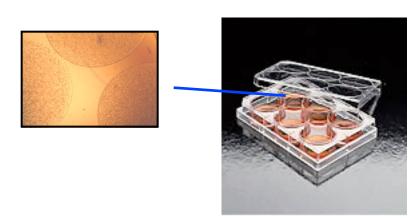

Basic Statistics; Standards in Scientific Communities I

Module 3, Lecture 3

20.109 Spring 2010

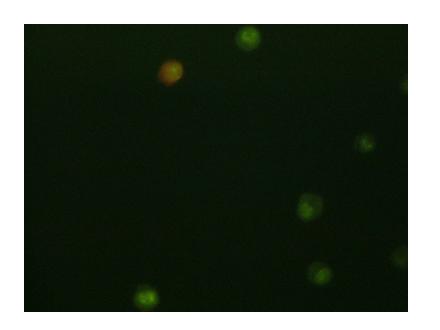
Lecture 2 review

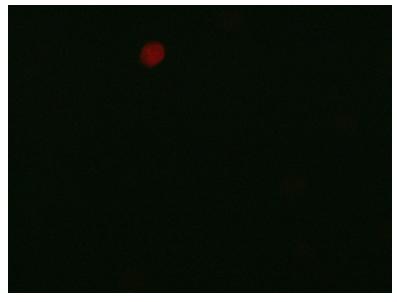
- What properties of hydrogels are advantageous for soft TE?
- What is meant by bioactivity and how can it be introduced?
- What are the two major matrix components of cartilage and how do they support tissue function?



Topics for Lecture 3

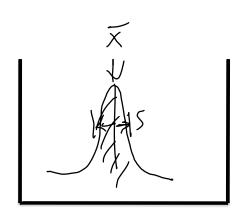
- Module 3 so far, and Day 3 plan
- Introduction to statistics
 - confidence intervals
 - t-test
- Standards in scientific communities
 - general engineering principles
 - standards in synthetic biology
 - standards in data sharing

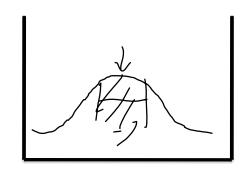

Module progress: week 1


- Day 1: culture design
 - What did you test?
 - · pressure (compression)
 - · high + low pH conditions
 - 'amount of x-linking [Caclz]

- Day 2: culture initiation
 - Cells receiving fresh media every 2 days

Module day 3: test cell viability


Green stain: SYTO10 = viability
Red stain: ethidium = cytotoxicity


Assay readout: fluorescence

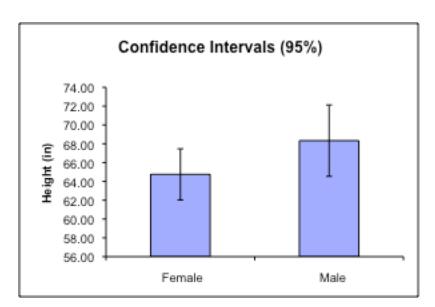
Working principle? Relative cell-permeability

Statistics review: basics

- Essential concepts: standard deviation (s), mean (\overline{x}), sample size n, degrees of freedom DOF
- Normal (Gaussian) distribution

1 s includes $\frac{68}{}$ % of the data

x-axis: measured value (intensity)
y-axis: # of samples w/ that value


Confidence intervals (CI): principle

- \overline{x} = 60 (sample/measured mean)
- 95% CI calculated to be ± 3
- Thus: 95% likely that the range 60 \pm 3 contains the population (true) mean μ
 - exact definition is subtle
- 90% CI: $\mu = \overline{x} \pm a$ where a < 3 a > 3 a = 3?

 Hade-off precision + confidence
- Consider betting example
- What about n? as n, wore precise

Calculating confidence intervals (CI)

$$\mu = \overline{x} \pm \frac{t \, S}{\sqrt{n}}$$

- t is tabulated by DOF vs CI% $-DOF = n 1 \quad \text{wh} \quad \text{for s = } \times_{N} + \text{for s$
- In Excel, us TINV function
 - input p-value = (100-CI)/100

Introduction to t-test

- Every statistical test
 - has assumptions
 - asks a specific question
 - requires human interpretation
- Some t-test assumptions
 - normal distribution (cf. Mann-Whitney test)
 - equal variances (type 2 in Excel; type 3 unequal)
- · Question are male and lenale heights Litterent at a confidence level of 95%?

