate silane-treated 96-well plate.
- 4. Repeat for every PEG-PC concentration being made.
- 5. Place 96-well plate in vacuum oven at room temperature with the cover off and flow ultrapure (grade 5) N₂ at 25 psi through the chamber for 5 minutes.
- 6. After 5 minutes of flowing N_2 , close the inlet and outlet to the vacuum oven tightly and close the N_2 valve.
- 7. After 20 additional minutes, gels should have formed.
- 8. Swell in PBS overnight. Use 100 μ l/well, except for 0.5% PEG-PC gels use 200 μ l/well (because they swell so much).

POLYMERIZATION IN 96-WELL PLATES with LAP

- 1. Make *fresh* 200 mM LAP in 70% ethanol, vortex to dissolve. Wrap the tube in aluminum foil because LAP is light-sensitive.
- 2. To polymerize, add 200 mM LAP to pre-polymer solutions at a 1:100 ratio. i.e. $1000 \mu L$ pre-polymer / $100 = 10 \mu L$ 200 mM LAP.
- 3. After addition of LAP, aliquot 40 μ l/well into the wells of a methacrylate silane-treated 96-well plate.
- 4. Repeat for every PEG-PC concentration being made.
- 5. Treat with UV light (at least 5 W/cm² intensity) for 20 minutes.
- 6. Swell in PBS overnight. Use 100 μ l/well, except for 0.5% PEG-PC gels use 200 μ l/well (because they swell so much).