Commentary

The focal adhesion kinase

M D Schaller

The focal adhesion kinase, FAK or pp125^{FAK}, is a 125 kDa protein tyrosine kinase (PTK), whose name is derived from its subcellular localization (Schaller et al. 1992). Although originally identified as a putative substrate for pp60^{v-src} (Kanner et al. 1990), an oncogenic PTK, FAK has gained its notoriety as an element of a signaling pathway regulated by cell surface receptors called integrins (Schaller & Parsons 1993, 1994). Integrins are heterodimeric, transmembrane proteins that can simultaneously bind to proteins of the extracellular matrix (ECM), e.g. fibronectin, and to components of the actin cytoskeleton, e.g. talin and α -actinin (Burridge et al. 1988, Turner & Burridge 1991). In addition to their role in cell adhesion to ECM and in anchoring the cytoskeleton, the integrins can transduce extracellular cues into cytoplasmic signals (Damsky & Werb 1992, Hynes 1992, Schwartz 1992, Juliano & Haskill 1993), which include the tyrosine phosphorylation and enzymatic activation of FAK (Burridge et al. 1992, Guan & Shalloway 1992, Hanks et al. 1992, Kornberg et al. 1992, Lipfert et al. 1992).

The integrins may play a fundamental role in a number of biological processes including adhesion to extracellular matrix, intercellular adhesion, the maintenance of cell morphology, cell migration and the regulation of cell growth and differentiation (Hynes 1992). Through regulation of these basic cellular processes the integrins contribute to the normal development and homeostasis of multicellular organisms, e.g. in establishing tissue organization, blood clotting and in lymphocyte adhesion. Although their function in endocrine cells has not been extensively studied, the integrins play critical roles in the development and normal function of other epithelial tissues. For example, integrin-dependent adhesion to ECM proteins suppresses the expression of a differentiation specific marker in keratinocytes (Adams & Watt 1989). Conversely, the synthesis of milk proteins in mammary epithelial cells is dependent upon integrins binding to their extracellular ligands (Streuli et al. 1991). Thus integrins play an important role in regulating differentiation and/or gene expression in these systems. Given these precedents, it is likely that integrin/ECM interactions also profoundly affect some aspect of endocrine cell behavior.

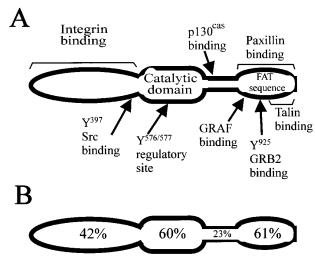


Figure 1 (A) Schematic diagram of FAK. The central catalytic domain and flanking domains are illustrated. Sites of phosphorylation and binding sites for cytoskeletal and signaling proteins are illustrated. (B) Schematic diagram of PYK2/CAK β . The central catalytic domain and flanking domains are illustrated. The percentage of residues within each domain that are identical to FAK are indicated.

The FAK family of PTKs

FAK is a highly conserved protein, exhibiting ~90% amino acid identity between the *Xenopus*, avian, murine and human homologues (Hanks *et al.* 1992, Schaller *et al.* 1992, Andre & Becker-Andre 1993, Choi *et al.* 1993, Whitney *et al.* 1993, Hens & DeSimone 1995). FAK contains a central catalytic domain flanked by NH₂- and C-terminal noncatalytic domains (see Fig. 1A). Although the function of the NH₂-terminus of FAK remains to be firmly established, the C-terminal domain is comprised of multiple binding sites for cytoskeletal and signaling proteins and probably functions to facilitate the assembly of multiprotein complexes (see below). The C-terminal 150 residues of FAK contain the focal adhesion targeting (FAT) sequence which is responsible for directing and/or anchoring FAK to cellular focal adhesions (Hildebrand *et al.* 1993).

FAK is now the prototypical member of a small family of PTKs comprised of two members, FAK and PYK2/

Table 1 Conservation of SH2 and SH3 binding sites between FAK and PYK2/CAKβ

	Sequence in FAK	Sequence in PYK2/CAKβ	Function in FAK
Site in FAK			
Tyrosine 397	YAEI	YAEI	Binding to SH2 of Src-like PTKs
Tyrosine 576/577	DST <i>YY</i> KAS	DED YY KAS	Regulatory?
Tyrosine 925	<i>Y</i> ENV	YLNV	GRB2 SH2 binding
Proline 712/715	ea <i>p</i> pk <i>p</i> sr	EP <i>P</i> PK <i>P</i> SR	p130 ^{cas} SH3 binding
Proline 876	APPKK <i>P</i> PRP	GPPQK P PRL	GRAF SH3 binding
			3

