A source of biological parts for Synthetic Biology. Xenologs?

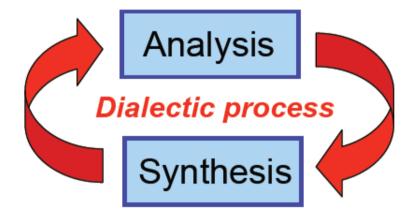
Andrew Kuznetsov

ATG:Biosynthetics, Merzhausen, Germany

Content

- (1) Design principles in SB
 - Dissatisfaction with bio-bricks
- (2) Dialectical cycle: analysis <> synthesis
- (3) Environmental scanning. Sulfur metabolism in bacteria (an example)
 - reference microorganism
 - min set of genes for sulfur metabolism
 - mapping to environments
 - xenologs vs. orthologs
 - design and simulation

Design principles – MIT & Co


- An idea of SB is to <u>build organisms that perform desired tasks</u>, rather than to modify existing ones
- A major challenge for SB is to tackle complexity
 - top-down
 - bottom-up
- "Cell as an agent" may be a very suitable concept
 - design of agents with adaptive strategies
 - swarm algorithms
- Molecular logic and <u>DNA embedded programming</u> on the different levels
 - recombination
 - transcription
 - RNA interference
 - GTPases
 - Phosphorylation
- <u>Separated genetic programs</u> within different types of cells that work together can be used to avoid a cross talk
 - partition of genomes (incompatible plasmids)
 - compartments (membranes)
 - scaffold (DNA, RNA, proteins)
- Karman-Knight's strategy: information is turned off → abstraction → design

Dissatisfaction with the current biobrick strategy

- new biological parts will lead to exponential growth of unspecific interactions in a target system – <u>a cross talk</u>
- standardization will lead to repeats in synthetic DNA and finally to recombinations
 - a genetic instability

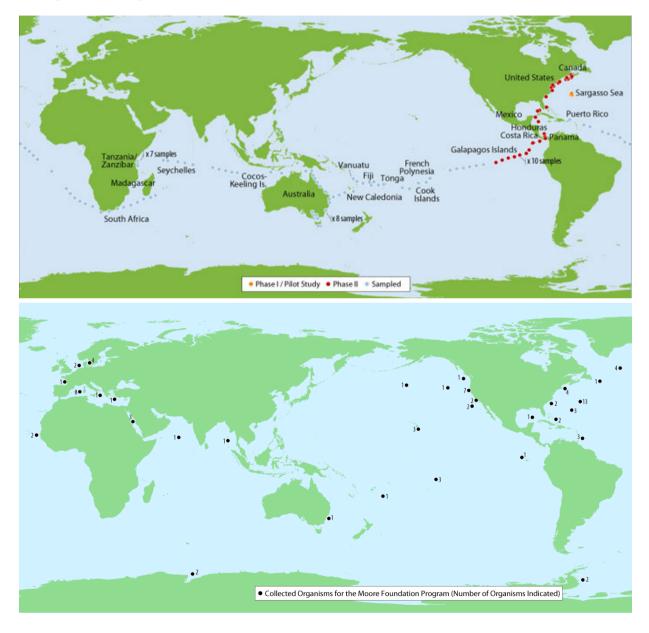
Dialectical cycle in Freiburg

 "The central research idea of bioss is to initiate and promote a dialectic process between scientists using analytical (dissecting) and synthetical (rebuilding) approaches in signalling research."

Possible impact of bioinformatics on synthetic biology

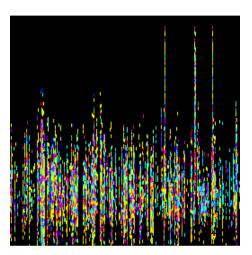
- X-omics
- High-throughput sequencing technologies
 - 2d generation
 - Roche/454 FLX
 - Illumina/Solexa Genome Analyzer
 - Applied Biosystems SOLiDTM System
 - 3d generation
 - Helicos HeliscopeTM
 - Pacific Biosciences SMRT
- Understanding of biological complexity

