
polysat version 1.0 Tutorial Manual

Lindsay V. Clark <lvclark@ucdavis.edu>
UC Davis Department of Plant Sciences
http://openwetware.org/wiki/Polysat

September 27, 2010

Contents

1 Introduction 2

2 Obtaining and installing polysat 2

3 Getting Started: A Tutorial 3
3.1 Creating a dataset . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2 Data analysis and export . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 Genetic distances between individuals . . . . . . . . . . 8
3.2.2 Working with subsets of the data . . . . . . . . . . . . 9
3.2.3 Population statistics . . . . . . . . . . . . . . . . . . . 12
3.2.4 Genotype data export . . . . . . . . . . . . . . . . . . 14

4 How data are stored in polysat 15
4.1 The “genambig” class . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 The “gendata” and “genbinary” classes . . . . . . . . . . . . . 22

5 Functions for autopolyploid data 25
5.1 Data import . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Data export . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Individual-level statistics . . . . . . . . . . . . . . . . . . . . . 29

5.3.1 Estimating and exporting ploidies . . . . . . . . . . . . 29
5.3.2 Inter-individual distances . . . . . . . . . . . . . . . . . 30

5.4 Population statistics . . . . . . . . . . . . . . . . . . . . . . . 33

1

http://openwetware.org/wiki/Polysat


6 Functions for allopolyploid data 35
6.1 Data import and export . . . . . . . . . . . . . . . . . . . . . 35
6.2 Individual-level and population statistics . . . . . . . . . . . . 36

7 Treating microsatellite alleles as dominant markers 37

8 How to cite polysat 38

1 Introduction

The R package polysat provides useful tools for working with microsatel-
lite data of any ploidy level, including populations of mixed ploidy. It can
convert genotype data between different formats, including Applied Biosys-
tems GeneMapper®, binary presence/absence data, ATetra, Tetra/Tetrasat,
GenoDive, SPAGeDi, and Structure. It can also calculate pairwise genetic
distances between samples, assist the user in estimating ploidy based on al-
lele number, and estimate allele frequencies and FST . Due to the versatility
of the R programming environment and the simplicity of how genotypes are
stored by polysat, the user may find many ways to interface other R functions
with this package, such as Principal Coordinate Analysis or AMOVA.

This manual is written to be accessible to beginning users of R. If you
are a complete novice to R, it is recommended that you read through An
Introduction to R ( http://cran.r-project.org/manuals.html ) before
reading this manual or at least have both open at the same time. If you have
the console open while reading the manual you can also look at the help files
for base R functions (for example by typing ?save or ?%in%) and also get
more detailed information on polysat functions (e.g. ?read.GeneMapper).

The examples will be easiest to understand if you follow along with them
and think about the purpose of each line of code. A file called “polysattuto-
rial.R” in the “doc” subdirectory of the package installation can be opened
with a text editor and contains all of the R input found in this manual.

2 Obtaining and installing polysat

The R console and base system can be obtained at http://www.r-project.
org/. Once installed, polysat can be installed and loaded by typing the
following commands into the R console:

2

http://cran.r-project.org/manuals.html
http://www.r-project.org/
http://www.r-project.org/


> install.packages("combinat")

> install.packages("polysat")

> library("polysat")

If you quit and restart R, you will not have to re-install the package but
you might need to load it again (using the library function as shown above).

3 Getting Started: A Tutorial

3.1 Creating a dataset

As with any genetic software, the first thing you want to do is import your
data. For this tutorial, go into the “doc” directory of the polysat package
installation, and find a file called “GeneMapperExample.txt”. Open this file
in a text editor and inspect its contents. This file contains simulated geno-
types of 300 diploid and tetraploid individuals at three loci. Move this text
file into the R working directory. The working directory can be changed with
the setwd function, or identified with the getwd function:

> getwd()

[1] "C:/Users/lvclark/Rpackages/polysat/inst/doc"

Then read the file using the read.GeneMapper function, and assign the
dataset a name of your choice (simgen in this example) by typing:

> simgen <- read.GeneMapper("GeneMapperExample.txt")

The dataset now exists as an object in R. The following commands display,
respectively, some basic information about the dataset, the sample and locus
names, a subset of the genotypes, and a list of which genotypes are missing.

> summary(simgen)

Dataset with allele copy number ambiguity.

Insert dataset description here.

Number of missing genotypes: 5

300 samples, 3 loci.

1 populations.

Ploidies: NA

Length(s) of microsatellite repeats: NA

3



> Samples(simgen)

[1] "A1" "A2" "A3" "A4" "A5" "A6" "A7"

[8] "A8" "A9" "A10" "A11" "A12" "A13" "A14"

[15] "A15" "A16" "A17" "A18" "A19" "A20" "A21"

[22] "A22" "A23" "A24" "A25" "A26" "A27" "A28"

[29] "A29" "A30" "A31" "A32" "A33" "A34" "A35"

[36] "A36" "A37" "A38" "A39" "A40" "A41" "A42"

[43] "A43" "A44" "A45" "A46" "A47" "A48" "A49"

[50] "A50" "A51" "A52" "A53" "A54" "A55" "A56"

[57] "A57" "A58" "A59" "A60" "A61" "A62" "A63"

[64] "A64" "A65" "A66" "A67" "A68" "A69" "A70"

[71] "A71" "A72" "A73" "A74" "A75" "A76" "A77"

[78] "A78" "A79" "A80" "A81" "A82" "A83" "A84"

[85] "A85" "A86" "A87" "A88" "A89" "A90" "A91"

[92] "A92" "A93" "A94" "A95" "A96" "A97" "A98"

[99] "A99" "A100" "B1" "B2" "B3" "B4" "B5"

[106] "B6" "B7" "B8" "B9" "B10" "B11" "B12"

[113] "B13" "B14" "B15" "B16" "B17" "B18" "B19"

[120] "B20" "B21" "B22" "B23" "B24" "B25" "B26"

[127] "B27" "B28" "B29" "B30" "B31" "B32" "B33"

[134] "B34" "B35" "B36" "B37" "B38" "B39" "B40"

[141] "B41" "B42" "B43" "B44" "B45" "B46" "B47"

[148] "B48" "B49" "B50" "B51" "B52" "B53" "B54"

[155] "B55" "B56" "B57" "B58" "B59" "B60" "B61"

[162] "B62" "B63" "B64" "B65" "B66" "B67" "B68"

[169] "B69" "B70" "B71" "B72" "B73" "B74" "B75"

[176] "B76" "B77" "B78" "B79" "B80" "B81" "B82"

[183] "B83" "B84" "B85" "B86" "B87" "B88" "B89"

[190] "B90" "B91" "B92" "B93" "B94" "B95" "B96"

[197] "B97" "B98" "B99" "B100" "C1" "C2" "C3"

[204] "C4" "C5" "C6" "C7" "C8" "C9" "C10"

[211] "C11" "C12" "C13" "C14" "C15" "C16" "C17"

[218] "C18" "C19" "C20" "C21" "C22" "C23" "C24"

[225] "C25" "C26" "C27" "C28" "C29" "C30" "C31"

[232] "C32" "C33" "C34" "C35" "C36" "C37" "C38"

[239] "C39" "C40" "C41" "C42" "C43" "C44" "C45"

[246] "C46" "C47" "C48" "C49" "C50" "C51" "C52"

4



[253] "C53" "C54" "C55" "C56" "C57" "C58" "C59"