CAKB (Lev et al. 1995, Sasaki et al. 1995). FAK and PYK2/CAKβ exhibit 45% amino acid identity (60% in the catalytic domain) and like FAK, PYK2/CAKB contains a central catalytic domain flanked by large NH₂- and C-terminal noncatalytic domains (see Fig. 1B). Despite the similarities in amino acid sequence between these two PTKs, PYK2/CAKB does not localize to cellular focal adhesions and its tyrosine phosphorylation is not regulated by adhesion to ECM proteins. PYK2/CAKβ is localized to sites of cell-cell contact (Sasaki et al. 1995) and appears to be regulated by changes in cytoplasmic Ca²⁺ (Lev et al. 1995). PYK2/CAKβ can induce the tyrosine phosphorylation of the Kv1·2 potassium channel which results in suppression of the passage of current (Lev et al. 1995). Despite their different subcellular localization, and presumably function, a number of binding sites for SH2 and SH3 domain-containing FAK binding proteins are conserved in PYK2/CAKB (Table 1). Thus the same signaling molecules may be recruited into the signaling pathways regulated by FAK and PYK2/CAKβ.

Functions of FAK

FAK regulates cell spreading and migration Perhaps the most pressing issue in FAK signaling is the identification of the biological response controlled by FAK. FAK is clearly essential for embryonic development since the homozygous FAK knockout is an embryonic lethal (Ilic et al. 1995). FAK has been proposed to function in the assembly of cellular focal adhesions and cell spreading on ECM proteins since inhibitors of PTKs inhibit both events (Burridge et al. 1992). Overexpression of the FAT sequence of FAK in chicken embryo cells perturbs normal FAK function since the phosphotyrosine content of endogenous FAK is reduced (A Richardson and J T Parsons, personal communication). Expression of this dominant negative variant of FAK impairs cell spreading (A Richardson and J T Parsons, personal communication) and fibroblasts derived from FAK^{-/-} embryos exhibit impaired spreading (Ilic et al. 1995). FAK may also function in cell migration since motogenic stimuli, e.g. hepatocyte growth factor (scatter factor), trigger the phosphorylation of FAK (Matsumoto et al. 1994). Platelet-derived growth factor (PDGF) also stimulates FAK tyrosine phosphorylation with a dose response that correlates with PDGF-induced chemotaxis rather than PDGF-induced DNA synthesis (Rankin & Rozengurt 1994, Abedi et al. 1995). Tyrosine kinase inhibitors block the migration of human umbilical vein endothelial cells (HUVEC) in wound healing, implicating some PTK in endothelial cell migration (Romer et al. 1994). This kinase is likely to be FAK since the introduction of a dominant negative mutant of FAK, i.e. the C-terminal domain, also inhibits the migration of HUVECs (A P Gilmore & L H Romer, personal communication). Finally FAK-deficient fibroblasts show retarded motility (Ilic et al. 1995). These results implicate FAK as a regulatory protein in the basic cellular processes of cell spreading and migration.

FAK: a role in human disease? FAK may play a role in the pathology of human disease. It was originally isolated as a candidate substrate for pp60^{src} and subsequently shown to be a pp60^{src}-binding protein (Kanner *et al.* 1990, Cobb et al. 1994). FAK is thus a candidate for a mediator of some of the effects of *src* transformation in cells in tissue culture. Enzymatically activated pp60^{src} has recently been found in some human tumors suggesting that the analysis of the pp60^{src} model may be directly applicable to human cancer (Bolen et al. 1987, Cartwright et al. 1990, Takekura et al. 1990, Fanning et al. 1992, Ottenhoff-Kalff et al. 1992, Talamonti et al. 1993, Cartwright et al. 1994). Changes in cell surface expression of integrins can modify the tumorigenic and metastatic properties of cells (Albelda 1993, Juliano & Varner 1993), which could conceivably be mediated by altered signaling through FAK. Finally FAK expression levels are elevated in some tumors (Weiner et al. 1993, Owens et al. 1995). Although these early results are provocative, a true assessment of the value of FAK perturbations as diagnostic or prognostic indicators await more extensive analyses. For these reasons, the investigation of FAK as a potential modulator of some aspects of cancer continues. Indeed as a regulator of basic cellular responses, e.g. migration, FAK may also contribute to the development of other human diseases, e.g. vascular diseases involving the hyperproliferation and migration of vascular smooth muscle cells.

