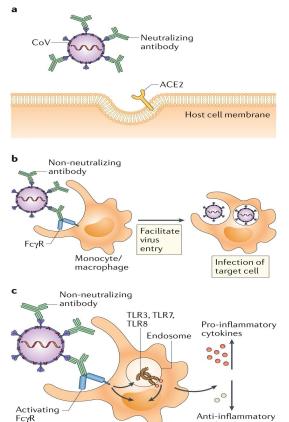
Small Animal Model ACE2 and Antibody Response Comparison


Anna Horvath, Taylor Makela, Aiden Burnett, and Nida Patel BIOL368: Bioinformatics Laboratory Loyola Marymount University Department of Biology December 10, 2020

Outline

- Efficacy of RBD nAb in vivo in Syrian hamsters shows promise for human studies
- Syrian hamsters as a model for studying respiratory diseases in humans
- Small animal model ACE2 sequences showed varied relationships
- Comparison of ACE2 sequences in humans vs. small animal models
- SARS-CoV-2 Antibody Neutralizing Potencies
- Future neutralizing antibody work using small animal models

Neutralizing antibodies to the cause of SARS-CoV-2 can help guide vaccine design

- Enrolled recovered SARS-CoV-2 patients (Rogers et al, 2020)
- Isolated potent neutralizing antibodies (nAbs)
 - Two epitopes on the RBD and non-RBD epitopes on the spike protein
- Found an nAb to SARS-CoV-2 and demonstrated its efficacy in small animals
 - Likely useful in medical interventions in humans

Mechanism of neutralizing antibodies (Iwasaki and Yang, 2020)

Efficacy of RBD nAb in vivo in Syrian hamsters shows promise for human studies

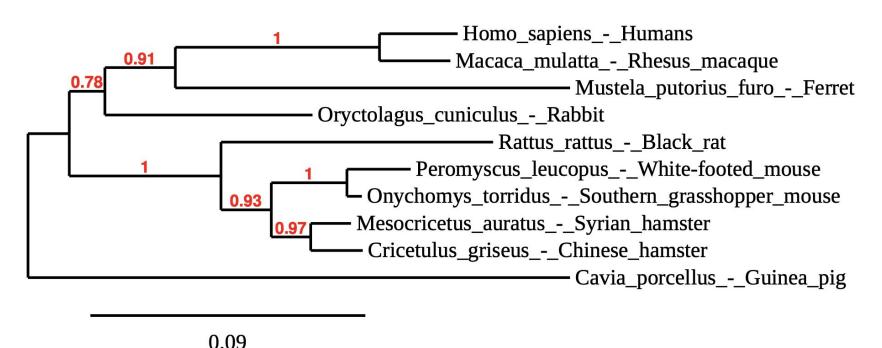
- The most potent Abs target the RBD-A epitope, which overlaps with the ACE2 binding site (Rogers et al, 2020)
- RBD-A nAbs were able to compete with ACE2
- Vaccine development should focus on the RBD, as there are strong nAb responses visible (Rogers et al, 2020)
- Multiple small animal model studies on SARS-CoV-2 found promising nAbs

How similar are the ACE2 receptors for SARS-CoV-2 within small-animal models compared to humans with reference to neutralizing antibody activity?

- Small animal models used for biomedical research to test therapies
 - Done prior to human clinical trials
- Most commonly used small animal models:
 - Syrian hamsters, mice, rats, guinea
 pigs, monkeys, rabbits, ferrets

Syrian hamster in the lab (Cohen, 2020)

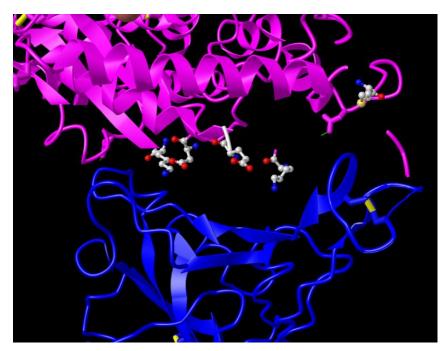
Syrian hamsters as a model for studying diseases in humans


- Our species have similar immune responses to infectious pathogens
- This makes them ideal for studying
 - Pathogenesis of parasitic, viral, and bacterial infections
 - The efficacy and interactions of medications and vaccines
- Comparing our ACE2 sequences is aimed at examining this similarity

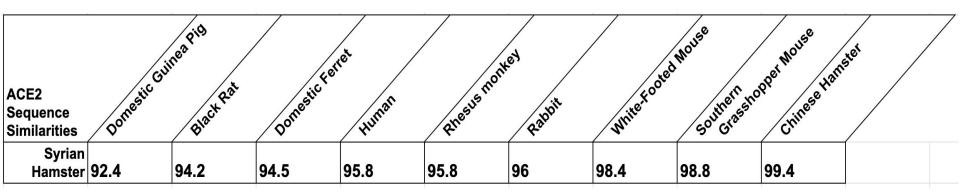
Female S. hamster named Vince (Jennison, 2006)

Syrian hamsters as a model... (Maio et al. 2019)

Small animal model ACE2 sequences showed varied relationships



Visualization of Human Critical Residues was Made Using iCn3D Viewer


Here the human ACE2 is in pink and the SARS-CoV-2 spike protein in blue.

