Part 3: Steady Points of the Dynamic System

We use the dimension-less version of the system.

$$\left(\frac{dU}{ds} = \frac{U}{1+U} - \frac{BUV}{B_0 + U}\right)$$
$$\frac{dV}{ds} = \frac{CUV}{1+UV} - DV$$

The steady points of the Dimension-less version of the system are given by the positive solutions $(U \ge 0, V \ge 0)$ of the system

$$(1) \Leftrightarrow 0 = \frac{U}{1+U} - \frac{BUV}{B_0 + U}$$
$$(2) \Leftrightarrow 0 = \frac{CUV}{1+UV} - DV$$

Equation (1) yields

$$U = 0 \text{ or } 0 = \frac{1}{1+U} - \frac{BV}{B_0 + U}$$

Equation (2) yields

$$V = 0$$
 or $\frac{CU}{1 + UV} = D \Leftrightarrow V = \frac{C}{D} - \frac{1}{U}$

1) First Steady Point

Plugging V=0 into equation (1) yields one steady point $S_1 (0,0)$

The steady point $S_1(0,0)$ is admissible whatever the values of the parameters

2) Equation for the Other Steady Points

The condition U=0 is incompatible with $V=\frac{C}{D}-\frac{1}{U}$. However $0=\frac{1}{1+U}-\frac{BV}{B_0+U}$ is.

Before studying the condition we set R = C/D.

The system of equations $(\otimes) \Leftrightarrow \begin{pmatrix} BV = \frac{B_0 + U}{1 + U} \\ V = R - \frac{1}{U} \end{pmatrix}$ yield the other steady-points of the system.

We will prove that we can get up to two other points.

First one can remark from the equation $BV=\frac{B_0+U}{1+U}$ that if we solve the system with regards to U and obtain a positive solution, then we automatically obtain a positive value of V.

We adopt this strategy, eliminate the ordinate V and seek for the positive solutions of the equation (Δ) in U.

$$(\Delta) \Leftrightarrow B\left(R - \frac{1}{U}\right) = \frac{B_0 + U}{1 + U}$$

$$(\Delta) \Leftrightarrow (BR - 1) - \frac{B}{U} + \frac{(1 - B_0)}{1 + U} = 0$$

$$(\Delta) \Leftrightarrow (BR - 1)U^2 + (B(R - 1) - B_0)U - B = 0$$

To obtain the positive solutions of $\left(\Delta\right)$ we need to differentiate 2 cases and study a limit case.

3) Limit Case B=1/R

The equation (Δ) degenerates into an affine equation. Its only solution is

$$U = \frac{B}{B(R-1)-B_0} = \frac{B}{1-B-B_0}$$

The steady Point is admissible if $\begin{pmatrix} R>1\\ B_0<\frac{R-1}{R} \end{pmatrix}$

4) General Case B ≠ 1/R

U is given by a quadratic equation

$$P(U) = U^2 + \frac{(B(R-1) - B_0)}{(BR-1)}U - \frac{B}{(BR-1)} = 0$$

For the remaining of the study of this Dynamic System, we set $\begin{cases} s = \frac{\left(B(R-1) - B_0\right)}{\left(BR-1\right)} \\ p = \frac{B}{\left(BR-1\right)} \end{cases}$

$$p = \frac{B}{(BR - 1)} > 0$$

P(U) has one positive root
$$U = \frac{-s + \sqrt{s^2 + 4p}}{2}$$

Second Case B<1/R
$$p = \frac{B}{(BR-1)} < 0$$

P(U) has two positive roots if and only if
$$egin{pmatrix} s < 0 \\ \Delta = s^2 + 4\, p \geq 0 \end{pmatrix}$$
 .

If the discriminant is strictly positive then the two roots are distinct.

Condition 1:

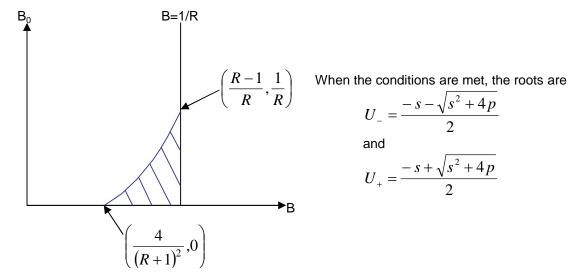
$$s = \frac{\left(B(R-1) - B_0\right)}{\left(BR - 1\right)} < 0 \text{ if } B(R-1) - B_0 > 0$$