Table 2 Multiple stimuli, which trigger different types of cell surface receptor, can induce the tyrosine phosphorylation of FAK

	Stimulus	Reference
Receptor type Integrin	Antibody crosslinking Engagement with ligand	Kornberg et al. (1992) Kornberg et al. (1992); Guan & Shalloway (1992); Lipfert et al. (1992); Hanks et al. (1992); Burridge et al. (1992)
Receptor protein tyrosine kinases	Platelet-derived growth factor Hepatocyte growth factor Macrophage colony stimulating factor (M-CSF)	Rankin & Rozengurt (1994); Abedi <i>et al.</i> (1995) Matsumoto <i>et al.</i> (1994) Karbanda <i>et al.</i> (1995)
G protein linked receptors	Bombesin Endothelin Bradykinin Lysophosphatidic acid Vasopressin Angiotensin II	Zachary et al. (1992) Zachary et al. (1992) Leeb-Lundberg et al. (1994) Seufferlein & Rozengurt (1994) Zachary et al. (1992) Polte et al. (1994); Turner et al. (1995)
PTK linked receptors	FcεRI	Hamawy et al. (1993)
Other	Hyaluronic acid	Hall et al. (1994)

Mechanism of action of FAK

Tyrosine phosphorylation of FAK FAK was first shown to be linked to integrin signaling when it was identified as a major substrate for tyrosine phosphorylation, concomitantly becoming enzymatically activated, following antibody crosslinking of cell surface integrins or upon integrin-dependent cell adhesion (Burridge et al. 1992, Guan & Shalloway 1992, Hanks et al. 1992, Kornberg et al. 1992, Lipfert et al. 1992). Subsequently, many other stimuli have been shown to induce the tyrosine phosphorylation of FAK including extracellular ligands that stimulate G-protein linked receptors, e.g. bombesin (Zachary et al. 1992, Sinnett-Smith et al. 1993), ligands that activate receptor protein tyrosine kinases, e.g. plateletderived growth factor (Rankin & Rozengurt 1994), and other ligands whose mode of signaling is presently obscure, e.g. hyaluronic acid (Hall et al. 1994). Thus multiple stimuli that signal through diverse pathways converge to induce the tyrosine phosphorylation of a common substrate, FAK (see Table 2). The integrity of the actin cytoskeleton is crucial for signaling to FAK since cytochalasin D treatment abrogates the tyrosine phosphorylation of FAK in response to many of these stimuli (Lipfert et al. 1992, Sinnett-Smith et al. 1993, Rankin & Rozengurt 1994, Seufferlein & Rozengurt 1994). It has been suggested that Rho, a Ras-like GTP binding protein that regulates the formation of actin stress fibers and focal

adhesions (Ridley & Hall 1992), may be involved in the activation of FAK. Tyrosine phosphorylation of FAK in response to a number of different stimuli can be abolished by the Clostridium botulinum exoenzyme, C3 ADPribosyltransferase (Kumagai et al. 1993, Rankin et al. 1994), which ADP-ribosylates Rho and destroys its capacity to transmit signals (Aktories et al. 1989, Sekine et al. 1989, Paterson et al. 1990). Furthermore, treatment of permeabilized cells with GTP γS, which stimulates the activity of GTP binding proteins, induces the tyrosine phosphorylation of FAK and this response is eliminated if the cells are pretreated with C3 toxin (Seckl et al. 1995). The GTPγS-induced tyrosine phosphorylation of FAK can also be blocked with a synthetic peptide identical in sequence to the effector domain of Rho, which should bind to downstream signaling elements and uncouple Rho from its downstream effectors (Seckl et al. 1995).

Tyrosine phosphorylation of PTKs can fulfill two distinct roles that are important for the enzyme's function: (i) regulation of enzymatic activity and (ii) the creation of high affinity binding sites for other signaling molecules. FAK can autophosphorylate, i.e. phosphorylate itself either intra- or intermolecularly, at tyrosine residue 397 (Y³⁹⁷) and can be phosphorylated at a number of other residues, Y⁴⁰⁷, Y⁵⁷⁶, Y⁵⁷⁷ and Y⁹²⁵, presumably by other PTKs (see Table 1) (Schaller *et al.* 1994, Schlaepfer *et al.* 1994, Calalb *et al.* 1995). It is intriguing that FAK can be phosphorylated by other PTKs since some of the stimuli that