This was done by selecting the following residues & displaying them in the ball and stick style with atom colouring.

- K31
- E35
- D38
- M82
- K353



ACE2 percent sequence similarities show wide range of similarity to Syrian hamsters

- Most commonly used small animal models show close similarity
- Humans and rhesus monkeys are the most similar sequences

Comparison of ACE2 critical residues

	Description	Common Name	Max Score		Query Cover	E value	Per.	Acc. Len	Accession
~	angiotensin converting enzyme 2 [Macaca mulatta]	Rhesus monkey	1596	1596	98%	0.0	95.34%	805	ACI04574.1
~	angiotensin I converting enzyme 2 [Oryctolagus cuniculus]	<u>rabbit</u>	1440	1440	98%	0.0	84.76%	805	QHX39726.1
~	angiotensin-converting enzyme 2 [Mesocricetus auratus]	golden hamster	1398	1398	98%	0.0	84.26%	805	XP_005074266.1
~	angiotensin-converting enzyme 2 [Cricetulus griseus]	Chinese hamster	1394	1394	98%	0.0	84.01%	805	XP_027288607.1
~	angiotensin-converting enzyme 2 [Onychomys torridus]	southern grasshopper mouse	1388	1388	98%	0.0	83.75%	805	XP_036030683.1
~	angiotensin-converting enzyme 2 [Peromyscus leucopus]	white-footed mouse	1373	1373	98%	0.0	82.87%	805	XP_028743609.1
~	angiotensin-converting enzyme 2 precursor [Mustela putorius furo]	domestic ferret	1369	1369	97%	0.0	82.74%	805	NP_001297119.1
~	angiotensin-converting enzyme 2 [Rattus rattus]	black rat	1320	1320	100%	0.0	79.31%	793	XP_032746145.1
~	LOW QUALITY PROTEIN: angiotensin-converting enzyme 2 [Cavia porcellus]	domestic guinea pig	1285	1285	100%	0.0	77.27%	813	XP_023417808.1

angiotensin-converting enzyme 2 [Macaca nemestrina] Sequence ID: XP_011733505.1 Length: 805 Number of Matches: 1

See 7 more title(s) ➤ See all Identical Proteins(IPG)

Range 1: 12 to 805 GenPept Graphics 1596 bits(4133) 0.0 Compositional matrix adjust, 757/794(95%) 777/794(97%) 0/794(0%) VAVTAAQSTIEEQAKTFLDKFNHEAEDLFYQSSLASWNYNTNITEENVQNMNNAGDKWSA 71E..... 71 FLKEQSTLAQMYPLQEIQNLTVKLQLQALQQNGSSVLSEDKSKRLNTILNTMSTIYSTGK 131 132 VCNPDNPQECLLLEPGLNEIMANSLDYNERLWAWESWRSEVGKQLRPLYEEYVVLKNEMA 191 192 RANHYEDYGDYWRGDYEVNGVDGYDYSRGOLIEDVEHTFEEIKPLYEHLHAYVRAKLMNA 251 252 YPSYISPIGCLPAHLLGDMWGRFWTNLYSLTVPFGOKPNIDVTDAMVDOAWDAORIFKEA 311 312 EKFFVSVGLPNMTOGFWENSMLTDPGNVOKAVCHPTAWDLGKGDFRILMCTKVTMDDFLT 371 AHHEMGHIOYDMAYAAOPFLLRNGANEGFHEAVGEIMSLSAATPKHLKSIGLLSPDFOED 431 432 NETEINFLLKOALTIVGTLPFTYMLEKWRWMVFKGEIPKDOWMKKWWEMKREIVGVVEPV 491 492 PHDETYCDPASLFHVSNDYSFIRYYTRTLYQFQFQEALCQAAKHEGPLHKCDISNSTEAG 551 Query 612 PYADQSIKVRISLKSALGDKAYEWNDNEMYLFRSSVAYAMRQYFLKVKNQMILFGEEDVR 671 Sbjct 612 671 672 VANLKPRISFNFFVTAPKNVSDIIPRTEVEKAIRMSRSRINDAFRLNDNSLEFLGIOPTL 731 732 GPPNQPPVSIWLIVFGVVMGVIVVGIVILIFTGIRDRKKKNKARSGENPYASIDISKGEN 791 Sbjct 732 A.Y.S.TT......A..V.....Q..E....N... 791 Query 792 NPGFQNTDDVQTSF 805 Sbjct 792 805

angiotensin I converting enzyme 2 [Oryctolagus cuniculus]