[260] "C60" "C61" "C62" "C63" "C64" "C65" "C66"

[267] "C67" "C68" "C69" "C70" "C71" "C72" "C73"

[274] "C74" "C75" "C76" "C77" "C78" "C79" "C80"

[281] "C81" "C82" "C83" "C84" "C85" "C86" "C87"

[288] "C88" "C89" "C90" "C91" "C92" "C93" "C94"

[295] "C95" "C96" "C97" "C98" "C99" "C100"

> Loci(simgen)

[1] "loc1" "loc2" "loc3"

> viewGenotypes(simgen, samples = paste("A", 1:20,

+ sep = ""), loci = "loc1")

Sample Locus Alleles

A1 loc1 110 112 106

A2 loc1 114 106 118 110

A3 loc1 114 102 100 106

A4 loc1 110 102 106 100

A5 loc1 106 112

A6 loc1 100 110 106

A7 loc1 112 108

A8 loc1 102 106

A9 loc1 112

A10 loc1 102 106 110 112

A11 loc1 114 100 112

A12 loc1 106 118

A13 loc1 110 112

A14 loc1 100 112 106

A15 loc1 100 112 114

A16 loc1 112 102 100

A17 loc1 102 106

A18 loc1 102 106

A19 loc1 114 102 110 118

A20 loc1 106 100 108

> find.missing.gen(simgen)

5



Locus Sample

1 loc1 B54

2 loc1 B80

3 loc2 B48

4 loc3 A42

5 loc3 C22

Additional information that isn’t in “GeneMapperExample.txt” can be
added directly to the dataset in R. The commands below add a description
to the dataset, name three populations and assign 100 individuals to each,
and indicate the length of the microsatellite repeats.

> Description(simgen) <- "Dataset for the tutorial"

> PopNames(simgen) <- c("PopA", "PopB", "PopC")

> PopInfo(simgen) <- rep(1:3, each = 100)

> Usatnts(simgen) <- c(2, 3, 2)

If you need help understanding what the PopInfo assignment means, type
the following commands (results are hidden here for the sake of space):

> rep(1:3, each = 100)

> PopInfo(simgen)

Samples can now be retrieved by population. (Results hidden as above.)

> Samples(simgen, populations = "PopA")

The Usatnts assignment function above, indicates that loc1 and loc3
have dinucleotide repeats, while loc2 has trinucleotide repeats. The alleles
are recorded here in terms of fragment length in nucleotides. If the alleles
were instead recorded in terms of repeat number, the Usatnts values should
be 1. These repeat lengths can be examined by typing:

> Usatnts(simgen)

loc1 loc2 loc3

2 3 2

To edit genotypes after importing the data:

6



> simgen <- editGenotypes(simgen, maxalleles = 4)

Edit the alleles, then close the data editor window.

You can also add ploidy information to the dataset. The estimatePloidy
function allows you to add or edit the ploidy information, using a table that
shows you the mean and maximum number of alleles per sample. The samples
in this dataset should be diploid or tetraploid, although many of them may
have fewer alleles. Therefore, in the data editor that is generated by the
command below, you should change new.ploidy values to 2 if the sample
has a maximum of one allele per locus, and to 4 if a sample has a maximum
of three alleles per locus. See ?Ploidies or page 18 for a different way to
edit ploidy values if they are already known.

> simgen <- estimatePloidy(simgen)

Edit the new.ploidy values, then close the data editor window.

Take another look at the summary now that you have added this extra
data.

> summary(simgen)

Dataset with allele copy number ambiguity.

Dataset for the tutorial

Number of missing genotypes: 5

300 samples, 3 loci.

3 populations.

Ploidies: 4 2

Length(s) of microsatellite repeats: 2 3

Now that you have your dataset completed, it is not a bad idea to save
a copy of it. It will be automatically saved in your R workspace for use
in subsequent R sessions. However, the save function creates a separate
file containing a copy of the dataset (or any other R object), which can be
useful as a backup against accidental changes or a copy to open on another
computer. The file containing the dataset can be opened again at a later
date using the load function.

> save(simgen, file = "simgen.RData")

7



3.2 Data analysis and export

3.2.1 Genetic distances between individuals

The code below calculates a pairwise distance matrix between all samples
(using the default distance measure Bruvo.distance), performs Principal
Coordinate Analysis (PCA) on the matrix, and plots the first two principal
coordinates, with each population represented by a different color.

> testmat <- meandistance.matrix(simgen)

> pca <- cmdscale(testmat)

> plot(pca[, 1], pca[, 2], col = rep(c("red", "green",

+ "blue"), each = 100), main = "PCA with Bruvo distance")

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

● ●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

−0.4 −0.2 0.0 0.2 0.4

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

PCA with Bruvo distance

pca[, 1]

pc
a[

, 2
]

To conduct a PCA using the Lynch.distance measure, type:

> testmat2 <- meandistance.matrix(simgen, distmetric = Lynch.distance,

+ progress = FALSE)

8



> pca2 <- cmdscale(testmat2)

> plot(pca2[, 1], pca2[, 2], col = rep(c("red",

+ "green", "blue"), each = 100), main = "PCA with Lynch distance")

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●●

●

●

●

●

●

● ●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

PCA with Lynch distance

pca2[, 1]

pc
a2

[, 
2]

Bruvo.distance takes mutation into account, while Lynch.distance

does not. (See ?Bruvo.distance, ?Lynch.distance, and section 5.3.) Since
mutation was not part of the simulation that generated this dataset, the
latter measure works better here for distinguishing populations.

3.2.2 Working with subsets of the data

It is likely that you will want to perform some analyses on just a subset
of your data. There are several ways to accomplish this in polysat. The
deleteSamples and deleteLoci functions are designed to be fairly intuitive.

> simgen2 <- deleteSamples(simgen, c("B59", "C30"))

> simgen2 <- deleteLoci(simgen2, "loc2")

9



> summary(simgen2)

Dataset with allele copy number ambiguity.

Dataset for the tutorial

Number of missing genotypes: 4

298 samples, 2 loci.

3 populations.

Ploidies: 4 2

Length(s) of microsatellite repeats: 2

There are also a couple methods that involve using vectors of samples and
loci that you do want to use. Let’s make a vector of samples in populations
A and B that are tetraploid, and then exclude a few samples that we don’t
want to analyze.

> samToUse <- Samples(simgen2, populations = c("PopA",

+ "PopB"), ploidies = 4)

> exclude <- c("A50", "A78", "B25", "B60", "B81")

> samToUse <- samToUse[!samToUse %in% exclude]

> samToUse

[1] "A1" "A2" "A4" "A7" "A8" "A9" "A12"

[8] "A13" "A14" "A18" "A20" "A22" "A23" "A24"

[15] "A28" "A29" "A31" "A32" "A33" "A34" "A35"

[22] "A37" "A38" "A39" "A42" "A44" "A45" "A48"

[29] "A54" "A57" "A58" "A59" "A60" "A61" "A62"

[36] "A64" "A66" "A67" "A69" "A75" "A81" "A82"

[43] "A83" "A85" "A86" "A89" "A91" "A93" "A95"

[50] "A98" "A99" "A100" "B2" "B3" "B4" "B5"

[57] "B11" "B12" "B13" "B15" "B16" "B17" "B18"

[64] "B20" "B22" "B23" "B24" "B26" "B28" "B32"

[71] "B33" "B36" "B38" "B39" "B40" "B41" "B42"

[78] "B43" "B44" "B46" "B48" "B50" "B52" "B53"

[85] "B57" "B58" "B61" "B64" "B65" "B67" "B69"

[92] "B70" "B74" "B75" "B77" "B78" "B83" "B87"

[99] "B88" "B91" "B92" "B93" "B96"

You can subscript the dataset with square brackets, like you can with
many other R objects. Note, however, that in this case you can’t use square

10



brackets to replace a subset of the dataset, just to access a subset of the
dataset. A vector of samples should be placed first in the brackets, followed
by a vector of loci.