Table 3 FAK binding proteins and substrates

	FAK binding	Binding site on FAK	FAK substrate	Consequence of tyrosine phosphorylation
Protein				
Src kinases	Yes	Tyrosine 397	No	_
GRB2	Yes	Tyrosine 925	No	_
Integrin	Yes	NH ₂ -terminus	No	_
p130 ^{cas}	Yes	Prolines 712 & 715	Yes	Create binding sites for SH2 adaptor proteins
HEF1	Yes	?	?	?
GRAF	Yes	Proline 878	?	?
Paxillin	Yes	FAT sequence	Yes	Create binding sites for SH2 adaptor proteins
Tensin	No	_	Yes	?
Talin	Yes	FAT sequence	No	_
PI3K	Yes	Prolines 712/715??	Yes	?

induce tyrosine phosphorylation of FAK are known to activate members of the Src-family of PTKs, e.g. PDGF (Ralston & Bishop 1985, Gould & Hunter 1988). Removal of phosphorylation site Y^{397} or Y^{576} and Y^{577} slightly reduces the enzymatic activity of FAK measured in an in vitro PTK assay suggesting that phosphorylation of these residues may play a small role in the regulation of FAK's enzymatic activity (Schaller et al. 1994, Calalb et al. 1995). Elimination of all three sites has a more pronounced effect upon kinase activity (Calalb et al. 1995). Perhaps more importantly, tyrosine phosphorylation of FAK regulates complex formation with signaling proteins that contain SH2 domains. SH2 domains are motifs that mediate protein-protein interactions by specifically binding to tyrosine phosphorylated residues in the context of specific amino acid sequences (Cohen et al. 1995, Pawson 1995). Tyrosine phosphorylation at Y³⁹⁷ of FAK creates a high affinity binding site for the SH2 domain of pp60^{src} (Schaller et al. 1994), whereas tyrosine phosphorylation at Y⁹²⁵ creates a GRB2 SH2 domain binding site (Schlaepfer et al. 1994) (see Table 3). The association of FAK with GRB2 implicates p21^{ras} as a downstream component of FAK signaling since GRB2, a small adaptor protein, regulates the activation of p21^{ras} through an associated guanine nucleotide exchange factor (Cohen et al. 1995, Pawson 1995). Complex formation between FAK and pp60src or GRB2 may serve to recruit these signaling molecules to the vicinity of activated FAK resulting in generation of signals in specific cellular locales. Binding of pp60^{src} to FAK may also serve to activate pp60^{src}. Current models of pp60^{src} regulation envision repression of enzymatic activity by a physical interaction between the tyrosine phosphorylated negative regulatory domain of pp60^{src} and its own SH2 domain (Cooper & Howell 1993). Complex formation with FAK might displace the negative regulatory domain from the SH2 domain snapping pp60^{src} into its active configuration (Schaller et al. 1994).

More FAK binding proteins FAK can bind through sequences that partially overlap the FAT sequence to two focal adhesion-associated proteins, talin and paxillin (Turner & Miller 1994, Chen et al. 1995, Hildebrand et al. 1995) (see Table 3). Talin also binds to the cytoplasmic domain of β_1 integrins and to another cytoskeletal protein, vinculin, and through these interactions is believed to be instrumental in the anchorage of the actin cytoskeleton to integrins (Burridge et al. 1988, Turner & Burridge 1991). Paxillin is also a vinculin-binding protein (Turner et al. 1990) and the binding site for both vinculin and FAK is located in the NH₂-terminal half of the molecule (Turner & Miller 1994). Upon tyrosine phosphorylation, paxillin can complex with a number of SH2-containing signaling molecules (Birge et al. 1993, Sabe et al. 1994, Bergman et al. 1995). Despite the fact that the FAT sequence of FAK overlaps the binding sites for paxillin and talin, mutational analysis of FAK has revealed that binding to neither protein alone is responsible for tethering FAK in focal adhesions (Chen et al. 1995, Hildebrand et al. 1995). It is therefore possible that this region of FAK binds to yet another protein responsible for targeting FAK to focal adhesions.