Sequence ID: QHX39726.1 Length: 805 Number of Matches: 1

Range	1: 12 t	o 805 GenPept Graphics V Next Match	▲ Prev
Score 1440 b	its(372	Expect Method Identities Positives Gaps 27) 0.0 Compositional matrix adjust. 673/794(85%) 733/794(92%) 0/794	1(0%)
Query	12	VAVTAAQSTIEEQAKTFLDKFNHEAEDLFYQSSLASWNYNTNITEENVQNMNNAGDKWSA	71
Sbjct	12		71
Query	72	FLKEQSTLAQMYPLQEIQNLTVKLQLQALQQNGSSVLSEDKSKRLNTILNTMSTIYSTGK .YE. K. KT. S. V. R. S. A. A. Q. S.	131
Sbjct	72		131
Query	132	VCNPDNPQECLLLEPGLNEIMANSLDYNERLWAWESWRSEVGKQLRPLYEEYVVLKNEMAQSFDK.TGV.	191
Sbjct	132		191
Query	192	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	251
Sbjct	192		251
Query	252	$\begin{array}{lll} \texttt{YPSYISPIGCLPAHLLGDMWGRFWTNLYSLTVPFGQKPNIDVTDAMVDQAWDAQRIFKEA} \\ & \dots & \dots & \dots & \dots & \dots \\ \textbf{I. N. G. } & \dots & \dots \\ \end{array}$	311
Sbjct	252		311
Query	312	EKFFVSVGLPNMTQGFWENSMLTDPGNVQKAVCHPTAWDLGKGDFRILMCTKVTMDDFLT S.H.PES.DGR.V.R.K.N.	371
Sbjct	312		371
Query	372	$\begin{array}{cccc} \text{AHHEMGHIQYDMAYAAQPFLLRNGANEGFHEAVGEIMSLSAATPKHLKSIGLLSPDFQED} \\ & & \textbf{T} & & \textbf{PY} & \textbf{H} \\ \end{array}$	431
Sbjct	372		431
Query	432	NETEINFLLKQALTIVGTLPFTYMLEKWRWMVFKGEIPKDQWMKKWWEMKREIVGVVEPV	
Sbjct	432	E.Q	
Query	492	PHDETYCDPASLFHVSNDYSFIRYYTRTLYQFQFQEALCQAAKHEGPLHKCDISNSTEAG	551
Sbjct	492		551
Query Sbjct	552 552	QKLFNMLRLGKSEPWTLALENVVGAKNMNVRPLLNYFEPLFTWLKDQNKNSFVGWSTDWS	
Query	612	PYADQSIKVRISLKSALGDKAYEWNDNEMYLFRSSVAYAMRQYFLKVKNQMILFGEEDVRTQSK.SET	671
Sbjct	612		671
Query	672	VANLKPRISFNFFVTAPKNVSDIIPRTEVEKAIRMSRSRINDAFRLNDNSLEFLGIQPTL.SD. N.N.N.E.S. I.D.V.	731
Sbjct	672		731
Query	732	GPPNQPPVSIWLIVFGVVMGVIVVGIVILIFTGIRDRKKKNKARSGENPYASIDISKGEN E.YES.P.V.M.I.V.K.R.QKQ.KRE.GFV.M	791
Sbjct	732		791
Query	792	NPGFQNTDDVQTSF 805	

angiotensin-converting enzyme 2 [Mesocricetus auratus]