> summary(simgen2[samToUse, "loc1"])

Dataset with allele copy number ambiguity.

Dataset for the tutorial

Number of missing genotypes: 0

103 samples, 1 loci.

2 populations.

Ploidies: 4

Length(s) of microsatellite repeats: 2

The analysis and data export functions all have optional samples and
loci arguments where vectors of sample and locus names can indicate that
only a subset of the data should be used.

> testmat3 <- meandistance.matrix(simgen2, samples = samToUse,

+ distmetric = Lynch.distance, progress = FALSE)

> pca3 <- cmdscale(testmat3)

> plot(pca3[, 1], pca3[, 2], col = c("red", "blue")[PopInfo(simgen2)[samToUse]])

11



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−0.4 −0.2 0.0 0.2 0.4

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

pca3[, 1]

pc
a3

[, 
2]

(If you are confused about how I got the color vector, I would encourage
dissecting it: See what PopInfo(simgen2) gives you, what PopInfo(simgen2)[samToUse]
gives you, and lastly what the result of c("red", "blue")[PopInfo(simgen2)[samToUse]]

is.)

3.2.3 Population statistics

Allele frequencies are estimated in the example below. The example then
uses these allele frequencies to calculate pairwise Wright’s FST [12] values,
first using all loci and then just two of the loci. See Section 5.4 for important
information about allele frequency estimation.

> simfreq <- deSilvaFreq(simgen, self = 0.1, initNull = 0.01,

+ samples = Samples(simgen, ploidies = 4))

Starting loc1

Starting loc1 PopA

12



64 repetitions for loc1 PopA

Starting loc1 PopB

106 repetitions for loc1 PopB

Starting loc1 PopC

84 repetitions for loc1 PopC

Starting loc2

Starting loc2 PopA

54 repetitions for loc2 PopA

Starting loc2 PopB

94 repetitions for loc2 PopB

Starting loc2 PopC

89 repetitions for loc2 PopC

Starting loc3

Starting loc3 PopA

104 repetitions for loc3 PopA

Starting loc3 PopB

117 repetitions for loc3 PopB

Starting loc3 PopC

105 repetitions for loc3 PopC

> simfreq

Genomes loc1.100 loc1.102 loc1.104 loc1.106

PopA 212 0.1202992 0.12041013 0.00000000 0.2196366

PopB 208 0.0000000 0.16964161 0.09127732 0.0666518

PopC 180 0.1546742 0.01733696 0.24074235 0.0000000

loc1.108 loc1.110 loc1.112 loc1.114 loc1.116

PopA 0.03591695 0.14287772 0.1542292 0.1251016 0.00000000

PopB 0.00000000 0.12865007 0.0000000 0.1251792 0.09286717

PopC 0.10203928 0.03436444 0.1477607 0.0749076 0.18553453

loc1.118 loc1.null loc2.143 loc2.146 loc2.149

PopA 0.07118362 0.01034496 0.00000000 0.16292064 0.0000000

PopB 0.30132333 0.02440948 0.39112389 0.05846641 0.1964645

PopC 0.02862591 0.01401403 0.09199651 0.12284567 0.1100339

loc2.152 loc2.155 loc2.158 loc2.161 loc2.164

PopA 0.01937013 0.2277736 0.2318032 0.2269041 0.1208905

PopB 0.00000000 0.0000000 0.1737714 0.1586404 0.0000000

PopC 0.30329792 0.1475359 0.0000000 0.0000000 0.2080345

13



loc2.null loc3.210 loc3.212 loc3.214 loc3.216

PopA 0.01033780 0.08777834 0.0000000 0.1171561 0.07825934

PopB 0.02153341 0.00000000 0.1566487 0.0000000 0.00000000

PopC 0.01625563 0.21567201 0.0613939 0.0000000 0.13814503

loc3.218 loc3.220 loc3.222 loc3.224 loc3.226

PopA 0.27813128 0.0000000 0.15201002 0.00000000 0.0000000

PopB 0.37855398 0.0000000 0.15477761 0.15861852 0.0000000

PopC 0.09445973 0.1538148 0.06183346 0.08256635 0.1684937

loc3.228 loc3.230 loc3.null

PopA 0.05675610 0.20737987 0.02252894

PopB 0.02972989 0.08606954 0.03560175

PopC 0.00000000 0.00000000 0.02362112

> simFst <- calcFst(simfreq)

> simFst

PopA PopB PopC

PopA 0.00000000 0.05068795 0.05453103

PopB 0.05068795 0.00000000 0.07098261

PopC 0.05453103 0.07098261 0.00000000

> simFst12 <- calcFst(simfreq, loci = c("loc1",

+ "loc2"))

> simFst12

PopA PopB PopC

PopA 0.00000000 0.06004514 5.597902e-02

PopB 0.06004514 0.00000000 7.356898e-02

PopC 0.05597902 0.07356898 1.345414e-16

3.2.4 Genotype data export

Lastly, you may want to export your data for use in another program. Below
is a simple example of data export for the software Structure. Additional
export functions are described in sections 5.2 and 6.1. More details on the
options for all of these functions are found in their respective help files.

In this example, both dipliod and tetraploid samples are included in the
file. The ploidy argument indicates how many lines per individual the file
should have.

> write.Structure(simgen, ploidy = 4, file = "simgenStruct.txt")

14



4 How data are stored in polysat

In the tutorial above, you learned some ways of creating, viewing, and editing
a dataset in polysat. This section goes into more details of the underlying
data structure in polysat. This is particularly useful to understand if you
want to extend the functionality of the package, but it may clear up some
confusion for basic polysat users as well.

polysat uses the S4 class system in R. “Class” and “object” are two com-
puter science terms that are introduced in Section 3 of An Introduction to R.
Whenever you create a vector, data frame, matrix, list, etc. you are creating
an object, and the class of the object defines which of these the object is.
Furthermore, a class has certain “methods” defined for it so that the user can
interact with the object in pre-specified ways. For example, if you use mean

on a matrix, you will get the mean of all elements of the matrix, while if you
use mean on a data frame, you will get the mean of each column; mean is a
generic function with different methods for these two classes. S4 classes in R
have “slots”, where each slot can hold an object of a certain class. Methods
define how the user can access, replace, and manipulate the data in these
slots.

4.1 The “genambig” class

The object that you created with the read.GeneMapper function in the tu-
torial is of the class "genambig". This class has the slots Description (a
character string or character vector describing the dataset), Genotypes (a
two-dimensional list of vectors, where each vector contains all unique alleles
for a particular sample at a particular locus), Missing (the symbol for a miss-
ing genotype), Usatnts (a vector containing the repeat length of each locus,
or 1 if alleles for that locus are already in terms of repeat number rather
than nucleotides), Ploidies (a vector containing the ploidy of each sample,
or NA if unknown), PopNames (the name of each population), and PopInfo

(the population identity of each sample, using integers that correspond to
the position of the population name in PopNames). You’ll notice that there
aren’t slots to hold sample or locus names, which are stored as the names

and dimnames of the objects in the other slots.