The C-terminal domain of FAK is relatively proline rich and includes binding sites for two SH3 domain-containing proteins. SH3 domains mediate protein-protein interactions by binding to specific proline-rich sequences (Cohen *et al.* 1995, Pawson 1995). The sequence around proline 712 (P⁷¹²) and P⁷¹⁵ of FAK serves as a binding site for the SH3 domain of p130^{cas} (Polte & Hanks 1995, A H Bouton, personal communication) and the sequence around P⁸⁷⁸ binds to the SH3 domain of a novel GTPase activating protein (GAP) called GRAF (J D Hildebrand and J T Parsons, personal communication) (see Table 3). p130^{cas} has an NH₂-terminal SH3 domain and a large tyrosine-rich region containing multiple consensus SH2 binding sites (Sakai *et al.* 1994). Like paxillin, p130^{cas} localizes to focal adhesions (Petch

et al. 1995) and upon tyrosine phosphorylation binds to a number of signaling molecules (Sakai et al. 1994). A p130^{cas}-related protein, HEF1, was isolated as a human cDNA which induced pseudohyphal growth when expressed in yeast (S Law and E Golemis, personal communication). Like p130^{cas}, HEF1 can bind to FAK through its NH₂-terminal SH3 domain. Association with FAK may facilitate the tyrosine phosphorylation of p130^{cas} or tether p130^{cas} and its associated proteins in a specific cellular location. The Rho-GAP-like protein, GRAF, shares homology with the catalytic domain of GAPs for the Rho family of GTP binding proteins, and has been shown to catalyze the hydrolysis of GTP bound to Cdc42 and Rac to GDP in vitro (JD Hildebrand and JT Parsons, personal communication). GRAF may serve as an effector protein for GTP binding proteins in the vicinity of FAK or may function as a negative regulatory protein that terminates signal transduction by these proteins.

FAK also associates with phosphatidylinositol 3-kinase (PI3K). Following cell adhesion, this interaction correlates with the tyrosine phosphorylation of FAK and may be mediated in part by the SH2 domain of the p85 subunit of PI3K (Chen & Guan 1994a). Conversely, following PDGF stimulation, complex formation between FAK and PI3K does not correlate with FAK phosphorylation (Chen & Guan 1994b). Furthermore, the SH3 domain of p85 can bind directly to FAK in vitro and a synthetic peptide mimicking residues 706-711 of FAK can bind to the p85 SH3 domain, stimulating PI3K activity twofold (Guinebault et al. 1995). In thrombin-stimulated platelets the translocation of PI3K to the cytoskeleton correlates with its association with FAK (Guinebault et al. 1995). Thus this interaction may serve to target PI3K to a discrete region of the cell and regulate its activity.

FAK may also be an integrin-binding protein since the $\mathrm{NH_2}$ -terminal domain of FAK can associate with synthetic peptides mimicking the cytoplasmic domain of the β_1 integrin subunit (Schaller *et al.* 1995). This interaction plays no role in the association of FAK with focal adhesions. This observed interaction suggests the intriguing hypothesis that FAK may be regulated through binding to the integrin, a hypothesis that remains to be tested.

Substrates of FAK The tyrosine phosphorylation of paxillin and p130^{cas} is probably regulated by pp125^{FAK} since these proteins colocalize in cellular focal adhesions, paxillin and p130^{cas} physically associate with pp125^{FAK} and all three proteins become coordinately phosphorylated on tyrosine in response to multiple stimuli (Burridge *et al.* 1992, Guan & Shalloway 1992, Kornberg *et al.* 1992, Lipfert *et al.* 1992, Zachary *et al.* 1992, 1993, Rankin & Rozengurt 1994, Seufferlein & Rozengurt 1994, Nojima *et al.* 1995, Petch *et al.* 1995) (see Table 3). Experimentally, the tyrosine phosphorylation of paxillin can be induced in a pp125^{FAK}-dependent manner (Schaller & Parsons 1995). The induction of paxillin phosphorylation

depends upon the integrity of the pp60src binding site within pp125^{FAK}, suggesting that FAK might regulate paxillin phosphorylation by directing the activity of pp60^{src} toward this substrate (Schaller & Parsons 1995). Paxillin is a substrate for tyrosine phosphorylation by both pp125^{FAK} and pp60^{src} in vitro and becomes phosphorylated at tyrosine residues 31 and 118 both in vitro and in vivo (Bellis et al. 1995, Schaller & Parsons 1995). Tyrosine phosphorylation of paxillin creates binding sites for the SH2 domain containing proteins Crk and Csk (Birge et al. 1993, Sabe et al. 1994). Crk, like GRB2, is an adaptor protein that serves to dock other signaling molecules, e.g. the p21^{ras} guanine nucleotide exchange factor Sos (Matsuda et al. 1994), to tyrosine phosphorylated proteins, e.g. paxillin. Csk is a PTK that can phosphorylate a negative regulatory site within pp60^{src} and repress its enzymatic activity (Nada et al. 1991). Tyrosine phosphorylation of p130^{cas} also creates binding sites for SH2 domain-containing signaling molecules including Crk and pp60src (Sakai et al. 1994). Thus by regulating the phosphotyrosine content of paxillin and p130^{cas}, FAK could regulate the assembly of signaling complexes at discrete sites within the cell.