Sequence ID: XP 005074266.1 Length: 805 Number of Matches: 1

core			Method		Identities	Positives		Gaps	
398 bit	s(3619	0.0	Compositi	onal matrix adj	ust. 669/794(84%) 727/794(91%)	0/794(0%)
					LFYQSSLASWNYNTN .SA				71 71
	72 F 72 .	LKEQS	TLAQMYPLQI	EIQNLTVKLQLQ .VI.R	ALQQNGSSVLSEDKS	KRLNTILNT	MSTI	STGK	131 131
	132 \ 132 .	CNPDNF	PQECLLLEP	GLNEIMANSLDY	NERLWAWESWRSEVO	KQLRPLYEE	YVVL	ONEMA	191 191
					RGQLIEDVEHTFEEI				251 251
					YSLTVPFGQKPNID\				311 311
					VQKAVCHPTAWDLGR				371 371
	372 A	HHEMGI	HIQYDMAYA	AQPFLLRNGANE T	GFHEAVGEIMSLSAA	TPKHLKSIO	LLSPE PS.	FQED	431 431
					WRWMVFKGEIPKDQV				491 491
	492 F 492 .	HDETY	DPASLFHV:	SNDYSFIRYYTR	TLYQFQFQEALCQAA	KHEGPLHKO	DISNS	TEAG	551 551
					MNVRPLLNYFEPLFT				611 611
uery bjct	612 F 612 .	YADQS	KVRISLKS	ALGDKAYEWNDN	EMYLFRSSVAYAMRO	YFLKVKNON	ILFGE VP	EDVR	671 671
					EVEKAIRMSRSRIND				731 731
	732 C 732 S	PPNQPI	VSIWLIVF	GVVMGVIVVGIV	ILIFTGIRDRKKKN	ARSGENPYA	SIDIS	KGEN	791 791
			TDDVQTSF	805 805					

angiotensin-converting enzyme 2 [Cricetulus griseus]

Sequence ID: XP 027288607.1 Length: 805 Number of Matches: 1

See 1 more title(s) ▼ See all Identical Proteins(IPG)

Range 1: 12 to 805 GenPept Graphics 1394 bits(3609) 0.0 Compositional matrix adjust. 667/794(84%) 726/794(91%) 0/794(0%) VAVTAAQSTIEEQAKTFLDKFNHEAEDLFYQSSLASWNYNTNITEENVONMNNAGDKWSA 71T...I.....Q....S...A......A.K..E.AA.... 71 VCNPDNPOECLLLEPGLNEIMANSLDYNERLWAWESWRSEVGKOLRPLYEEYVVLKNEMA 191 RANHYEDYGDYWRGDYEVNGVDGYDYSRGQLIEDVEHTFEEIKPLYEHLHAYVRAKLMNA 251 YPSYISPIGCLPAHLLGDMWGRFWTNLYSLTVPFGQKPNIDVTDAMVDQAWDAQRIFKEA 311 312 EKFFVSVGLPNMTOGFWENSMLTDPGNVOKAVCHPTAWDLGKGDFRILMCTKVTMDDFLT 371 AHHEMGHIOYDMAYAAOPFLLRNGANEGFHEAVGEIMSLSAATPKHLKSIGLLSPDFOED 431 Sbjct 372PSN.H. 431 NETEINFLLKQALTIVGTLPFTYMLEKWRWMVFKGEIPKDQWMKKWWEMKREIVGVVEPV 491 Sbjct 432 L 491 Ouerv 492 PHDETYCDPASLFHVSNDYSFIRYYTRTLYOFOFOEALCOAAKHEGPLHKCDISNSTEAG 551 OKLENMLRLGKSEPWTLALENVVGAKNMNVRPLLNYFEPLFTWLKDONKNSFVGWSTDWS 611 612 PYADQSIKVRISLKSALGDKAYEWNDNEMYLFRSSVAYAMRQYFLKVKNOMILFGEEDVR 671 Ouerv 672 VANLKPRISFNFFVTAPKNVSDIIPRTEVEKAIRMSRSRINDAFRLNDNSLEFLGIOPTL 731 Sbjct 672 .SD...V.....S.Q.....N...E.V.F..G...V.G.D......N... 731 GPPNOPPVSIWLIVFGVVMGVIVVGIVILIFTGIRDRKKKNKARSGENPYASIDISKGEN 791 732 A.Y....T....IV......V....A...N.E.KRE....D.V..G...S 791 Query 792 NPGFQNTDDVQTSF 805 Sbjct 792 A...SN..... 805

angiotensin-converting enzyme 2 [Onychomys torridus]