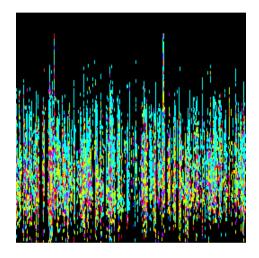
CAMERA v1.3.2



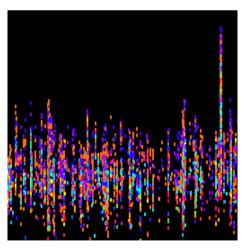
Community Cyberinfrastructure for Advanced Microbial Ecology Research & Analysis

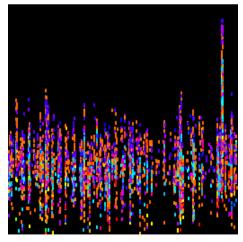
The Project was initiated by the Gordon and Betty Moore Foundation, beginning in Jan 2006


Sampling ('Sorcerer II', and other)

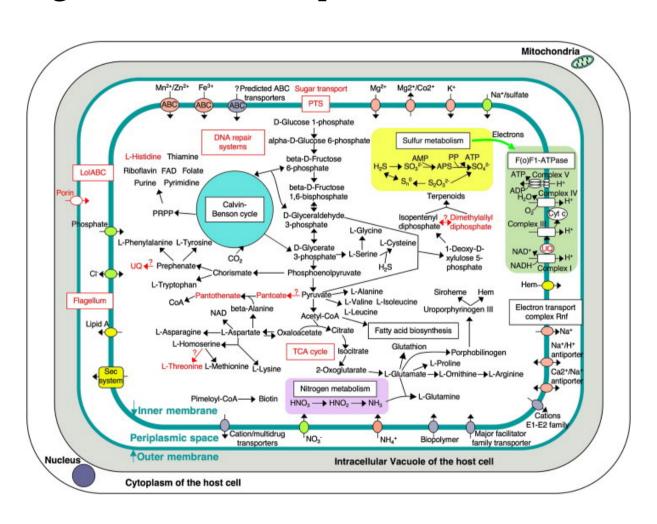

Databases that were used

- Collection from the Sorcerer II expedition
- Hawaii Ocean Time Series station which presents microbial genomes down to 4000 m
- Ionian abyssal plain, a deep flat basin between Sicily and Greece in the Eastern Mediterranean that is reached by H₂S
- Microbial community from deep-sea hydrothermal vent polychaete worm Alvinella pompejana
- Symbionts from another worm, Mediterranean gutless oligochaete *Olavius algarvensis*
- Microbes from Acid Mine Drainage biofilm at Iron Mountain, California
- Soil bacteria from Waseca County, Minnesota
- And other

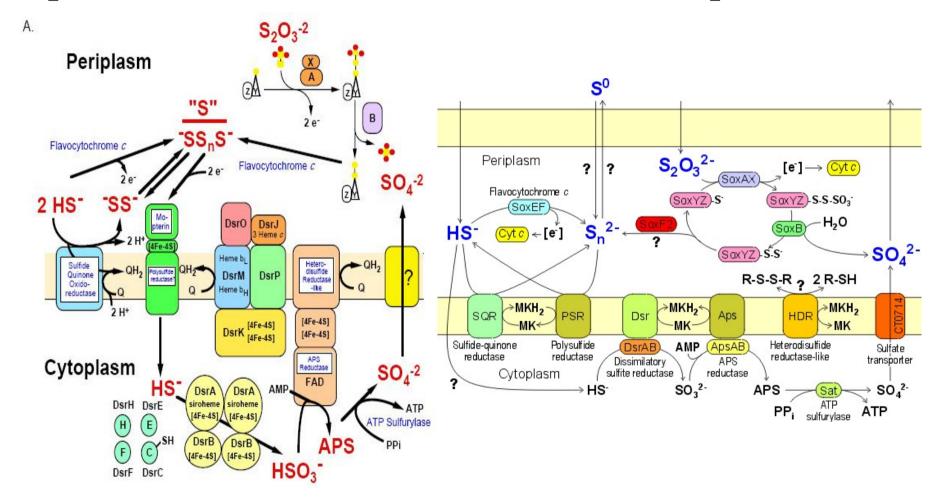

Fragment requirement plots of reference microorganisms


Thiomicrospira crunogena XCL-2 free-living bacterium genome 2 427 674 nt 63 134 hits

Thiobacillus denitrificans ATCC 25259 free-living bacterium genome 2 909 749 nt 42 275 hits



Vesicomyosocius okutanii HA host Calyptogena okutanii genome 1 022 154 nt 11 443 hits