> showClass("genambig")

15



Class "genambig" [package "polysat"]

Slots:

Name: Genotypes Description Missing Usatnts

Class: array character ANY integer

Name: Ploidies PopInfo PopNames

Class: integer integer character

Extends: "gendata"

To create a "genambig" object from scratch without using one of the
data import functions, first create two character vectors to contain sample
and locus names, respectively. These vectors are then used as arguments to
the new function.

> mysamples <- c("indA", "indB", "indC", "indD",

+ "indE", "indF")

> myloci <- c("loc1", "loc2", "loc3")

> mydataset <- new("genambig", samples = mysamples,

+ loci = myloci)

An object has now been created with all of the appropriate slots named
according to sample and locus names.

> mydataset

An object of class "genambig"

Slot "Genotypes":

loc1 loc2 loc3

indA -9 -9 -9

indB -9 -9 -9

indC -9 -9 -9

indD -9 -9 -9

indE -9 -9 -9

indF -9 -9 -9

Slot "Description":

16



[1] "Insert dataset description here."

Slot "Missing":

[1] -9

Slot "Usatnts":

loc1 loc2 loc3

NA NA NA

Slot "Ploidies":

indA indB indC indD indE indF

NA NA NA NA NA NA

Slot "PopInfo":

indA indB indC indD indE indF

NA NA NA NA NA NA

Slot "PopNames":

character(0)

In the tutorial you used some of the accessor and replacement functions
for the "genambig" class. You can see a full list of them by typing:

> ?Samples

(Present and Absent are just for the "genbinary" class. More on that
later.) Let’s use some of these functions to fill in and examine the dataset.

> Loci(mydataset)

[1] "loc1" "loc2" "loc3"

> Loci(mydataset) <- c("L1", "L2", "L3")

> Loci(mydataset)

[1] "L1" "L2" "L3"

> Samples(mydataset)

[1] "indA" "indB" "indC" "indD" "indE" "indF"

17



> Samples(mydataset)[3] <- "indC1"

> Samples(mydataset)

[1] "indA" "indB" "indC1" "indD" "indE" "indF"

> PopNames(mydataset) <- c("Yosemite", "Sequoia")

> PopInfo(mydataset) <- c(1, 1, 1, 2, 2, 2)

> PopInfo(mydataset)

indA indB indC1 indD indE indF

1 1 1 2 2 2

> PopNum(mydataset, "Yosemite")

[1] 1

> PopNum(mydataset, "Sequoia") <- 3

> PopNames(mydataset)

[1] "Yosemite" NA "Sequoia"

> PopInfo(mydataset)

indA indB indC1 indD indE indF

1 1 1 3 3 3

> Ploidies(mydataset) <- c(4, 4, 4, 4, 4, 6)

> Ploidies(mydataset)

indA indB indC1 indD indE indF

4 4 4 4 4 6

> Ploidies(mydataset)["indC1"] <- 6

> Ploidies(mydataset)

indA indB indC1 indD indE indF

4 4 6 4 4 6

> Usatnts(mydataset) <- c(2, 2, 2)

> Usatnts(mydataset)

18



L1 L2 L3

2 2 2

> Description(mydataset) <- "Tutorial, part 2."

> Description(mydataset)

[1] "Tutorial, part 2."

> Genotypes(mydataset, loci = "L1") <- list(c(122,

+ 124, 128), c(124, 126), c(120, 126, 128, 130),

+ c(122, 124, 130), c(128, 130, 132), c(126,

+ 130))

> Genotype(mydataset, "indB", "L3") <- c(150, 154,

+ 160)

> Genotypes(mydataset)

L1 L2 L3

indA Numeric,3 -9 -9

indB Numeric,2 -9 Numeric,3

indC1 Numeric,4 -9 -9

indD Numeric,3 -9 -9

indE Numeric,3 -9 -9

indF Numeric,2 -9 -9

> Genotype(mydataset, "indD", "L1")

[1] 122 124 130

> Missing(mydataset)

[1] -9

> Missing(mydataset) <- -1

> Genotypes(mydataset)

L1 L2 L3

indA Numeric,3 -1 -1

indB Numeric,2 -1 Numeric,3

indC1 Numeric,4 -1 -1

indD Numeric,3 -1 -1

indE Numeric,3 -1 -1

indF Numeric,2 -1 -1

19



If you know a little bit more about S4 classes, you know that you can
access the slots directly using the @ symbol, for example:

> mydataset@Genotypes

L1 L2 L3

indA Numeric,3 -1 -1

indB Numeric,2 -1 Numeric,3

indC1 Numeric,4 -1 -1

indD Numeric,3 -1 -1

indE Numeric,3 -1 -1

indF Numeric,2 -1 -1

> mydataset@Genotypes[["indB", "L1"]]

[1] 124 126

However, I STRONGLY recommend against accessing the slots in this
way in order to replace (edit) the data. The replacement functions are de-
signed to prevent multiple types of errors that could happen if the user edited
the slots directly.

In section 3.1 you were introduced to the find.missing.gen function.
There is a related function called isMissing that may be more useful from
a programming standpoint.

> isMissing(mydataset, "indA", "L2")

[1] TRUE

> isMissing(mydataset, "indA", "L1")

[1] FALSE

> isMissing(mydataset)

L1 L2 L3

indA FALSE TRUE TRUE

indB FALSE TRUE FALSE

indC1 FALSE TRUE TRUE

indD FALSE TRUE TRUE

indE FALSE TRUE TRUE

indF FALSE TRUE TRUE

20



To add more samples or loci to your dataset, you can create a second
"genambig" object and then use the merge function to join them.

> moredata <- new("genambig", samples = c("indG",

+ "indH"), loci = Loci(mydataset))

> Usatnts(moredata) <- Usatnts(mydataset)

> Description(moredata) <- Description(mydataset)

> PopNames(moredata) <- "Kings Canyon"

> PopInfo(moredata) <- c(1, 1)

> Ploidies(moredata) <- c(4, 4)

> Missing(moredata) <- Missing(mydataset)

> Genotypes(moredata, loci = "L1") <- list(c(126,

+ 130, 136, 138), c(124, 126, 128))

> mydataset2 <- merge(mydataset, moredata)

> mydataset2

An object of class "genambig"

Slot "Genotypes":

L1 L2 L3

indA Numeric,3 -1 -1

indB Numeric,2 -1 Numeric,3

indC1 Numeric,4 -1 -1

indD Numeric,3 -1 -1

indE Numeric,3 -1 -1

indF Numeric,2 -1 -1

indG Numeric,4 -1 -1

indH Numeric,3 -1 -1

Slot "Description":

[1] "Tutorial, part 2."

Slot "Missing":

[1] -1

Slot "Usatnts":

L1 L2 L3

2 2 2

21



Slot "Ploidies":

indA indB indC1 indD indE indF indG indH

4 4 6 4 4 6 4 4

Slot "PopInfo":

indA indB indC1 indD indE indF indG indH

1 1 1 3 3 3 4 4

Slot "PopNames":

[1] "Yosemite" NA "Sequoia"

[4] "Kings Canyon"

4.2 The “gendata” and “genbinary” classes

The "genambig" class is actually a subclass of another class called "gen-

data". The Description, PopInfo, PopNames, Ploidies, Missing, and
Usatnts slots, and their access and replacement methods, are all defined for
"gendata", and are inherited by "genambig". The "genambig" class adds
the Genotypes slot and the methods for interacting with it.