Sequence ID: XP 036030683.1 Length: 805 Number of Matches: 1

Score			t Method		Identities	Positives	Gaps	
1388 b	its(359	93) 0.0	Compositi	onal matrix adjust.	665/794(84%)	719/794(90%)	0/794	(0%)
uery bjct	12 12			TFLDKFNHEAEDLFY				71 71
uery bjct	72 72	FLKEQS:	TLAQMYPLQ KKN.S	EIQNLTVKLQLQALQ	QNGSSVLSEDKS	(RLNTILNTMST)	YSTGK	131 131
uery bjct	132 132			GLNEIMANSLDYNER				191 191
Query bjct	192 192			YEVNGVDGYDYSRGQ AE.AEN.N.N.				251 251
Query bjct	252 252			LGDMWGRFWTNLYSL				311 311
Query bjct	312 312			FWENSMLTDPGNVQK				371 371
Query bjct	372 372	AHHEMG	HIQYDMAYA	AQPFLLRNGANEGFH T	EAVGEIMSLSAA	TPKHLKSIGLLSF	DFQED	431 431
Query bjct	432 432	NETEIN S	FLLKQALTI	VGTLPFTYMLEKWRW	MVFKGEIPKDQW	MKKWWEMKREIVO	SVVEPV	491 491
Query bjct	492 492	PHDETY	CDPASLFHV	SNDYSFIRYYTRTLY	QFQFQEALCQAA!	(HEGPLHKCDISM	ISTEAG	551 551
Query bjct	552 552	QKLFNM	LRLGKSEPW	TLALENVVGAKNMNV	RPLLNYFEPLFT	VLKDQNKNSFVGV	STDWS	611 611
Query Sbjct	612 612			ALGDKAYEWNDNEMY				671 671
Query bjct	672 672			APKNVSDIIPRTEVE S.QK				731 731
Query bjct	732 732	GPPNQP AY	PVSIWLIVF	GVVMGVIVVGIVILI	FTGIRDRKKKNKA	ARSGENPYASIDI	SKGEN GS	791 791
uery bjct	792 792		TDDVQTSF	805 805				

angiotensin-converting enzyme 2 [Peromyscus leucopus]

Sequence ID: XP 028743609.1 Length: 805 Number of Matches: 1

```
Range 1: 12 to 805 GenPept Graphics
1373 bits(3554) 0.0 Compositional matrix adjust. 658/794(83%) 712/794(89%) 0/794(0%)
Ouerv 12 VAVTAAOSTIEEOAKTFLDKFNHEAEDLFYOSSLASWNYNTNITEENVONMNNAGDKWSA 71
Sbjct 12 ....T...I.....Q....S...A......A.K..E.SA.... 71
Query 72 FLKEQSTLAQMYPLQEIQNLTVKLQLQALQQNGSSVLSEDKSKRLNTILNTMSTIYSTGK 131
132 VCNPDNP0ECLLLEPGLNEIMANSLDYNERLWAWESWRSEVGKOLRPLYEEYVVLKNEMA 191
    Ouerv 192 RANHYEDYGDYWRGDYEVNGVDGYDYSRGOLIEDVEHTFEEIKPLYEHLHAYVRAKLMNA 251
    192 ...N.R.........AE.AE..N.N.N.......RI.Q..........T...DT 251
    252 YPSYISPIGCLPAHLLGDMWGRFWTNLYSLTVPFGQKPNIDVTDAMVDQAWDAQRIFKEA 311
Query 312 EKFFVSVGLPNMTQGFWENSMLTDPGNVQKAVCHPTAWDLGKGDFRILMCTKVTMDDFLT 371
Sbjct 312 .....I...P............V...DDR.V..............K...T....N... 371
    372 AHHEMGHIQYDMAYAAQPFLLRNGANEGFHEAVGEIMSLSAATPKHLKSIGLLSPDFQED 431
Ouerv 432 NETEINFLLKOALTIVGTLPFTYMLEKWRWMVFKGEIPKDOWMKKWWEMKREIVGVVEPV 491
Query 492 PHDETYCDPASLFHVSNDYSFIRYYTRTLYQFQFQEALCQAAKHEGPLHKCDISNSTEAG 551
552 OKLENMLRLGKSEPWTLALENVVGAKNMNVRPLLNYFEPLFTWLKDONKNSFVGWSTDWS 611
Query 612 PYADQSIKVRISLKSALGDKAYEWNDNEMYLFRSSVAYAMRQYFLKVKNQMILFGEEDVR 671
672 VANLKPRISFNFFVTAPKNVSDIIPRTEVEKAIRMSRSRINDAFRLNDNSLEFLGIOPTL 731
Sbjct 672 .SD....V......S.Q.......KD..D...F..G....V.G.D........Ý... 731
    732 GPPNQPPVSIWLIVFGVVMGVIVVGIVILIFTGIRDRKKKNKARSGENPYASIDISKGEN 791
Sbjct 732 A.Y...T...I.I.IV......KG....ETKRE...D.M..G...S 791
Query 792 NPGFQNTDDVQTSF 805
Sbjct 792 .A....N..A.... 805
```

angiotensin-converting enzyme 2 precursor [Mustela putorius furo]

Sequence ID: NP_001297119.1 Length: 805 Number of Matches: 1

See 3 more title(s) V See all Identical Proteins(IPG)