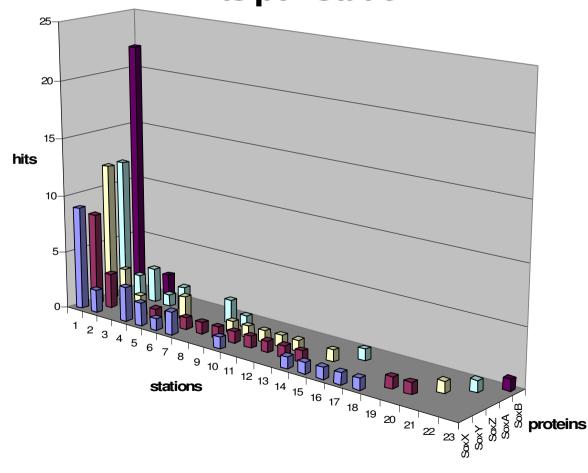


Ruthia magnifica Cm
host Calyptogena magnifica
genome 1 160 782 nt
11 160 hits

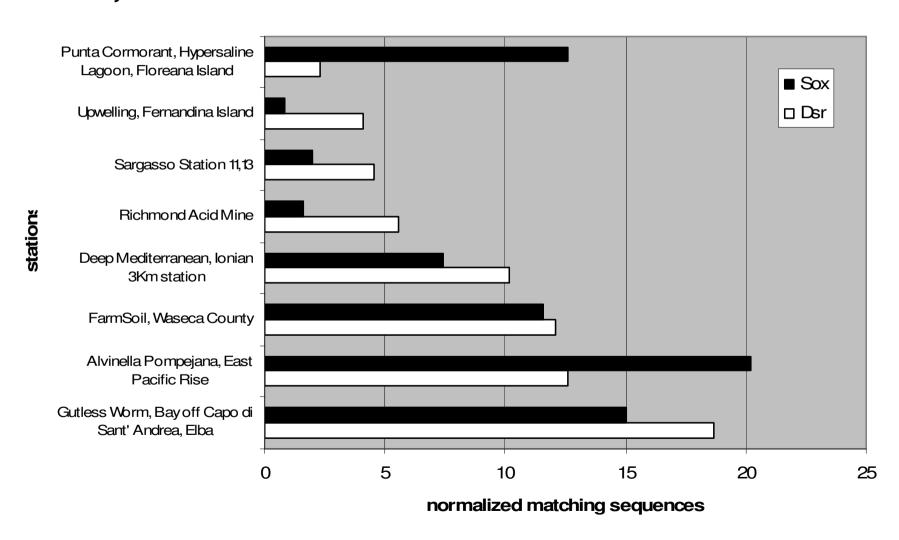
V.okutanii is a symbiont in a deep-sea clam, Calyptogena okutanii [Kuwahara et al, 2007]

Sulfur metabolism in bacteria [lit. overview, KEGG, ERGO]

dissimilatory sulfite reductase (DsrAB), adenosine-5'-phosphosulfate reductase (APS), ATP sulfurylase (Sat) in cytoplasm, and Sox proteins in periplasm


