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Abstract

The heart of all science is the data that is produced by experiment. Due to the limits of instrumentation, experimental design and human error any experimental data set will contain inherent uncertainties. How these errors are handled and reported makes the difference between good science and poor science. There are a few basic error analysis techniques that can be easily understood and employed to handle the majority of the analysis problems that arise in experimental data. This paper explores these basic techniques and reviews how their proper or improper use will effect experimental results on data from one of the laboratory experiments performed as part of the UNM 307L curriculum.

Introduction

It is assumed that when experimental data is acquired that there exists a “true”, underlying value, and it is hoped that measurements will be able to reveal a reasonable approximation of that  value. But it must also be understood that the value will not be precisely measured. Limitations of instruments, clutter and noise in our data, usually compounded by mistakes in data acquisition, will assure that all data is imperfect. Therefore, accurately estimating the effects of errors on final outcomes is essential to good experimental science. 

Errors will fall into two distinct groups; random and systematic. Systematic errors are those that cannot be revealed by repeating a measurement; the measurement will have the error every time. Things such as a badly calibrated sensor that adds a scalar value to the data, an optical measurement device with a flaw in it’s glass, will produce consistent errors.  The only common method for dealing with a systematic error is to find it and reduce it to insignificance or quantify it so that it can be removed from the data. Outside of that, unless the error can be forced into a random pattern, it’s uncertainty will remain in the experimental results and must be carried through all steps of error propagation.

Random errors can come from random elements in the measurement process, or from the nature of the data itself. The nice thing about random errors is that there are a few, straight forward techniques for dealing with them. If they are truly random, then data can be improved by the simple expedient of acquiring more of it, and this will reduce error estimates in a predictable fashion. The definition and use of these techniques make up the body of this paper. I lay out the steps for the analysis and follow them with an example taken from the Millikan Oil Drop lab from the 307L curriculum. 

The steps that are discussed here are in the following order
1. From the data acquired, make a best estimate for what the underlying value is.
2. Identify and quantify known errors
3. Analyze random errors in the data
4. Identify dominant errors
5. Propagate errors through data to find a final error estimate


1.  Make a best estimate for true value

One of the assumptions in this type of analysis is that there is an underlying random distribution of data, and that the true value will lie along the mean of this distribution. The precise nature of  that distribution is not necessarily of great importance. It is widely accepted that, by what is known as the Central Limit Theorem, the sum of independent samples from any distribution with finite mean and variance, will converge to the normal distribution as the sample size increases. Thus, for the majority of cases it is acceptable to assume a normal distribution to any random effects in data. Therefore, the mean of the data is the accepted best guess as to the true value. And of course, the more samples that are acquired, the better will be the estimate. 


Let  represent the set of data that has been acquired. Then the best guess for the underlying value that is being measured is 


					(1)

Where N is the number of samples in the data set. As an example let’s look at the Millikan oil drop experiment as performed in 307L. The complete data can be found at milikan lab data and the final summary at Millikan lab summary. 

For this lab the data is in two parts; the time for a drop to rise a given distance under influence of and electric field and the time for it to fall the same distance without the field. Data is taken with one person observing the drop of oil and another person timing with a stop watch. The two human associated with one person watching a drop and judging when it has moved the specified distance and the error of human reaction time to starting and stopping a stop watch both go into the data. But as they rely on human reactions, it is reasonable to expect them to exhibit a random behavior. To improve on this assumption and help reduce systematic errors arising from personal judgment, the persons operating the stop watch and observing the drop switch roles for every drop. A further source of error is induced from the simple motion of the air, which buffets the drop and effects the times slightly. Again, this is assumed to be a random error with a more or less normal distribution which will be present in the error of the time measurement.

Not every drop could be observed for the same number of times. Nor could they be observed with equal accuracy. Therefore, each  drop has two data points and each data point has it’s own error associated with it.

Example: data from drop number 2 in the data series
Rising time (s): 13.12 17.46 11.27 12.55 11.58 
Falling time (s): 18.17 19.46 19.86

These times were the time it took a drop to move .0005m. Therefore they can be considered a direct measurement of the velocity of the drop and were immediately converted to
VR = (3.811, 2.564, 4.437, 3.984, 4.318) X10-5m/s
VF = (2.752, 2.569, 2.518)X10-5m/s

The first step is to make an estimate of the underlying value for the rising and falling time. Again, this is making the assumption that such an ideal time exists, that measurements will have random error that is whose distribution can be approximated by the normal distribution (due to the Central Limit Theorem), and that our measurements will therefore fall around the mean of that distribution. Because of this, the best estimate is simply the mean of our data. 