Range 1: 18 to 805 GenPept Graphics 1369 bits(3544) 0.0 Compositional matrix adjust, 652/788(83%) 723/788(91%) 0/788(0%) Ouerv 18 OSTIEEOAKTFLDKFNHEAEDLFYOSSLASWNYNTNITEENVONMNNAGDKWSAFLKEOS 77 ...T.DL....E...Y...E.S..N.......D..I.K..I..A....YE.E. 77 TLAOMYPLOEIONLTVKLOLOALOONGSSVLSEDKSKRLNTILNTMSTIYSTGKVCNPDN 137 QH.KT...E...DPII.R..R....S.....A..RE......A.....A...N. 137 PQECLLLEPGLNEIMANSLDYNERLWAWESWRSEVGKQLRPLYEEYVVLKNEMARANHYE 197DD.,E.,K......G......A......N.. 197 PIGCLPAHLLGDMWGRFWTNLYSLTVPFGQKPNIDVTDAMVDQAWDAQRIFKEAEKFFVS 317 .T......P.M...R......N.S...R...E...T.... 317 HIOYDMAYAAOPFLLRNGANEGFHEAVGEIMSLSAATPKHLKSIGLLSPDFOEDNETEIN 437 FLLKOALTIVGTLPFTYMLEKWRWMVFKGEIPKDOWMKKWWEMKREIVGVVEPVPHDETY 497 CDPASLFHVSNDYSFIRYYTRTLYQFQFQEALCQAAKHEGPLHKCDISNSTEAGQKLFNM 557 LRLGKSEPWTLALENVVGAKNMNVRPLLNYFEPLFTWLKDQNKNSFVGWSTDWSPYADQS 617 IKVRISLKSALGDKAYEWNDNEMYLFRSSVAYAMRQYFLKVKNQMILFGEEDVRVANLKP 677 RISFNFFVTAPKNVSDIIPRTEVEKAIRMSRSRINDAFRLNDNSLEFLGIOPTLGPPNOP 737 Sbjct 678I..S.E.M.....AD.E..K.G......D......E..Y.. 737 Query 738 PVSIWLIVFGVVMGVIVVGIVILIFTGIRDRKKKNKARSGENPYASIDISKGENNPGFQN 797 Sbjct 738 .T. .. .V. .FL .S. .N.R.N.O. .F. V 1 Query 798 TDDVQTSF 805 Sbict 798 V..... 805

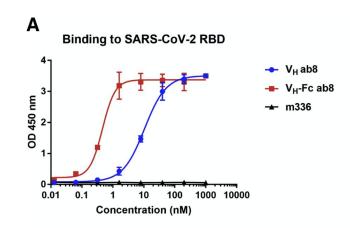
angiotensin-converting enzyme 2 [Rattus rattus]

Sequence ID: XP 032746145.1 Length: 793 Number of Matches: 1

Range 1: 1 to 793 GenPept Graphics 1320 bits(3416) 0.0 Compositional matrix adjust. 640/807(79%) 709/807(87%) 16/807(1%) MSSSSWLLLSLVAVTAAOSTIEEOAKTFLDKFNHEAEDLFYOSSLASWNYNTNITEENVO 60 ..R.P.......AT...L...K.ES..N...Q....S......A. 60 Query 61 NMMNAGDKWSAFLKEQSTLAOMYPLQEIQNLTVKLQLQALQQNGSSVLSEDKSKRLNTIL 120 Sbjct 61 K.E.AA...YE..KI.NFS...DA.I.R.K..S...A.P.N.Q.... 120 121 NTMSTIYSTGKVCNPDNPOECLLLEPGLNEIMANSLDYNERLWAWESWRSEVGKOLRPLY 180 121SM....FV....D....T.T...R.....G..A.................. 180 181 EEYVVLKNEMARANHYEDYGDYWRGDYEVNGVDGYDYSRGOLIEDVEHTFEEIKPLYEHL 240 241 HAYVRAKLMNAYPSYISPIGCLPAHLLGDMWGRFWTNLYSLTVPFGQKPNIDVTDAMVDQ 300 Query 301 AWDAQRIFKEAEKFFVSVGLPNMTQGFWENSMLTDPGNVQKAVCHPTAWDLGKGDFRILM 360 361 CTKVTMDDFLTAHHEMGHIQYDMAYAAQPFLLRNGANEGFHEAVGEIMSLSAATPKHLKS 420 421 IGLLSPDF0EDNETEINFLLK0ALTIVGTLPFTYMLEKWRWMVFKGEIPKD0WMKKWWEM 480 Sbjct 421PSN...D......I...........QDK..RE..TQ..... 480 Ouerv 481 KREIVGVVEPVPHDETYCDPASLFHVSNDYSFIRYYTRTLYOFOFOEALCOAAKHEGPLH 540 Sbjct 481D.... 540 541 KCDISNSTEAGQKLFNMLRLGKSEPWTLALENVVGAKNMNVRPLLNYFEPLFTWLKDQNK 600 Sbjct 541L...S..N.G.......SR..D.K.....Q...V...E..S 600 Query 601 NSFVGWSTDWSP--YADQSIKVRISLKSALGDKAYEWNDNEMYLFRSSVAYAMRQYFLKV 658 Sbjct 601 ..T...N.....CDFT.CT------------H...T...........E..SRE 646 659 KNOMILFGEEDVRVANLKPRISFNFFVTAPKNVSDIIPRTEVEKAIRMSRSRINDAFRLN 718 647 ...TVP...A..W.SD...V....S....S...E.....G...I.G.. 706 719 DNSLEFLGIOPTLGPPNOPPVSIWLIVFGVVMGVIVVGIVILIFTGIRDRKKKNKARSGE 778 707Y...K..YE...T....I.....MV......V...KG....ETKRE. 766 779 NPYASIDISKGENNPGFONTDDVOTSF 805 Sbict 767 ...D.V..G...S.A....S..A.... 793