The gene set from *V.okutanii* for a minimal sulfur metabolism

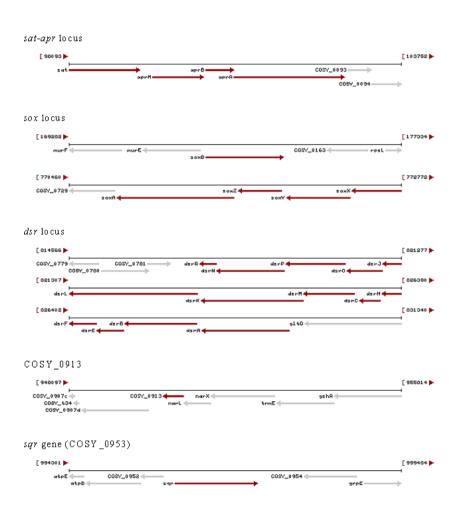
Product Name	Start	End	Strand	Length	Locus
ATP sulfurylase	<u>98093</u>	<u>99301</u>	+	402	sat
adenylylsulfate reductase membrane anchor	<u>99516</u>	100385	+	289	aprM
adenylylsulfate reductase β-subunit	100417	100896	+	159	aprB
adenylylsulfate reductase	100896	<u>102779</u>	+	627	aprA
sulfur oxidation protein SoxB	<u>172596</u>	<u>174485</u>	+	629	soxB
sulfur oxidation protein SoxA	770792	<u>771607</u>	-	271	soxA
sulfur oxidation protein SoxZ	<u>771635</u>	<u>771937</u>	-	100	soxZ
sulfur oxidation protein SoxY	<u>771971</u>	<u>772414</u>	-	147	soxY
sulfur oxidation protein SoxX	772425	772772	-	115	soxX
intracellular sulfur oxidation protein DsrR	<u>817196</u>	<u>817537</u>	-	113	dsrR
intracellular sulfur oxidation protein DsrP	<u>818938</u>	<u>820140</u>	-	400	dsrP
intracellular sulfur oxidation protein DsrO	<u>820166</u>	<u>820897</u>	-	243	dsrO
intracellular sulfur oxidation protein DsrJ	820894	<u>821277</u>	-	127	dsrJ
putative glutamate synthase (NADPH) small subunit	<u>821307</u>	<u>823271</u>	-	654	dsrL
intracellular sulfur oxidation protein DsrK	823327	824892	-	521	dsrK
intracellular sulfur oxidation protein DsrM	<u>824894</u>	<u>825667</u>	-	257	dsrM
intracellular sulfur oxidation protein DsrC	<u>825744</u>	<u>826067</u>	-	107	dsrC
intracellular sulfur oxidation protein DsrB	827224	828297	-	357	dsrB
intracellular sulfur oxidation protein DsrA	828373	<u>829674</u>	-	433	dsrA
rhodanese family protein	<u>950273</u>	<u>950752</u>	-	159	-
sulfide-quinone reductase	995954	997240	+	428	sqr


sox operon: SoxX, SoxY, SoxZ, SoxA, SoxB (CAMERA search)

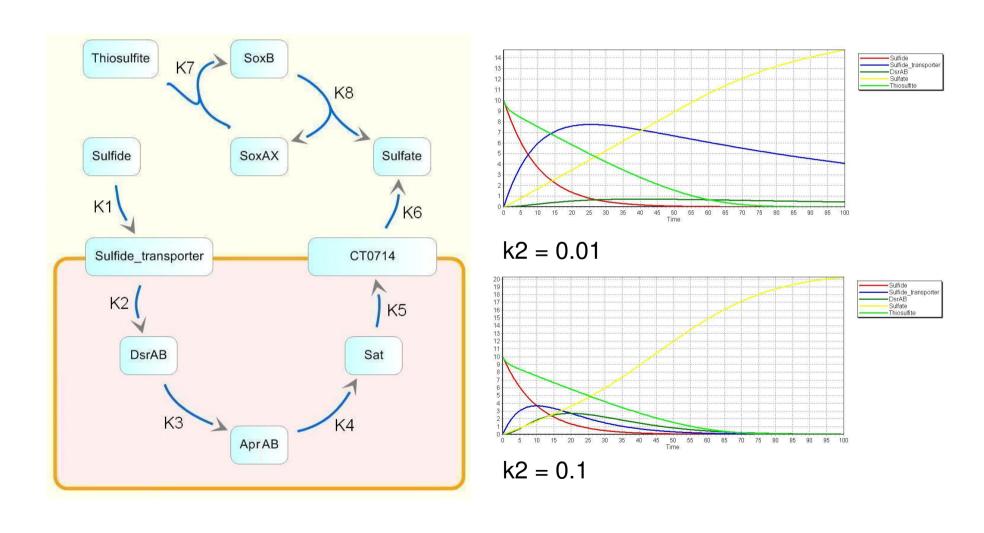
- 1 Punta Cormorant, Hypersalin...
- 2 Sargasso Station 11; Sargas...
- 3 Mangrove on Isabella Island
- 4 Yucatan Channel
- 5 Warm seep, Roca Redonda
- 6 Upwelling, Fernandina Island
- 7 Newport Harbor, RI
- 8 Gulf of Maine
- 9 Sargasso Stations 3
- 10 South of Charleston, SC
- 11 30 miles from Cocos Island
- 12 Hydrostation S
- 13 Cabo Marshall, Isabella Island
- 14 Off Key West, FL
- 15 Cape May, NJ
- 16 Wolf Island
- 17 Northern Gulf of Maine
- 18 134 miles NE of Galapagos
- 19 Outside Halifax, Nova Scotia
- 20 Rosario Bank
- 21 Sargasso Station 13
- 22 Gulf of Panama
- 23 Northeast of Colon

