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You might be familiar with some names for the groupings of astronomical objects: star systems, galaxies, even
clusters of galaxies, but some research is concerned with even bigger things, such as superclusters and the mythical
“density field” and “super-duper-clusters.” We can’t look directly at these large groups, instead we can only measure
specific objects and their properties, like their velocity. In order to get a sense of what’s happening on the larger
scales, we combine these numbers, and the paper today looks at how to do this in a way that preserves the important
information.

Our subject of astronomy is concerned with the the power spectrum of fluctuations in the density field. That was
definitely a mouthful, so let’s start simple. We generally assume that the universe is homogenous, it’s pretty similar
all throughout (R. Watkins, personal communication, March 8th, 2024). There are, however, some fluctuations and
we can describe those fluctuations as waves. An area of space with more galaxies (or just, mass) than normal is thus
a fluctuation wave, with wavelength on the order of the size of that area of space. The power spectrum of these
fluctuations is a picture showing how much of each size of wave is present in the universe (if you know what a Fourier
transform is, it’s very similar in essence!). At large scales, these waves do indeed obey like waves: they don’t interact
with one another, and they add linearly (they follow the superposition principle).

The method this paper talks about is determining the power spectrum by looking at velocity data and using its
connection to mass density [1]. The correlation between velocity and mass comes from our good friend gravity, which
shows up by saying that if there’s a high amplitude fluctuation in the density field, the velocities in that region should
be correlated (R. Watkins, personal communication, March 8th, 2024). Basically, if there’s more mass than usual in
a spot, gravity will be stronger in that region, so things will have some pull, and thus velocity, towards the center
of mass of a fluctuation. A velocity on one side of the fluctuation will be towards the center, and is thus correlated
to a velocity on the other side, which will be in the reverse direction towards the center. Using this relation, it is
possible to take a set of velocities, or moments (which is an all too unusual word for “weighted sum”) made from
those velocities, look at their correlations, and figure out what parameters for the power spectrum would fit this data
best, a kind of approach known as a likelihood analysis.

Our treatment of density fluctuations as waves only works in the big picture. On smaller scales, things get more
complicated, and the model doesn’t work so well [1]. We therefore want less small scale information and more large
scale data in order to apply the aforementioned theory. And with all that background covered, we can get to the
meat of this paper: a method for compressing data while also separating moments based on whether they contain
more information about smaller scales or larger scales.

The math, in its full glory, would be too big a mouthful for this WUbite and so only the general process will be
described. Data is combined into moments by taking a linear combination, so each term is multiplied by some constant
and then added together [1]. The trick this paper works out is how to pick those constants so that the moments will
have varying sensitivity to nonlinear scales, and a corresponding value λ (an eigenvalue, actually!) which quantifies
that sensitivity. The moments can then be arranged by their size of λ, and those highest can excluded from an analysis
that tries to identify high order density fluctuations.

This method was then used on data from a simulated universe that should look similar to ours, to see if it works as
intended [1]. One check was made on this method to make sure it did two of things we wanted: exclude information
on smaller scales, and not actually throw out ALL the data, including the higher order stuff. This check was done
by using a window function, which was constructed to show how sensitive a given moment is to different scales of
wave information. As you can see in Figure 1, moments with small λ do only show sensitivity to higher order (low
wavenumber) power, and vice versa, which is exactly the desired effect. The likelihood analysis was then carried out,
to see how well we can predict the parameters of the power spectrum using this method, and how impactful the data
compression and selection methods are. As you can see in Figure 2, throwing out some moments, starting with those
with the highest sensitivity to small scale power, increased agreement between the predicted and true value. The
process works just as hoped!
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This paper was published in 2002 (before I was born!), and a lot can be said since its release. The process seems
successful, and the data compression method is valid for other types of large scale probing [1]. The use of this method
in the field, however, is sparse. The power spectrum parameters this paper was concerned with have been accurately
calculated using distinctly different methods, unrelated to velocity survey data (R. Watkins, personal communication,
March 8th, 2024). While it might seem underperforming right now, the process this paper outlines is rumored to be
used in the next great astrophysics paper to come out of Willamette University, so don’t give up on it just yet!

FIG. 1. Window functions of moments with varying sizes of λ. Shows how sensitive a given moment is to different scales of
power[1].

[1] R. Watkins, H. A. Feldman, S. W. Chambers, P. Gorman, and A. L. Melott, Optimal moments for the analysis of peculiar
velocity surveys, The Astrophysical Journal 564, 534 (2002).
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FIG. 2. Likelihood contour maps for the fit of power function function parameters. Different plots have varying numbers of
kept moments. The star is at the true value from the universe simulation creation [1].