LOW QUALITY PROTEIN: angiotensin-converting enzyme 2 [Cavia porcellus]

Sequence ID: XP 023417808.1 Length: 813 Number of Matches: 1


```
Range 1: 9 to 813 GenPept Graphics
            Expect Method
                                    Identities
                                               Positives
1285 bits(3326) 0.0 Compositional matrix adjust. 622/805(77%) 704/805(87%) 0/805(0%)
          MSSSSWLLLSLVAVTAAQSTIEEQAKTFLDKFNHEAEDLFYQSSLASWNYNTNITEENVQ 60
          ..G.F.F..N.....T..FNL.......E..LK....Y...........D.... 68
          NMNNAGDKWSAFLKEQSTLAQMYPLQEIQNLTVKLQLQALQQNGSSVLSEDKSKRLNTIL 120
Sbjct 69 K.SE..GIL...YE...N..KA....D......R..RI...S...GF.A..N.Q.S... 128
     121 NTMSTIYSTGKVCNPDNPOECLLLEPGLNEIMANSLDYNERLWAWESWRSEVGKOLRPLY 180
     129 ....L.....Y.SD......AD..SK.T...L.....G...K....... 188
Ouerv 181 EEYVVLKNEMARANHYEDYGDYWRGDYEVNGVDGYDYSRGOLIEDVEHTFEEIKPLYEHL 240
Sbict 189 ....A.....K.....R...EDM...N...N.....R.A.....Q. 248
Query 241 HAYVRAKLMNAYPSYISPIGCLPAHLLGDMWGRFWTNLYSLTVPFGQKPNIDVTDAMVDQ 300
     249 .....T...ET...R...V.......E.....Q......ES. 308
Ouerv 301 AWDAORIFKEAEKFFVSVGLPNMTOGFWENSMLTDPGNVOKAVCHPTAWDLGKGDFRILM 360
     361 CTKVTMDDFLTAHHEMGHIOYDMAYAAOPFLLRNGANEGFHEAVGEIMSLSAATPKHLKS 420
Sbict 369 .....E... 428
Query 421 IGLLSPDFQEDNETEINFLLKQALTIVGTLPFTYMLEKWRWMVFKGEIPKDQWMKKWWEM 480
Sbjct 429 ....P...H...G.KX.SS.....LL.....F....GEG...T..N.QE..IE.X.Q. 488
      481 KREIVGVVEPVPHDETYCDPASLFHVSNDYSFIRYYTRTLYQFQFQEALCQAAKHEGPLH 540
     489 .....K..N.V.... 548
Query 541 KCDISNSTEAGQKLFNMLRLGKSEPWTLALENVVGAKNMNVRPLLNYFEPLFTWLKDQNK 600
Sbict 549 ......L...K.......SI..T...D.K.....O..S...O...R 608
Ouerv 601 NSFVGWSTDWSPYADOSIKVRISLKSALGDKAYEWNDNEMYLFRSSVAYAMROYFLKVKN 660
661 QMILFGEEDVRVANLKPRISFNFFVTAPKNVSDIIPRTEVEKAIRMSRSRINDAFRLNDN 720
     669 .TV..SW....SDWTH.V..T...E.N...N...K...D...L.....V...GXX 728
Query 721 SLEFLGIOPTLGPPNOPPVSIWLIVFGVVMGVIVVGIVILIFTGIRDRKKKNKARSGENP 780 Sbjct 729 HSGVS..Y..S..YE..T...LV...V.VI....R..KQKQRE... 788
Query 781 YASIDISKGENNPGFQNTDDVQTSF 805
Sbjct 789 .S.V..G....TA...SE.N.... 813
```