Tensin is an SH2 domain-containing, actin binding, focal adhesion-associated, cytoskeletal protein (Davis *et al.* 1991). Lo *et al.* 1994). The observations that tensin colocalizes with pp125^{FAK} and becomes tyrosine phosphorylated upon cell adhesion suggests that tensin is a FAK substrate (Bockholt & Burridge 1993). Like paxillin, the tyrosine phosphorylation of tensin can be induced experimentally in a FAK-dependent manner (M D Schaller, unpublished observations), although the consequences of tyrosine phosphorylation of tensin are unknown. PI3K is also a candidate substrate for FAK since the two molecules physically associate and the 85 kDa subunit of PI3K becomes tyrosine phosphorylated in response to cell adhesion (Chen & Guan 1994*a*).

The evidence described above identifies these proteins as candidate substrates of FAK. However, a number of these proteins exhibit tyrosine phosphorylation in FAK-deficient fibroblasts (Ilic *et al.* 1995). This observation may indicate the existence of multiple mechanisms of phosphorylation of these substrates, only one of which is FAK dependent.

Future prospects

The intense scrutiny under which FAK has fallen has led to the rapid identification of its associated proteins and potential substrates. Emerging evidence has implicated FAK as a regulator of cell morphology and migration. Numerous laboratories are striving to elucidate the biochemical pathways that (i) regulate FAK activity and (ii) are utilized by FAK to regulate these biological functions. The successful completion of these studies will provide valuable insight into the mechanisms of regulation of cellular processes such as migration. Once the key elements within this signaling pathway(s) are identified

and the way in which these proteins physically and functionally interact are discovered, rational approaches to specifically disrupt certain of these interactions and abrogate part of the downstream signal will be devised. These tools will be applied to explore FAK regulated signaling further and may serve as the prototypes in the design of novel strategies to control cellular behavior in the treatment of human disease.

References

- Abedi H, Dawes KE & Zachary I 1995 Journal of Biological Chemistry 270 11367–11376.
- Adams JC & Watt FM 1989 Nature 340 307-309.
- Aktories K, Braun U, Rosener S, Just I & Hall A 1989 Biochemical and Biophysical Research Communications 158 209–213.
- Albelda SM 1993 Laboratory Investigations 68 4-17.
- Andre E & Becker-Andre M 1993 Biochemical and Biophysical Research Communications 190 140–146.
- Bellis SL, Miller JT & Turner CE 1995 Journal of Biological Chemistry 270 17437–17441.
- Bergman M, Joukov V, Virtanen I & Alitalo K 1995 *Molecular and Cellular Biology* **15** 711–722.
- Birge RB, Fajardo JE, Reichman C, Shoelson SE, Songyang Z, Cantley LC & Hanafusa H 1993 Molecular and Cellular Biology 13 4648–4656.
- Bockholt SM & Burridge K 1993 Journal of Biological Chemistry 268 14565–14567.
- Bolen JB, Veillette A, Schwartz AM, Deseau V & Rosen N 1987 Oncogene Research 1 149–168.
- Burridge K, Fath K, Kelly T, Nuckolls G & Turner C 1988 Annual Reviews in Cell Biology 4 487–525.
- Burridge K, Turner CE & Romer LH 1992 Journal of Cell Biology 119 893–903.
- Calalb MB, Polte TR & Hanks SK 1995 Molecular and Cellular Biology 15 954–963.
- Cartwright CA, Meisler AI & Eckhart W 1990 Proceedings of the National Academy of Sciences of the USA 87 558-562.
- Cartwright CA, Coad CA & Egbert BM 1994 Journal of Clinical Investigation 93 509–515.
- Chen H-C & Guan J-L 1994a Proceedings of the National Academy of Sciences of the USA 91 10148–10152.
- Chen H-C & Guan J-L 1994b Journal of Biological Chemistry 269 31229–31333.
- Chen H-C, Appeddu PA, Parsons JT, Hildebrand JD, Schaller MD & Guan J-L 1995 Journal of Biological Chemistry 270 16995–16999.
- Choi K, Kennedy M & Keller G 1993 Proceedings of the National Academy of Sciences of the USA **90** 5747–5751.
- Cobb BS, Schaller MD, Leu T-H & Parsons JT 1994 Molecular and Cellular Biology 14 147–155.
- Cohen GB, Ren R & Baltimore D 1995 Cell 80 237-248.
- Cooper JA & Howell B 1993 Cell 73 1051-1054.
- Damsky CH & Werb Z 1992 Current Opinions in Cell Biology 4 772–781.
- Davis S, Lu ML, Lo SH, Lin S, Butler JA, Druker BJ, Roberts TM, An Q & Chen LB 1991 Science 252 712–715.
- Fanning P, Bulovas K, Saini KS, Libertino JA, Joyce AD & Summerhayes IC 1992 Cancer Research 52 1457–1462.
- Gould KL & Hunter T 1988 Molecular and Cellular Biology 8 3345–3356.
- Guan J-L & Shalloway D 1992 Nature 358 690-692.
- Guinebault C, Payrastre B, Racaud-Sultan C, Mazarguil H, Breton M, Mauco G, Plantavid M & Chap H 1995 Journal of Cell Biology 129 831–842.