A second subclass of "gendata" is "genbinary". This class also has a
Genotypes slot, but formatted as a matrix indicating the presence and ab-
sence of alleles. (See ?genbinary-class for more details.) It also adds a
slot called Present and one called Absent to indicate the symbols used to
represent the presence or absence of the alleles, the same way the Missing

slot holds the symbol used to indicate missing data. Like "genambig", "gen-
binary" inherits all of the slots from "gendata", as well as the methods for
accessing them.

The code below creates a "genbinary" object using a conversion function,
then demonstrates how the genotypes are stored differently and how the
functions from "gendata" remain the same.

> simgenB <- genambig.to.genbinary(simgen)

> Genotypes(simgenB, samples = paste("A", 1:20,

+ sep = ""), loci = "loc1")

loc1.100 loc1.102 loc1.104 loc1.106 loc1.108 loc1.110

A1 0 0 0 1 0 1

A2 0 1 0 1 0 1

22



A3 0 0 0 1 0 1

A4 1 0 0 0 0 0

A5 0 0 0 1 0 0

A6 0 0 0 0 0 1

A7 1 0 0 1 0 0

A8 1 0 0 0 0 0

A9 1 1 0 0 0 0

A10 0 1 0 1 0 0

A11 0 1 0 1 0 0

A12 0 1 0 0 0 1

A13 0 0 0 1 0 1

A14 1 0 0 1 1 0

A15 1 0 0 0 0 0

A16 0 0 0 1 0 0

A17 0 1 0 1 0 0

A18 0 1 0 1 0 0

A19 0 0 0 0 0 0

A20 1 0 0 1 0 0

loc1.112 loc1.114 loc1.116 loc1.118

A1 1 0 0 0

A2 1 0 0 0

A3 0 0 0 0

A4 1 1 0 0

A5 0 0 0 1

A6 1 0 0 0

A7 1 0 0 0

A8 1 1 0 0

A9 1 0 0 0

A10 0 0 0 0

A11 0 0 0 0

A12 0 1 0 1

A13 0 1 0 1

A14 0 0 0 0

A15 0 0 0 0

A16 0 0 0 0

A17 0 0 0 0

A18 1 0 0 0

A19 1 1 0 0

23



A20 0 1 0 0

> PopInfo(simgenB)[Samples(simgenB, ploidies = 2)]

A3 A5 A6 A10 A11 A15 A16 A17 A19 A21 A25 A26

1 1 1 1 1 1 1 1 1 1 1 1

A27 A30 A36 A40 A41 A43 A46 A47 A49 A50 A51 A52

1 1 1 1 1 1 1 1 1 1 1 1

A53 A55 A56 A63 A65 A68 A70 A71 A72 A73 A74 A76

1 1 1 1 1 1 1 1 1 1 1 1

A77 A79 A80 A84 A87 A88 A90 A92 A94 A96 A97 B1

1 1 1 1 1 1 1 1 1 1 1 2

B6 B7 B8 B9 B10 B14 B19 B21 B25 B27 B29 B30

2 2 2 2 2 2 2 2 2 2 2 2

B31 B34 B35 B37 B45 B47 B49 B51 B54 B55 B56 B59

2 2 2 2 2 2 2 2 2 2 2 2

B60 B62 B63 B66 B68 B71 B72 B73 B76 B79 B80 B82

2 2 2 2 2 2 2 2 2 2 2 2

B84 B85 B86 B89 B90 B94 B95 B97 B98 B99 B100 C1

2 2 2 2 2 2 2 2 2 2 2 3

C2 C4 C7 C9 C10 C14 C15 C17 C19 C21 C22 C24

3 3 3 3 3 3 3 3 3 3 3 3

C26 C27 C31 C32 C33 C34 C35 C36 C40 C42 C43 C44

3 3 3 3 3 3 3 3 3 3 3 3

C47 C53 C54 C56 C57 C59 C62 C65 C66 C68 C70 C73

3 3 3 3 3 3 3 3 3 3 3 3

C74 C75 C76 C78 C79 C80 C82 C83 C84 C85 C86 C87

3 3 3 3 3 3 3 3 3 3 3 3

C91 C93 C94 C96 C97 C99

3 3 3 3 3 3

The "genbinary" class exists to facilitate the import and export of geno-
type data formatted in a binary presence/absence format, for example:

> write.table(Genotypes(simgenB), file = "simBinaryData.txt")

The "genbinary" class is also used by polysat to make some of the allele
frequency calculations easier. simpleFreq internally converts a "genambig"

object to a "genbinary" object in order to tally allele counts in populations.

24



The class system in polysat is set up so that anyone can extend it to better
suit their needs. There seem to be as many ways of formatting genotype data
as their are population genetic software, and so a new subclass of "gendata"
could be created with genotypes formatted in a different way. A user could
also create a subclass of "genambig", for example to hold GPS or phenotypic
data in addition to the data already stored in a "genambig" object. (See
?setClass, ?setMethod, and [2].)

5 Functions for autopolyploid data

In order to properly utilize polysat (and other software for polyploid data)
it is important to understand the inheritance mode in your system. In an
autopolyploid, all homologous chromosomes are equally capable of pairing
with each other at meiosis, and thus at a given microsatellite locus, gametes
can receive any combination of alleles from the parent. The same is not true
of allopolyploids. This affects the distribution of genotypes in the population,
and as a result affects all aspects of population genetic analysis.

The functions described below are specifically for autopolyploid data.
Their potential (or lack thereof) for use on allopolyploid data is described in
the next section.

5.1 Data import

Three other population genetic programs that I am aware of can handle poly-
ploid microsatellite data with allele copy number ambiguity under polysomic
inheritance (autopolyploidy): Structure [5, 4, 13, 7], SPAGeDi [6], and Gen-
oDive [11] (http://www.bentleydrummer.nl/software/software/GenoDive.
html).

In the “doc” directory of the polysat installation there are files called
“structureExample.txt”, “spagediExample.txt”, and “genodiveExample.txt”.
To import these into "genambig" objects, first copy them into your working
directory, then perform the assignments:

> GDdata <- read.GenoDive("genodiveExample.txt")

> Structdata <- read.Structure("structureExample.txt",

+ ploidy = 8)

> Spagdata <- read.SPAGeDi("spagediExample.txt")

25

http://www.bentleydrummer.nl/software/software/GenoDive.html
http://www.bentleydrummer.nl/software/software/GenoDive.html


Use summary, viewGenotypes, and the accessor functions (section 4.1)
to examine the contents of the three "genambig" objects that you have just
created. All three of these functions take population information from the
file and put it into the object. The Structure and SPAGeDi files are coded
in a way that indicates the ploidy of each individual, so this information is
written to the "genambig" object as well.

The data import functions have some additional options for input and
output, which are described in more detail in the help files. In particular,
any extra columns can optionally be extracted from a Structure file, and the
spatial coordinates can optionally be extracted from a SPAGeDi file.