Necessary Condition: R>1

Condition 2:

$$\Delta = s^2 + 4p \ge 0 \text{ iff } s \le -2\sqrt{-p}$$
 that is $B_0 \le B(R-1) - 2\sqrt{B(1-BR)}$

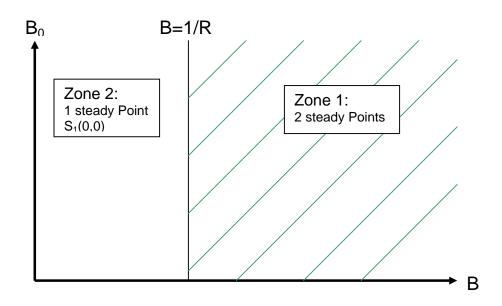
One can show that for the condition to be met it takes $B \ge \frac{4}{(R+1)^2}$



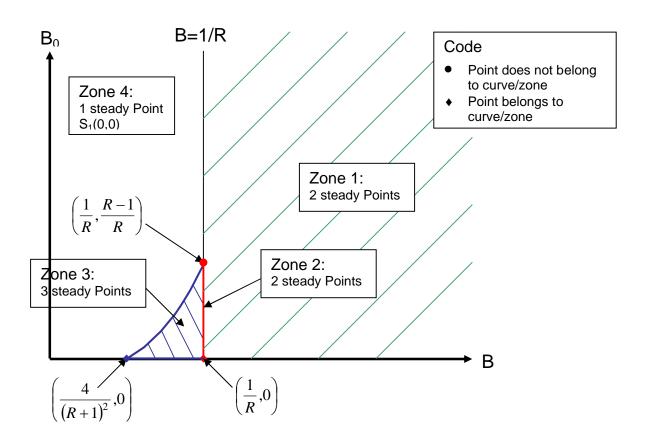
$$U_{-} = \frac{-s - \sqrt{s^2 + 4p}}{2}$$
 and
$$U_{+} = \frac{-s + \sqrt{s^2 + 4p}}{2}$$

5) Bifurcation Diagrams

First Case R ≤ 1

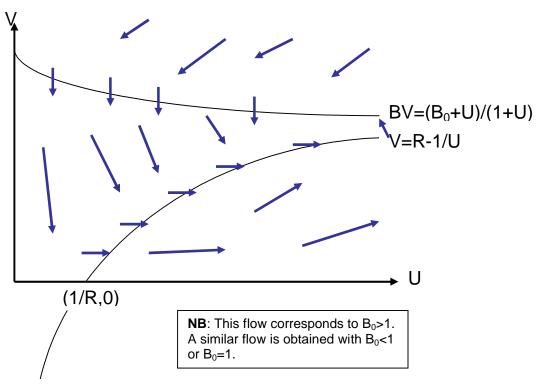


Second Case R>1



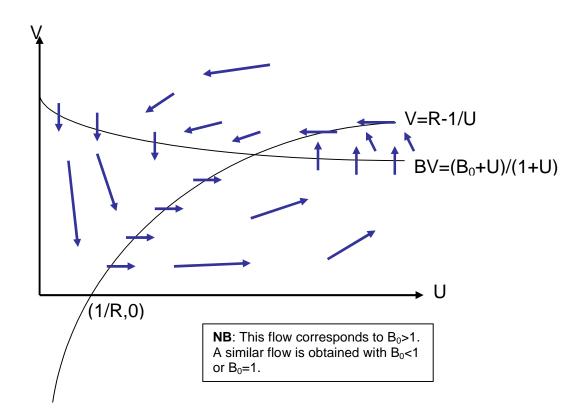
6) Complement : Allure of the Flow

Case 1: B < 1/R and Only One Steady State

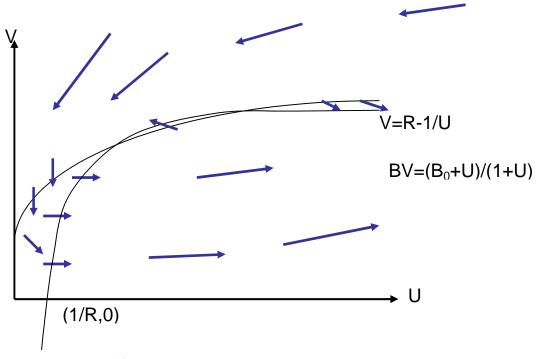


It is straightforward to see that the trajectories will not be bounded

Case 2: B > 1/R : Two Steady States



Type of Flow 3 : B < 1/R and Three Steady States



It is straightforward to see that the trajectories will not be bounded