Calculating t-test significance

$$t_{calc} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt[\infty]{n_1 + n_2}} \sqrt{\frac{n_1 n_2}{n_1 + n_2}} \qquad \text{DOF} = n_1 + n_2 - Z$$

$$t_{\text{table}} \text{ is ked by DOF us. CL}$$

- If $t_{calc} > t_{table}$ difference is significant $\sim t_{calc}$
- In Excel, us TTEST function
- Excel returns p-value → confidence level (CL) Pro, ol, C.L. 976
- · 1-tailed vs. 2-tailed test

Assignment for report

- Get live cell count and/or live cell percent values for both culture conditions
- Calculate 95% CI for both means
- Plot means on bar graph with CI error bars
- Apply t-test to the means
 - For multiple comparisons, ANOVA is better
 - Comparing many means requires correction
 - Remember, p = 0.05 means 1 in 20 false positives!

Interlude: intersection of science and commerce

1. HeLa cells

http://www.colbertnation.com/the-colbert-report-videos/267542/ march-16-2010/rebecca-skloot (~00:30-3:00)

2. Patenting genes

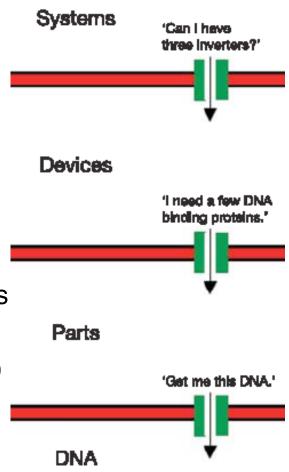
"Judge invalidates human gene patent" NY Times March 2010
"Metastasizing patent claims on BRCA1" Genomics May 2010

Thinking critically about module goals

Purpose of experiment

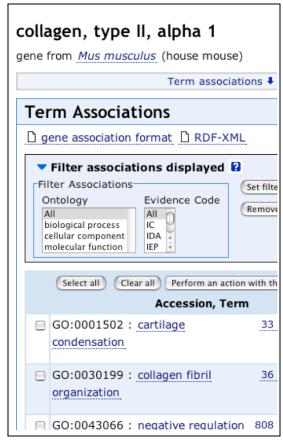
- Global cartiloge regineration
- All well and good, but...
- Can we move beyond empiricism tissue engineering
- E.g., broadly useful biomaterials
 - goal: control degradability over wide range
 - "a lot of chemical calculations later, we estimated that the anhydride bond would be the right one"
 - Robert Langer, MRS Bulletin 31 (2006).

Engineering principles, after D. Endy


- D. Endy, Nature 438:449 (2005)
- Is biology too complex to engineer, or does it simply require key "foundational technologies"?
- Systematic vs. ad hoc approach
- Abstraction
 - software function libraries
 - copy-editor vs. editor
- Decoupling
 - architecture vs. construction
 - design vs. fabrication
- Standardization
 - screw threads, train tracks, internet protocols
 - what would we standardize to engineer biology?

Public domain image (Wikimedia Commons)

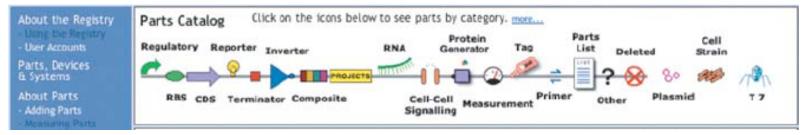
Application to synthetic biology


- D. Endy, Nature 438:449 (2005)
- Synthetic biology, in brief: "programming" cells/DNA to perform desired tasks
 - artimisinin synthesis in bacteria
 - genetic circuits
- Abstraction
 - DNA → parts → devices → systems
 - materials processing to avoid unruly structures
- Decoupling
 - DNA design vs. fabrication (rapid, large-scale)
- Standardization
 - Registry of Standard Biological Parts
 - standard junctions, off-the-shelf RBS, etc.

From D. Endy, *Nature* **438**:449

Data standards: what and why?


- Brooksbank & Quackenbush, OMICS, 10:94 (2006)
- High-throughput methods are data-rich
- Standards for collection and/or sharing
- Reasons
 - shared language (human and computer)
 - compare experiments across labs
 - avoid reinventing the wheel
 - integration of information across levels
- Examples
 - MIAME for microarrays
 - Gene Ontology (protein functions)
- Who drives standards?
 - scientists, funding agencies, journals, industry


www.geneontology.org

Lecture 3: conclusions

- Confidence intervals and t-tests are two useful statistical concepts.
- Standardizing data sharing and collection is of interest in several BE disciplines.

From D. Endy, *Nature* **438**:449 (standardized biological "parts")

Next time: *discussion* of standards in TE; more about cell viability and microscopy