- Hall CL, Wang C, Lange LA & Turley EA 1994 Journal of Cell Biology 126 575–588.
- Hamawy MM, Mergenhagen SE & Siraganian RP 1993 Journal of Biological Chemistry 268 6851–6854.
- Hanks ŠK, Calalb MB, Harper MC & Patel SK 1992 Proceedings of the National Academy of Sciences of the USA 89 8487–8489.
- Hens MD & DeSimone DW 1995 Developmental Biology 170 274–288
- Hildebrand JD, Schaller MD & Parsons JT 1993 *Journal of Cell Biology* **123** 993–1005.
- Hildebrand JD, Schaller MD & Parsons JT 1995 Molecular Biology of the Cell 6 637–647.
- Hynes RO 1992 Cell 69 11-25.
- Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, Nomura S, Fujimoto J, Okada M, Yamamoto T & Aizawa S 1995 Nature 377 539–544.
- Juliano RL & Haskill S 1993 Journal of Cell Biology **120** 577–585. Juliano RL & Varner JA 1993 Current Opinions in Cell Biology **5**
- Juliano RL & Varner JA 1993 Current Opinions in Cell Biology 5 812–818.
- Kanner SB, Reynolds AB, Vines RR & Parsons JT 1990 Proceedings of the National Academy of Sciences of the USA 87 3328–3332.
- Karbanda S, Saleem A, Yuan Z, Emoto Y, Prasad KV & Kufe D 1995 Proceedings of the National Academy of Sciences of the USA 92 6132–6136
- Kornberg L, Earp HS, Parsons JT, Schaller MD & Juliano RL 1992 Journal of Biological Chemistry 267 23439–23442.
- Kumagai N, Morii N, Fujisawa K, Nemoto Y & Narumiya S 1993 Journal of Biological Chemistry 268 24535–24538.
- Leeb-Lundberg LM, Song XH & Mathis SA 1994 Journal of Biological Chemistry 269 24328–24334.
- Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio JM, Plowman GD, Rudy B & Schlessinger J 1995 Nature 376 737-745.
- Lipfert L, Haimovich B, Schaller MD, Cobb BS, Parsons JT & Brugge JS 1992 Journal of Cell Biology 119 905–912.
- Lo SH, Janmey PA, Hartwig JH & Chen LB 1994 Journal of Cell Biology 125 1067–1075.
- Matsuda M, Hashimoto Y, Muroya K, Hasegawa H, Kruata T, Tanaka S, Nakamura S & Hattori S 1994 Molecular and Cellular Biology 14 5495–5500.
- Matsumoto K, Matsumoto K, Nakamura T & Kramer RH 1994 Journal of Biological Chemistry 269 31807–31813.
- Nada S, Okada M, MacAuley A, Cooper JA & Nakagawa H 1991 Nature **351** 69–72.
- Nojima Y, Morino N, Mimura T, Hamasaki K, Furuya H, Sakai R, Sato T, Tachibana K, Morimoto C, Yazaki Y & Hirai H 1995 *Journal of Biological Chemistry* **270** 15398–15402.
- Ottenhoff-Kalff ÅE, Rijksen G, van Beurden EA, Hennipman A, Michels AA & Staal GE 1992 Cancer Research **52** 4773–4778.
- Owens LV, Xu L, Craven RJ, Dent GA, Weiner TM, Kornberg L, Liu ET & Cance WG 1995 Cancer Research 55 2752–2755.
- Paterson HF, Self AJ, Garrett MD, Just I, Aktories K & Hall A 1990 Journal of Cell Biology 111 1001–1007.
- Pawson T 1995 Nature 373 573.
- Petch LA, Bockholt SM, Bouton A, Parsons JT & Burridge K 1995 Journal of Cell Science 108 1371–1379.
- Polte TR & Hanks SK 1995 Proceedings of the National Academy of Sciences of the USA 92 10678–10682.
- Polte TR, Naftilan AJ & Hanks SK 1994 Journal of Cellular Biochemistry 55 106–119.
- Ralston R & Bishop JM 1985 Proceedings of the National Academy of Sciences of the USA 82 7845–7849.
- Rankin S & Rozengurt E 1994 Journal of Biological Chemistry 269 704–710.
- Rankin S, Morii N, Narumiya S & Rozengurt E 1994 *FEBS Letters* **354** 315–319.
- Ridley AJ & Hall A 1992 Cell 70 389-399.
- Romer LH, McLean N, Turner CE & Burridge K 1994 Molecular Biology of the Cell 5 349–361.