> ?read.Structure

> ?read.SPAGeDi

> ?read.GenoDive

polysat also supports two genotype formats that work for either autopoly-
ploids or allopolyploids, but do not contain any population, ploidy, or other
information: GeneMapper, and binary presence/absence. The tutorial in
the beginning of this manual uses read.GeneMapper to import data. The
“GenaMapperExample.txt” file contains the minimum amount of informa-
tion needed in order to be read by the function. Full “Genotypes Table” files
as exported from ABI GeneMapper®can also be read by read.GeneMapper,
and further, the function can take a vector of file names rather than a single
file name if the data are spread across multiple files. There are three addi-
tional GeneMapper example files in the “doc” directory, which can be read
into a "genambig" object in this way:

> GMdata <- read.GeneMapper(c("GeneMapperCBA15.txt",

+ "GeneMapperCBA23.txt", "GeneMapperCBA28.txt"))

A binary presence/absence matrix can be read into R using the base
function read.table. Arguments to this function give options about how
the file is delimited and whether it has headers and/or row labels. The
example file in the “doc” directory can be read in the following way:

> domdata <- read.table("dominantExample.txt", header = TRUE,

+ sep = "\t", row.names = 1)

26



Examine the data frame produced, and notice in particular that the col-
umn names are formatted as the locus and allele separated by a period.
After this data frame is converted to a matrix, it can be used to create a
"genbinary" object.

> domdata

ABC1.123 ABC1.126 ABC1.129 ABC1.132 ABC1.135 ABC2.201

ind1 1 0 0 0 1 0

ind2 0 1 1 0 1 1

ind3 0 0 0 0 0 0

ABC2.203 ABC2.205 ABC2.207 ABC2.209

ind1 1 1 0 0

ind2 1 1 1 0

ind3 0 1 0 1

> domdata <- as.matrix(domdata)

> PAdata <- new("genbinary", samples = c("ind1",

+ "ind2", "ind3"), loci = c("ABC1", "ABC2"))

> Genotypes(PAdata) <- domdata

A few functions in polysat will work directly on a "genbinary" object,
but for most functions you will want to convert to a "genambig" object.
Addition of population and other information can be done either before or
after the conversion.

> PopInfo(PAdata) <- c(1, 1, 2)

> PAdata <- genbinary.to.genambig(PAdata)

5.2 Data export

Autopolyploid data can also be exported in the same five formats that are
available for import.

The write.Structure function requires that an overall ploidy for the
file be specified, to indicate how many rows per individual to write. Indi-
viduals with higher ploidy than the overall ploidy will have alleles randomly
removed, and individuals with lower ploidy will have the missing data symbol
inserted in the extra rows. Additional arguments give the options to specify
extra columns to include, to omit or include population information, and to

27



specify the missing data symbol. The row of missing data symbols that is au-
tomatically written underneath marker names is the RECESSIVEALLELES
row in Structure, indicating that allele copy number is ambiguous.

write.Structure was used in the tutorial in section 3.2.4, but below is
another example with some of the options changed (see ?write.Structure

for more information). Here, myexcol is an array of data to be written into
extra columns in the file.

> myexcol <- array(c(rep(0:1, each = 150), seq(0.1,

+ 30, by = 0.1)), dim = c(300, 2), dimnames = list(Samples(simgen),

+ c("PopFlag", "Something")))

> myexcol[1:10, ]

PopFlag Something

A1 0 0.1

A2 0 0.2

A3 0 0.3

A4 0 0.4

A5 0 0.5

A6 0 0.6

A7 0 0.7

A8 0 0.8

A9 0 0.9

A10 0 1.0

> write.Structure(simgen, ploidy = 4, file = "simgenStruct2.txt",

+ writepopinfo = FALSE, extracols = myexcol,

+ missingout = -1)

The write.GenoDive function is fairly straightforward, with the only
option being whether to code alleles as two or three digits. All alleles are
converted to repeat number, using the information contained in the Usatnts

slot of the "genambig" object.

> write.GenoDive(simgen, file = "simgenGD.txt")

write.SPAGeDi has options for the number of digits used to code alleles
as well as the character (or lack thereof) used to separate alleles. Alleles are
converted to repeat numbers as in write.GenoDive. Additionally, a data

28



frame of spatial coordinates can be supplied to the function to be written to
the file. By default, the function will create two dummy columns for spatial
coordinates, which the user can then fill in using a text editor or spreadsheet
software. (See ?write.SPAGeDi)

> write.SPAGeDi(simgen, file = "simgenSpag.txt")

If you are using SPAGeDi to calculate relationship and kinship coeffi-
cients, also see the function write.freq.SPAGeDi for exporting allele fre-
quencies from polysat to SPAGeDi for use in these calculations.

write.GeneMapper is very straightforward, without any special format-
ting options. This function was used to create the“GeneMapperExample.txt”
file that is provided with the package. I do not know of any other software
that will read the GeneMapper format, but it may be a convenient way for
the user to store and edit genotypes.

> write.GeneMapper(simgen, file = "simgenGM.txt")

To export a table of genotypes in binary presence/absence format, first
convert the "genambig" object to a "genbinary" object, then write the
Genotypes slot to a text file, adjusting the options of write.table to suit
your needs. (See ?write.table.)

> simgenPA <- genambig.to.genbinary(simgen)

> write.table(Genotypes(simgenPA), file = "simgenPA.txt",

+ quote = FALSE, sep = ",")

5.3 Individual-level statistics

5.3.1 Estimating and exporting ploidies

The estimatePloidy function, which was demonstrated in section 3.1, is
equally appropriate for autopolyploid and allopolyploid data. If you want to
export the ploidy data, one method is the following:

> write.table(data.frame(Ploidies(simgen), row.names = Samples(simgen)),

+ file = "simgenPloidies.txt")

29



5.3.2 Inter-individual distances

A matrix of pairwise distances between individuals can be generated us-
ing the meandistance.matrix function, which was demonstrated in sec-
tion 3.2.1. The most important argument is distmetric, or the distance
measure that is used. The two options that are provided with polysat are
Bruvo.distance, which takes mutational distance between alleles into ac-
count [1], and Lynch.distance, which is a simple band-sharing measure
[9]. (The user can create functions to serve as additional distance measures,
as long as the arguments are the same as those for Bruvo.distance and
Lynch.distance.) The progress argument can be set to TRUE or FALSE to
indicate whether the progress of the computation should be printed to the
screen. The all.distances argument can also be set to TRUE or FALSE to in-
dicate whether, in addition to the mean distance matrix, a three-dimensional
array of distances by locus should be returned. There is also a maxl argument
to indicate the threshold for Bruvo.distance to skip calculations that are
too computationally intensive (see ?Bruvo.distance).

Besides the cmdscale function for performing Principal Coordinate Anal-
ysis on the resulting matrix, you may want to create a histogram to view the
distribution of distances, or you may want to export the distance matrix for
use in other software.

> hist(as.vector(testmat))

30



Histogram of as.vector(testmat)

as.vector(testmat)

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

00
40

00
60

00
80

00
12

00
0

> hist(as.vector(testmat2))

31



Histogram of as.vector(testmat2)

as.vector(testmat2)

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
20

00
40

00
60

00
80

00
10

00
0

14
00

0

> write.table(testmat2, file = "simgenDistMat.txt")

meandist.from.array can take a three-dimensional array such as that
produced when all.distances=TRUE and recalculate a mean distance matrix
from it. This could be useful, for example, if you want to try omitting loci
from your analysis. If Bruvo.distance skips some calculations because maxl
is exceeded, you may also want to estimate these distances and fill them into
the array manually, then recalculate the mean distance matrix. See the help
file for meandist.from.array for some additional functions that can help to
locate missing values in the three-dimensional distance array.