Identifying key epitope regions within SARS-CoV-2

- SARS-CoV genome shares an 80% homology with SARS-CoV-2 (Grifoni et al., 2020)
 - Uses known antibody libraries and/or patient samples to select antibodies
- Most neutralizing antibodies target the RBD-A
 - competes with RBD of SARS-CoV-2
 - VHs may have an advantage for treatment of respiratory virus infections

SARS-CoV-2 Antibody Neutralizing Potencies

- Anti-RBD antibodies are mainly found in the V-gene family
 - Found enriched use of VH3-53 or VH3-66. VH3-53 and VH3-66 V-genes are closely related (Cao et al., 2020)
- Maintains similarities with human germline V-genes
 - VH-Fc ab8 shows complete neutralization at 36 mg/kg dosage in the lungs (Li et al., 2020)
 - STE90-C11 is tolerant to known RBD mutants

Antibody binding to SARS-CoV-2 RBD (Li et al. 2020)

Further Research Questions

- Can further clinical trials be held using small animal models transduced with human ACE2 receptors?
- Should we rely on the prophylactic efficacy of the V-gene antibodies to treat at risk populations?
- Are small animals good models for human immune responses to SARS-CoV-2?
 - dosage
 - Respiratory response

Future neutralizing antibody work using small animal models

- Identify different neutralizing antibody regions that obtained promising results in SARS-CoV-2 studies
 - Rogers et al indicates vaccine development should focus on the RBD
- Compare common antibody regions in small animal models to observe similarities
- Potential studies could identify which small animal models work most efficiently for vaccine development

Summary

- Efficacy of RBD nAb in vivo in Syrian hamsters shows promise for human studies
- Syrian hamsters as a model for studying respiratory diseases in humans
- Small animal model ACE2 sequences showed varied relationships
- Comparison of ACE2 sequences in humans vs. small animal models
- SARS-CoV-2 Antibody Neutralizing Potencies
- Future neutralizing antibody work using small animal models

References

- Cohen, J. (2020). Mice, hamsters, ferrets, monkeys. Which lab animals can help defeat the new coronavirus?. Retrieved 6 December 2020, from https://www.sciencemag.org/news/2020/04/mice-hamsters-ferrets-monkeys-which-la B-animals-can-help-defeat-new-coronavirus
- Hassan, A. O., Case, J. B., Winkler, E. S., Thackray, L. B., Kafai, N. M., Bailey, A. L., ... & Turner, J. S. (2020). A SARS-CoV-2 infection model in mice demonstrates protection by neutralizing antibodies. *Cell*, 182(3), 744-753.
- Iwasaki, A., Yang, Y. The potential danger of suboptimal antibody responses in COVID-19. *Nat Rev Immunol* 20, 339–341 (2020). https://doi.org/10.1038/s41577-020-0321-6
- Jennison, A. (2006, April 19). Vince the female Syrian hamster [Photograph]. Hassan, A. O., Case, J. B., Winkler, E. S., Thackray, L. B., Kafai, N. M., Bailey, A. L., ... & Turner, J. S. (2020). A SARS-CoV-2 infection model in mice demonstrates protection by neutralizing antibodies. *Cell*, 182(3), 744-753.
- Li, W., Schäfer, A., Kulkarni, S. S., Liu, X., Martinez, D. R., Chen, C., ... & Ura, M. L. (2020). High potency of a bivalent human VH domain in SARS-CoV-2 animal models. *Cell*, 183(2), 429-441.

References

- Rogers, T. F., Zhao, F., Huang, D., Beutler, N., Burns, A., He, W. T., Limbo, O., Smith, C., Song, G., Woehl, J., Yang, L., Abbott, R. K., Callaghan, S., Garcia, E., Hurtado, J., Parren, M., Peng, L., Ramirez, S., Ricketts, J., Ricciardi, M. J., ... Burton, D. R. (2020). Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model. Science (New York, N.Y.), 369(6506), 956–963. https://doi.org/10.1126/science.abc7520
- Miao, J., Chard, L. S., Wang, Z., & Wang, Y. (2019). Syrian Hamster as an Animal Model for the Study on Infectious Diseases. *Frontiers in immunology*, 10, 2329. https://doi.org/10.3389/fimmu.2019.02329
- Wan, Y., Shang, J., Graham, R., Baric, R., & Li, F. (2020). Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. Journal Of Virology, 94(7). doi: 10.1128/jvi.00127-20

Acknowledgements

Dr. Dahlquist

TA Annika Dinulos

LMU Biology Department

BIOL 368 Class