Stations with multiple Sox and Dsr hits, the normal values

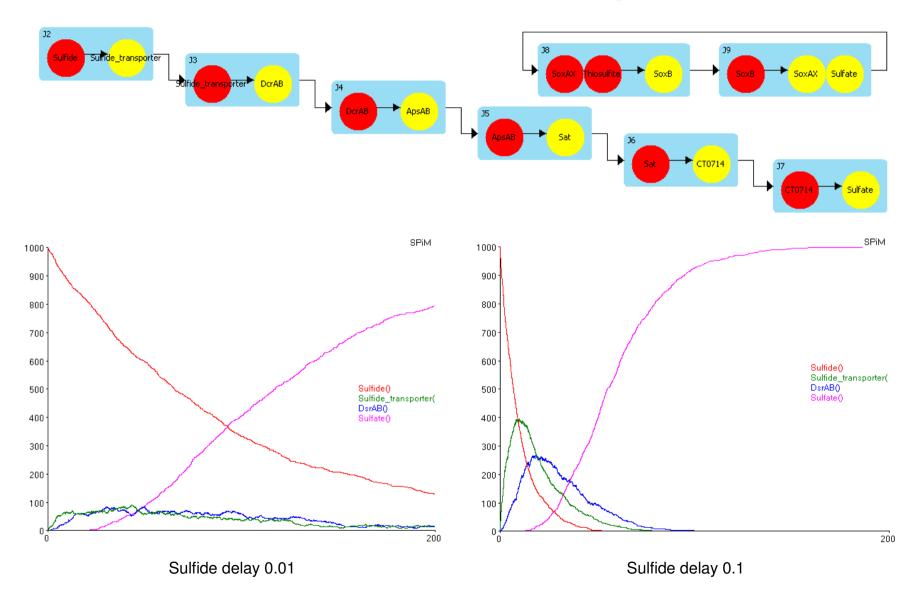
location of stations with a plenty of Dsr matching sequences



Xenologs vs. Orthologs


- dsr reads generated trees incompatible with the corresponding 16S rRNA phylogeny
- due to the low quality of databases (random and partial DNA reads)?
- due to BLAST local alignment removes the most divergent regions from the sequences?
- or due to a lateral gene transfer? That is in agreement with [Klein et al, 2001; Boucher et al, 2003]

Bio-bricks for sulfur metabolism



Fragments of
 V.okutanii HA genetic
 map with genes
 coding sulfur
 metabolism

Simulation (1) within JDesigner

(2) within the stochastic pi-Machine

Conclusion

sat-apr, sox and dsr locuses from
 V.okutanii are very suitable for design of
 sulfur metabolism

 xenologs as bio-bricks is an attractive idea which needs more detailed analysis

Thanks

- Nelli Sergeeva and Maksim Gulin, Institute of Biology of the Southern Seas, Sevastopol, Ukraine
- Jan Kuever, Max-Planck-Institute for Marine Microbiology, Bremen, Germany
- Saul Kravitz, CAMERA Development, J. Craig Venter Institute

References

- Kuznetsov A., Sergeeva N., Cholodov V., Erokhin V. Perspectives on artificial ecosystems in the Black Sea anoxic zone // ECSB 2007: The European Conference on Synthetic Biology: design, programming and optimization of biological systems. Sant Feliu de Guixols, Spain, 24-29 November 2007, P. 50-52.
- Kuznetsov A. Modularity and distribution of the sulfur metabolism genes in bacterial populations // ESF-UB Conference in Biomedicine - Systems Biology. Sant Feliu de Guixols, Spain, 12-17 April 2008.
- Kuznetsov A. Synthetic Biology as a proof of Systems Biology // Chapter V in the Handbook of Research on Systems Biology Applications in Medicine. Ed. Andriani Daskalaki. IGI Global. 2009. P. 97-115.
- Kuznetsov A. Modularity and distribution of sulfur metabolism genes in bacterial populations: search and design // Journal of Computer Science & Systems Biology. (in press). 2010. P. 1573-1634.