The mean of the measurements give the following best estimate of time values for this drop
Rising time: mean(VR ) = 3.883 X10-5m/s
Falling time: mean(VF) = 2.613 X10-5m/s


2. Identify and quantify known errors
This is fairly self explanatory.  For the Millikan lab example, possible contributors to inaccuracies included the accuracy of the stop watch (error estimated at 0.01s), accuracy of the measuring grid for the rise/fall distances (error estimated at .00001m) and the measurements of oil (error unknown) and atmospheric viscosity (estimated to be 10-8).  

As noted above, random errors include the human error in operating the stopwatch and the Brownian motion of the air which buffets the drop and effects the times slightly. 






Error in the value is denoted as .  Thus for the values of time we have . For distance we have . For density in atmospheric viscosity. 

It is worth mentioning here the subject of data reduction. On occasion one will be confronted with anomalous data that appears to be the result of an undetected mistake or unknown external influence. It is tempting at this point to throw out these data points as simply being “bad” data. However, this should be approached with great care. First, an attempt should be made to discover a reason for the anomalous data and to reproduce it. Often it is in the anomalous data that something of real interest will be revealed. There is a fairly well accepted criterion for discarding data known as Chauvenet’s Criterion. Although not discussed further here, it’s essential point is that if a data point is more than 2 standard deviations away from the mean, then it can be rejected as being highly improbable in a given data set. The problem with this however is that it relies on the assumption that the data point is a statistical anomaly, and can be rejected on statistical grounds. This will be an erroneous rejection if the underlying cause is systematic, and it may prevent the experimenter from noticing and therefore correcting such problems. Regardless of your decision to keep or reject anomalous data, what is really essential is that it be recorded and attention drawn to it during analysis. To reject it without mention is inviting trouble and is widely regarded as unethical behavior unacceptable to a professional scientist.



3. Analyze random errors in the data

By measuring the same quantity multiple times and assuming that errors are of a random nature, then data will be distributed around the mean of the “true” value, with approximately 68% of all data acquired falling within one standard deviation. 

The standard deviation for the data set X is defined as


				     (2)
However, this formula will rarely be used in practice. As with the mean, any decent data analysis software will have a set function for calculating the standard deviation of a data set. 

The standard deviation of the mean, often called the standard error, is calculated as

					       (3)
This is normally used as the error estimate for a set of data in which random distribution is expected. One of the implications of the standard error is that the larger your sample size, the smaller your error. i.e. the more samples that are taken, the closer the mean of the data set becomes to the true mean. This also tells the experimenter how many more samples need to be acquired in order to reduce the standard error by a given amount; To reduce error by a factor of 2, acquire 4 times the number of samples. However, this assumes that systematic errors are insignificant as systematic errors will not be affected by acquiring more data. 

For the Millikan lab, the first drop data resulted had values of 
Vr = (3.811,  2.564,  4.437,  3.984,  4.318)  X 10-5m/s
Vf = (2.752,  2.569,  2.518) X 10-5m/s

Calculation of the standard error for the rising and falling times








4. Identify significant errors

With errors identified and quantified it is time to examine them carefully to see which errors are significant. If an error is found to make an insignificant impact on the final calculations then it’s impact can be neglected. If the experiment is well designed then systematic errors will all fall into the insignificant category. 




Recall that with the Millikan lab data that error in time do to the stop watch was , which can account for less than a 1% change in velocity, so this error can be disregarded.  For distance we have , which again accounts for less than 1% error and is also disregarded. For density in atmospheric viscosity we need to look at the calculations that it effects. 
 

The calculation dependent on for this lab is the calculation for the radius of the drop of oil
[image: ]




It’s effect is seen by performing this calculation and then varying by and observing the effect. This shows that the value of a varies less than 1% with  of the contributions from errors from the variation in the falling velocity Vf, so again, this error can be neglected. The value for the density of oil could not be confirmed, so no error is recorded, but this is noted as a possible systematic error. 

5. Propagate errors through data to find a final error estimate

Now that errors in data are established, they need to be propagated through all calculations that they depend upon them. There are a couple of methods of doing this. One, which is simple in concept and straight forward to accomplish, is to simply add and subtract the error with the data and then do all calculations 3 times. This is a straight forward but often tedious method of determining confidence bounds in the final value. 