The following example first creates a vector indicating the subset of sam-
ples to use, both to save on computation time for the example and because
missing data can be a problem for Principal Coordinate Analysis if fewer
than three loci are used. An array of distances is then calculated, followed
by the mean distance matrix for each combination of two loci.

32



> subsamples <- Samples(simgen, populations = 1)

> subsamples <- subsamples[!isMissing(simgen, subsamples,

+ "loc1") & !isMissing(simgen, subsamples, "loc2") &

+ !isMissing(simgen, subsamples, "loc3")]

> Larray <- meandistance.matrix(simgen, samples = subsamples,

+ progress = FALSE, distmetric = Lynch.distance,

+ all.distances = TRUE)[[1]]

> mdist1.2 <- meandist.from.array(Larray, loci = c("loc1",

+ "loc2"))

> mdist2.3 <- meandist.from.array(Larray, loci = c("loc2",

+ "loc3"))

> mdist1.3 <- meandist.from.array(Larray, loci = c("loc1",

+ "loc3"))

As before, you can use cmdscale to perform Principal Coordinate Anal-
ysis and plot to visualize the results. Differences between plots reflect the
effects of excluding loci.

5.4 Population statistics

There are two functions in polysat for estimating allele frequencies. If all
of your individuals are the same, even-numbered ploidy and if you have a
reasonable estimate of the selfing rate in your system, deSilvaFreq will give
the most accurate estimate. For mixed ploidy systems, the simpleFreq func-
tion is available, but will be biased toward underestimating common allele
frequencies and overestimating rare allele frequencies, which will cause an un-
derestimation of FST . deSilvaFreq uses an iterative algorithm to estimate
genotype frequencies based on allele frequencies and “allelic phenotype” fre-
quencies, then recalculate allele frequencies from genotype frequencies [3].
simpleFreq simply assumes that in a partially heterozygous genotype, all
alleles have an equal chance of being present in more than one copy.

Both allele frequency estimators take as the first argument a "genambig"

or "genbinary" object, which must have the PopInfo and Ploidies slots
filled in. The self argument for supplying the selfing rate is only applicable
for deSilvaFreq. (See ?deSilvaFreq for some other arguments that can be
adjusted.) Both functions produce a data frame of allele frequencies, with
populations in rows and alleles in columns. deSilvaFreq adds a null allele
for each locus, while simpleFreq does not. In both cases the data frame will

33



also have a column indicating the population size in number of genomes (e.g.
four hexaploid individuals = 24 genomes).

The function calcFst takes the data frame produced by either allele
frequency estimation, and produces a matrix containing pairwise FST values
according to the original calculation by Wright [12]. Population sizes are
weighted by number of genomes, rather than number of individuals.

Continuing the example from section 3.2.3, and comparing the results of
deSilvaFreq and simpleFreq:

> simFst

PopA PopB PopC

PopA 0.00000000 0.05068795 0.05453103

PopB 0.05068795 0.00000000 0.07098261

PopC 0.05453103 0.07098261 0.00000000

> simfreqSimple <- simpleFreq(simgen, samples = Samples(simgen,

+ ploidies = 4))

> simFstSimple <- calcFst(simfreqSimple)

> simFstSimple

PopA PopB PopC

PopA 0.00000000 0.04738346 5.088305e-02

PopB 0.04738346 0.00000000 6.492718e-02

PopC 0.05088305 0.06492718 -1.323838e-16

Average allele frequencies can also be used by SPAGeDi for the calculation
of relationship and kinship coefficients. SPAGeDi v1.3 can estimate allele
frequencies using the same method as simpleFreq. However, if your data
are appropriate for allele frequency estimation using deSilvaFreq, exporting
the estimated allele frequencies to SPAGeDi should improve the accuracy of
the relationship and kinship calculations. The write.freq.SPAGeDi function
creates a file of allele frequencies in the format that is read by SPAGeDi.

> write.freq.SPAGeDi(simfreq, usatnts = Usatnts(simgen),

+ file = "SPAGfreq.txt")

34



6 Functions for allopolyploid data

In order to properly analyze microsatellites as codominant markers in al-
lopolyploids, knowledge is required about which alleles belong to which genome.
In an autopolyploid, all alleles for a given marker will segregate according
to Mendelian laws. In an allopolyploid, a microsatellite marker represents
two or more loci that are behaving in a Mendelian fashion, but if treated as
one locus will not appear to behave according to random segregation. For
example, an autotetraploid with the genotype ABCD that self fertilizes can
produce offspring with the genotype AABB. An allotetraploid with the same
four alleles, but distributed as AB and CD across two genomes, cannot self to
produce an AABB individual as both of these alleles come from one genome.

If you have knowledge from other analyses about which alleles belong to
which genomes, when importing your data you can code each microsatellite
marker as multiple loci. As long as each “locus” in the "genambig" object is
behaving according to random segregation, the analysis and export functions
for autopolyploid data described in the previous section are appropriate.

Otherwise, the following functionality is available for allopolyploids in
polysat:

6.1 Data import and export

Data can be formatted for the software Tetrasat [10], Tetra [8], and ATetra
[14] using polysat. These programs are able to resolve ambiguity about how
alleles are distributed across the two diploid genomes in an allotetraploid.
From there, the programs can calculate allele frequencies and other statistics.
See the help files for write.Tetrasat and write.ATetra.

read.Tetrasat (which produces a format readable by both Tetrasat and
Tetra) and read.ATetra both take, as their only argument, the file name
to be read. To import data from the example files “AtetraExample.txt” and
“tetrasatExample.txt”, use the commands:

> ATdata <- read.ATetra("ATetraExample.txt")

> Tetdata <- read.Tetrasat("tetrasatExample.txt")

The functions for writing these two file formats only require a "genambig"

object and a file name. Ploidies and PopInfo are required in the object
for both functions. write.Tetrasat additionally requires information in

35



the Usatnts slot. Since ATetra does not allow missing data, any missing
genotypes that are encountered by write.ATetra are written to the console.

> write.ATetra(simgen, samples = Samples(simgen,

+ ploidies = 4), file = "simgenAT.txt")

Missing data: B44 loc2

Missing data: A38 loc3

Missing data: C16 loc3

> write.Tetrasat(simgen, samples = Samples(simgen,

+ ploidies = 4), file = "simgenTet.txt")

Data for allopolyploids can also be imported and exported in GeneMapper
and binary presence/absence formats, as described in the sections 5.1 and 5.2.

6.2 Individual-level and population statistics

The Bruvo.distance measure of inter-individual distances is best suited
to autopolyploids but may work for allopolyploids under a special case.
Bruvo.distance measures distances between all alleles at a locus for the
two individuals being compared, under the premise that these alleles could
be closely related to each other by mutation. If two alleles belong to two
different allopolyploid genomes, it is not possible for them to be be closely
related to each other even if their sizes are similar, since they are derived
from different ancestral species. In the case where no allele from one al-
lopolyploid genome is within three or four mutation steps of any allele from
the other genome, it is possible for the value produced by Bruvo.distance

to accurately reflect the genetic similarity of two allopolyploid individuals.
Along the same logic, Lynch.distance will only be appropriate if the two
homeologous genomes have no alleles in common at a given locus. If either
of these distance measures are appropriate for your data, see the description
of the meandistance.matrix function in sections 3.2.1 and 5.3.2.

