
Part 3: Steady Points of the Dynamic System
We use the dimension-less version of the system. 
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The steady points of the Dimension-less version of the system are given by the positive solutions 

 0,0  VU  of the system
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1) First Steady Point

Plugging 0V  into equation (1) yields one steady point  0,01S

The steady point  0,01S  is admissible whatever the values of the parameters

2) Equation for the Other Steady Points
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Before studying the condition we set DCR / .

The system of equations   
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 yield the other steady-points of the system. 

We will prove that we can get up to two other points. 



First one can remark from the equation 
U

UB
BV





1

0  that if we solve the system with regards 

to U and obtain a positive solution, then we automatically obtain a positive value of V.

We adopt this strategy, eliminate the ordinate V and seek for the positive solutions of the 

equation    in U.
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To obtain the positive solutions of    we need to differentiate 2 cases and study a limit case.

3) Limit Case B=1/R

The equation    degenerates into an affine equation. Its only solution is
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4) General Case B  1/R

U is given by a quadratic equation
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For the remaining of the study of this Dynamic System, we set 
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4.1) First Case B>1/R   0
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4.2) Second Case B<1/R   0
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If the discriminant is strictly positive then the two roots are distinct.
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Necessary Condition: R>1

Condition 2: 
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One can show that for the condition to be met it takes  21
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When the conditions are met, the roots are
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5) Bifurcation Diagrams

First Case R  1

Second Case R>1
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6) Complement : Allure of the Flow

Case 1: B < 1/R and Only One Steady State

BV=(B0+U)/(1+U)

V=R-1/U

(1/R,0)

V

U

NB: This flow corresponds to B0>1. 
A similar flow is obtained with B0<1 
or B0=1.

It is straightforward to see that the trajectories will not be bounded



Case 2: B > 1/R : Two Steady States

BV=(B0+U)/(1+U)

V=R-1/U
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NB: This flow corresponds to B0>1. 
A similar flow is obtained with B0<1 
or B0=1.



Type of Flow 3 : B < 1/R and Three Steady States

BV=(B0+U)/(1+U)

V=R-1/U

(1/R,0)
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It is straightforward to see that the trajectories will not be bounded