Another method that is to rely on the equation for calculating error in a function of independently measured values with independent random uncertainty. If we let Q represent the set of these independently measure values such that with corresponding uncertainty  then the uncertainty of a function  is given by


			(4)




Note that equation 4 can be applied in a large number of situations and that many of the rules that encountered for finding an uncertainty are quickly derived from this equation. For example, for a single variable function equation 4 reduces to .  Or for a function of two variables such that   then . 

As an example let’s look again at the Millikan lab. The full calculations for the charge of the electron from the rising and falling velocities is

The calculations for the charge of the electron for the Millikan lab are

First, the radius of the drop:    

Then the mass of the drop:    

And finally the charge on the drop:   


Where b is a constant, P is the atmospheric pressure, is the viscosity of air, g is gravity, E is the electric field that the drop is pushed up with andis the density of the oil in the drop. 


To apply equation 4 for error propagation, we need to apply it to each of the above equations in order. First for the error in the radius, Eq. 4 simplifies to 


,     

Then use the error in the radius to calculate the error in the mass. Again, Eq. 4 simplifies


,    

Let the final equation for calculating q be the function F



And now calculate the derivatives of F with respect to the velocities and the mass









And apply Eq. 4 a final time.





This technique was applied to several data acquired for 11 different drops. The values for q derived from these were: 
(1.403, 1.521, 1.621 1.95 1.593 1.585 1.529 1.614 1.825 1.554) X 10-19C

And the associated error values were
(.057  .066  .048  .044  .046  .040  .039  .022  .067  .065  .034) X 10-19C

With these it is now possible to calculate the final estimate of q for this experiment. The mean is still the best estimate, but as we have a several independent estimates, each with it’s own error, the best method is to use a weighted average 


Weights are calculated as ,  

And the weighted average  

Which results in a final estimate of q = 1.607 X 10-19C

The final step is to calculate a final value for the error of the final estimate of q. The weighted average is a 

In order to apply equation 4 one last time, we need the derivative of the weighted average with respect to each of the error values. However, it can easily be seen that this is simply 1, so Eq 4 in this instance reduces to the root mean square

 


Conclusion


Once errors are determined, it is important that they be expressed in a clear fashion. Generally, the error is rounded to one significant figure, and the data is rounded to the same significant digit. Sometimes two significant figures will be expressed in the error, generally when the second figure is near the halfway point, (i.e. 24, 26 are close but round differently. The decision to use one method over another depends on the situation and should emphasize clarity. The form of expression is either to express the number +/- the error, or to express the error in parentheses after the last significant digit in your best estimate. 

So, for the data from the Millikan lab example the error estimate was  0.027 X 10-19C. Not seeing any greater clarity in keeping two significant figures, this rounds to 0.03 X 10-19C . The value found for q was 1.607 X 10-19C. The first significant figure of the error correspond to the third significant figure in the final value for q, so q is rounded to 1.61 X 10-19C. This should then be expressed as    
Q = 1.60(3) X 10-19C   or alternatively   Q = (1.60 +/- 0.03) X 10-19C


Note on Data analysis with Curve Fitting

Finally, it is appropriate here to say a word about using a linear curve fitting routine. If data can be represented as a series of (x,y) points, then using a curve fitting approach may be appropriate for one or more steps of data analysis. In this approach the data is expected to follow a given curve, usually a straight line. The data is entered into a curve fitting routine to get the accompanying coefficients and error estimates. One of the joys of curve fitting in the current world of computing is that most of time we don’t really need to know what’s going on inside the curve fit algorithm. By simply entering the data in the right function we can get the needed values and their associated error values. For example, to do a straight line fit in Matlab on data loaded into the variables X and Y, the command “fit” is used as follows.

>>[f,g,o] = fit(X,Y, 'poly1');
>>f =

       Linear model Poly1:
       f(x) = p1*x + p2
       Coefficients (with 95% confidence bounds):
       p1 =           1  (0.8968, 1.103)
       p2 =       1.033  (0.8104, 1.256)

The values for slope and intercept are quickly printed along with error values for 95% confidence. These are the automatic values, and different precision can be assigned and other items of interest can be retrieved such as root mean square error, the actual fitting routine used, etc. On the down side, if your interested in 68% confidence levels, or if you have data with known, independent errors going into the curve fit, it can be a bit difficult to set it up. Similar functions exist for Maple, Excel, Mathcad and many other data analysis tools in common use. To this simple level the use of curve fitting can be mastered in your favorite analysis tool inside half an hour and will meet the majority of your needs.




Appendix: The standard formula for error analysis.


  

Mean of data set X: 


Standard deviation of data set X: 

Standard deviation of the Mean: .


Weighted average:  ,  . This replaces the mean where independent 
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