The estimatePloidy function works equally well on autopolyploids and
allopolyploids.

Both simpleFreq and deSilvaFreq work under the assumption of polysomic
inheritance and should therefore not be used on allopolyploid data.

36



7 Treating microsatellite alleles as dominant

markers

Both autopolyploid and allopolyploid microsatellite data can be converted to
“allelic phenotypes” based on the presence and absence of alleles. Although
much information is lost using this method, it can enable the user to perform
a wider range of analyses, such as parentage analysis or AMOVA.

The Lynch.distance measure, described earlier, essentially treats alleles
in this way. Alleles are assumed to be present in only one copy, and two
alleles from two individuals are either identical or not. However, alleles are
still grouped by locus and distances are averaged across all loci.

The "genbinary" class stores data in a binary presence/absence format,
the same way that dominant data is typically coded. (See earlier description
of the genambig.to.genbinary function in section 5.2.) This is intended to
facilitate further analysis in R or other software that takes such a format.
By default, 1 indicates that an allele is present, 0 indicates that an allele is
absent, and -9 indicates that the data point is missing. There are replacement
functions to change these symbols, for example (continuing from section 4.2):

> Present(simgenB) <- "P"

> Absent(simgenB) <- 2

> Missing(simgenB) <- 0

> Genotypes(simgenB)[1:10, 1:6]

loc1.100 loc1.102 loc1.104 loc1.106 loc1.108 loc1.110

A1 "2" "2" "2" "P" "2" "P"

A2 "2" "P" "2" "P" "2" "P"

A3 "2" "2" "2" "P" "2" "P"

A4 "P" "2" "2" "2" "2" "2"

A5 "2" "2" "2" "P" "2" "2"

A6 "2" "2" "2" "2" "2" "P"

A7 "P" "2" "2" "P" "2" "2"

A8 "P" "2" "2" "2" "2" "2"

A9 "P" "P" "2" "2" "2" "2"

A10 "2" "P" "2" "P" "2" "2"

If you want to further manipulate the format of the genotype matrix, you
can assign it to a new object name and then make the desired edits.

37



> genmat <- Genotypes(simgenB)

> dimnames(genmat)[[2]] <- paste("M", 1:dim(genmat)[2],

+ sep = "")

> genmat[1:10, 1:10]

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

A1 "2" "2" "2" "P" "2" "P" "P" "2" "2" "2"

A2 "2" "P" "2" "P" "2" "P" "P" "2" "2" "2"

A3 "2" "2" "2" "P" "2" "P" "2" "2" "2" "2"

A4 "P" "2" "2" "2" "2" "2" "P" "P" "2" "2"

A5 "2" "2" "2" "P" "2" "2" "2" "2" "2" "P"

A6 "2" "2" "2" "2" "2" "P" "P" "2" "2" "2"

A7 "P" "2" "2" "P" "2" "2" "P" "2" "2" "2"

A8 "P" "2" "2" "2" "2" "2" "P" "P" "2" "2"

A9 "P" "P" "2" "2" "2" "2" "P" "2" "2" "2"

A10 "2" "P" "2" "P" "2" "2" "2" "2" "2" "2"

As demonstrated previously, the write.table function can write the ma-
trix to a text file for use in other software. The arguments for write.table
allow the user to control which character is used to delimit fields, whether
row and column names should be written to the file, and whether quotation
marks should be used for character strings.

8 How to cite polysat

We are revising an article for Molecular Ecology Resources:
Clark, LV and Jasieniuk, M. polysat: an R package for polyploid mi-

crosatellite analysis. Molecular Ecology Resources (in review).
Feel free to email me at lvclark@ucdavis.edu with any questions, com-

ments, or bug reports!

References

[1] BRUVO, R., MICHIELS, N. K., D’SOUZA, T. G. and SCHULEN-
BURG, H. 2004. A simple method for the calculation of microsatellite
genotype distances irrespective of ploidy level. Molecular Ecology, 13,
2101-2106.

38



[2] CHAMBERS, J. M. 2008. Software for Data Analysis: Programming
with R Springer.

[3] DE SILVA, H. N, HALL, A. J., RIKKERINK, E., MCNEILAGE, M. A.,
and FASER, L. G. 2005. Estimation of allele frequencies in polyploids
under certain patterns of inheritance. Heredity, 95, 327-334.

[4] FALUSH, D., STEPHENS, M. and PRITCHARD, J. K. 2003. Inference
of population structure using multilocus genotype data: Linked loci and
correlated allele frequencies. Genetics, 164, 1567-1587.

[5] FALUSH, D., STEPHENS, M. and PRITCHARD, J. K. 2007. Infer-
ence of population structure using multilocus genotype data: dominant
markers and null alleles. Molecular Ecology Notes, 7, 574-578.

[6] HARDY, O. J. and VEKEMANS, X. 2002. SPAGEDi: a versatile com-
puter program to analyse spatial genetic structure at the individual or
population levels. Molecular Ecology Notes, 2, 618-620.

[7] HUBISZ, M. J., FALUSH, D., STEPHENS, M. and PRITCHARD, J. K.
2009. Inferring weak population structure with the assistance of sample
group information. Molecular Ecology Resources, 9, 1322-1332.

[8] LIAO, W. J., ZHU, B. R., ZENG, Y. F. and ZHANG, D. Y. 2008.
TETRA: an improved program for population genetic analysis of allote-
traploid microsatellite data. Molecular Ecology Resources, 8, 1260-1262.

[9] LYNCH, M. 1990. THE SIMILARITY INDEX AND DNA FINGER-
PRINTING. Molecular Biology and Evolution, 7, 478-484.

[10] MARKWITH, S. H., STEWART, D. J. and DYER, J. L. 2006.
TETRASAT: a program for the population analysis of allotetraploid
microsatellite data. Molecular Ecology Notes, 6, 586-589.

[11] MEIRMANS, P. G. and VAN TIENDEREN, P. H. 2004. GENOTYPE
and GENODIVE: two programs for the analysis of genetic diversity of
asexual organisms. Molecular Ecology Notes, 4, 792-794.

[12] NEI, M. 1973. Analysis of gene diversity in subdivided populations. Pro-
ceedings of the National Academy of Sciences of the United States of
America 70, 3321-3323.

39



[13] PRITCHARD, J. K., STEPHENS, M. and DONNELLY, P. 2000. Infer-
ence of population structure using multilocus genotype data. Genetics,
155, 945-959.

[14] VAN PUYVELDE, K., VAN GEERT, A. and TRIEST, L. 2010. ATE-
TRA, a new software program to analyse tetraploid microsatellite data:
comparison with TETRA and TETRASAT. Molecular Ecology Re-
sources, 10, 331-334.

40


	Introduction
	Obtaining and installing polysat
	Getting Started: A Tutorial
	Creating a dataset
	Data analysis and export
	Genetic distances between individuals
	Working with subsets of the data
	Population statistics
	Genotype data export


	How data are stored in polysat
	The ``genambig'' class
	The ``gendata'' and ``genbinary'' classes

	Functions for autopolyploid data
	Data import 
	Data export
	Individual-level statistics
	Estimating and exporting ploidies
	Inter-individual distances

	Population statistics

	Functions for allopolyploid data
	Data import and export
	Individual-level and population statistics

	Treating microsatellite alleles as dominant markers
	How to cite polysat