- Sabe H, Hata A, Okada M, Nakagawa H & Hanafusa H 1994 Proceedings of the National Academy of Sciences of the USA 91 3984–3988.
- Sakai R, Iwamatsu A, Hirano N, Ogawa S, Tanaka T, Mano H, Yazaki Y & Hirai H 1994 *EMBO Journal* **13** 3748–3756.
- Sasaki H, Nagura K, Ishino M, Tobioka H, Kotani K & Sasaki T 1995 *Journal of Biological Chemistry* **270** 21206–21219.
- Schaller MD & Parsons JT 1993 Trends in Cell Biology 3 258–262. Schaller MD & Parsons JT 1994 Current Opinions in Cell Biology 6 705–710.
- Schaller MD & Parsons JT 1995 Molecular and Cellular Biology 15 2635–2645.
- Schaller MD, Borgman CA, Cobb BS, Vines RR, Reynolds AB & Parsons JT 1992 Proceedings of the National Academy of Sciences of the USA 89 5192–5196.
- Schaller MD, Hildebrand JD, Shannon JD, Fox JW, Vines RR & Parsons JT 1994 Molecular and Cellular Biology 14 1680–1688.
- Schaller MD, Otey CA, Hildebrand JD & Parsons JT 1995 Journal of Cell Biology 130 1181–1187.
- Schlaepfer DD, Hanks SK, Hunter T & van der Geer P 1994 Nature 372 786–791.
- Schwartz MA 1992 Trends in Cell Biology 2 304-308.
- Seckl MJ, Morii N, Narumiya S & Rozengurt E 1995 Journal of Biological Chemistry 270 6984–6990.
- Sekine A, Fujiwara M & Narumiya S 1989 Journal of Biological Chemistry 264 8602–8605.
- Seufferlein T & Rozengurt E 1994 Journal of Biological Chemistry 269 9345–9351.
- Sinnett-Smith J, Zachary I, Valverde AM & Rozengurt E 1993 Journal of Biological Chemistry 268 14261–14268.

- Streuli CH, Bailey N & Bissell MJ 1991 Journal of Cell Biology 115 1383–1395.
- Takekura N, Yasui W, Yoshida K, Tsujino T, Nakayama H, Kameda T, Yokozaki H, Nishimura Y, Ito H & Tahara E 1990 International Journal of Cancer 45 847–851.
- Talamonti MS, Roh MS, Curley SA & Gallick GE 1993 Journal of Clinical Investigation 91 53–60.
- Turner CE & Burridge K 1991 Current Opinions in Cell Biology 3 849–853.
- Turner CE & Miller JT 1994 Journal of Cell Science 107 1583-1591.
- Turner CE, Glenney JR & Burridge K 1990 *Journal of Cell Biology* **111** 1059–1068.
- Turner CE, Pietras KM, Taylor DS & Molloy CJ 1995 Journal of Cell Science 108 (In Press).
- Weiner TM, Liu ET, Craven RJ & Cance WG 1993 Lancet 342 1024–1025.
- Whitney GS, Chan P-Y, Blake J, Cosand WL, Neubauer MG, Aruffo A & Kanner SB 1993 DNA and Cell Biology 12 823–830.
- Zachary I, Sinnett-Smith J & Rozengurt E 1992 Journal of Biological Chemistry 267 19031–19034.
- Zachary I, Sinnett-Smith J, Turner CE & Rozengurt E 1993 Journal of Biological Chemistry 268 22060–22065.

Department of Cell Biology and Anatomy, 534 Taylor Hall, CB 7090, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA