
Dynamical systems modeling and gene regulatory network structure analysis reveals Hap4's role  
in regulating the response to cold shock in Saccharomyces cerevisiae 

Kristen M. Horstmann1,2, Margaret J. O’Neil1, Ben G. Fitzpatrick2, and Kam D. Dahlquist1 

1Department of Biology, 2Department of Mathematics 

Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045 USA 

Transcription factors control gene expression by binding to regulatory 

DNA sequences upstream of genes 

Acknowledgments 

The Δhap4 strain microarray data was used to derive a family of related 

GRNs from the YEASTRACT database 

Conclusions and Future Directions 

References  

L-curve analysis suggests a good alpha value to be 0.002 

Network derived from Δhap4 data can be visualized using GRNsight The fit of the model parameters is close to the minimum theoretical least squares error 

For their work on the GRNmap code, we would like to thank Trixie Anne M. Roque, Chukwuemeka E. Azinge, and Justin K. Torres. We thank Nicole A. 

Anguiano,  Anindita Varshneya, Mihir Samdarshi, Edward Bachuora, Jen Shin, and Eileen Choe for their work on the GRNsight visualization software. 

Microarray data were collected by Cybele Arsan, Wesley Citti, Kevin Entzminger, Andrew Herman, Monica Hong, Heather King, Lauren Kubeck, Stephanie 

Kuelbs, Elizabeth Liu, Matthew Mejia, Kevin McGee, Kenny Rodriguez, Olivia Sakhon, Alondra Vega, and Kevin Wyllie. Further, we would like to thank Natalie 

E. Williams and Brandon J. Klein for their contributions to the GRNmap data analysis team. This work is partially supported by NSF award 0921038 (K.D.D., 

B.G.F.) and a Kadner-Pitts Research Grant (K.D.D.). 

The individual parameters reveal details about the behavior of individual genes 

• Activators increase gene expression. 

• Repressors decrease gene expression. 

• Transcription factors are themselves proteins that 

are encoded by genes. 

• A gene regulatory network (GRN) consists of a set of 

transcription factors that regulate the level of 

expression of a set of target genes, which can 

include other transcription factors. 

• The dynamics of a GRN is how the expression of 

genes in the network change over time. 

• Little is known about which transcription factors regulate this 

response. 

• The Dahlquist Lab studies the global transcriptional response 

to cold shock using DNA microarrays, which measure the 

level of mRNA expression for all 6000 yeast genes.  

• We have collected expression data from the wild type strain 

and five transcription factor deletion strains (Δcin5, Δgln3, 

Δhmo1, Δzap1, Δhap4 ) before cold shock at 30°C and after 15, 

30, and 60 minutes of cold shock at 13°C. 

• The Dahlquist Lab has shown that yeast deleted for the Hap4 

transcription factor, a heme activator protein, show impaired 

growth at cold temperatures, implying that it is important for 

regulating the response to cold shock. 

• We use mathematical modeling to determine the relative 

influence of each transcription factor in the GRN that controls 

the cold shock response. 
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• Each gene has a differential equation that models 

the change in expression over time as  

production – degradation 

• Degradation rates for each gene were taken from 

protein half life data from Belle et al. (2006) 

• We use a sigmoidal production function where: 

• Pi is mRNA production rate for gene i 

• di is the mRNA degradation rate for gene i  

• w is weight term, determining the level of 

activation or repression of j on i 

• b is a unique threshold for each gene 

• The production rate (Pi ), weight (w ), and threshold 

(b) values were estimated from DNA microarray 

data using a penalized least squares approach.  

Yeast respond to the environmental stress of cold shock by changing 

gene expression 

Microarray at 60 minutes after cold shock 

For each gene in the network, a nonlinear differential equation 

determines the rate at which the gene is expressed  

• An ANOVA test of the Δhap4  strain DNA microarray data showed that 1794 genes (29%) had a log2 

fold change significantly different than zero at any of the time points, with a Benjamini & Hochberg  

 corrected p value < 0.05. 

• These genes were submitted to the YEASTRACT database, which returned a list of candidate 

regulatory transcription factors that potentially regulate those target genes, in order of significance. 

• The transcription factors for which we had deletion strain microarray data were added to the list of 

the 29 most significant regulators to generate the largest GRN we modeled with a total of 34 genes 

and 102 edges.  Transcription factors and edges were removed from the GRN in a stepwise fashion 

in order of least to most significant until the network was pared down to 15 genes and 28 edges. 

• The purpose of comparing a family of related networks is to determine which sized network models 

the experimental data best, accounting for indirect effects of other regulatory transcription factors 

upon cold shock gene expression. 

(Freeman, 2002) 

• The model, called GRNmap (Gene Regulatory Network modeling and parameter estimation) was 

implemented in MATLAB (Dahlquist et al. 2015). 

• The MATLAB code and executable are available under an open source license at 

https://github.com/kdahlquist/GRNmap/. 

• E represents the error between estimated values and microarray data values. 

• θ is the penalty term, which is the combined w, P, and b parameter values. 

• The alpha value (α) controls the flexibility of 

the model fit to the data.  

• Choosing the best alpha value is best done 

through iteration. 

• The estimation was run iteratively for a series 

of different alpha values ranging from 0.8 

down to 0.0005 where the parameters output 

from one run was used as the initial guesses 

for the next run. 

• For each alpha value ranging from 0.0005 to 

0.8, the Least Squares Error (LSE) was plotted 

against the penalty term. 

• The best alpha is one that minimizes both the 

LSE and the penalty term, and therefore lies 

near the “elbow” of the L-curve. 

• GRNsight generates weighted network 

graphs using the output spreadsheets 

produced by GRNmap. 

• The absolute value of the weight 

parameters are divided by the largest 

value, which distributes them between 0 

and 1. The thickness of the lines is on a 

linear scale with thin lines for values near 

0 and thick lines for values near 1. 

• Positive weights are colored magenta to 

indicate activation, negative weights are 

colored cyan to indicate repression. 

• Arrow heads also represent activation, 

while blunted heads indicate repression.  

• Weights within ±0.05 of zero are colored 

grey to denote negligible influence on the 

target gene. 

 

15 genes, 28 edges 

• ASH1 had the highest production rate and threshold b for this 

network, possibly due to the high activation of it by SWI5.  

• Upper left. The 28 edges in the network, with the source node  

listed first, and the target node listed second. 

• Negative weight values signify repression, whereas positive 

values signify activation. 

• MSN2 -> HAP4 is the strongest relationship within the network, 

with a repression weight of nearly 6. This can also be visually 

confirmed in the GRNsight network.  

• SWI5 -> ASH1 is the largest activation relationship, with an 

estimated weight of 4.  

• DNA microarray data from the Δhap4  deletion strain subjected to cold shock was analyzed using an 

ANOVA test, the YEASTRACT database, and an ordinary differential equations model called GRNmap 

that modeled the dynamics of each gene in candidate gene regulatory networks. From larger networks, 

the 15 gene, 28 edges network was determined to be the best candidate for data analysis. 

• The weighted output network was visualized using GRNsight. 

• The Gephi results are consistent with the in-degree, out-degree statistics, where the genes with the 

highest degree and overall degree measures are also found to have the highest betweenness centrality 

measures, and those nodes with the lowest degree measures also have the lowest betweenness 

centrality. The statistics from Gephi provided useful information through which to view the graph. While 

MSN2 has the highest betweenness centrality and the highest degree measure, it only has the second 

highest closeness centrality measure, which indicates that while it is a very important node in the graph, 

SWI4 is more centralized in the graph.  

• The LSE and the ratio of output LSE to theoretical minimum LSE for the network demonstrated that the 

model has more errors than a theoretically ideal run. However, this is to be expected for any model run, 

and the ratio demonstrates a close fit as it was only slightly above 1. 

• ASH1 had the strongest activation input in the network, from SWI5. This may have affected the size of 

the production rate and optimized threshold b levels.  

• In addition to the above, future directions include running Gephi statistical analysis on the other gene 

family networks. Then, comparisons of the Δhap4 network statistics to the other deletion gene networks 

could be done. It would also be interesting to run Gephi analysis on networks of larger size in order to 

see how the centrality of nodes and connections change with the deletion of important nodes and 

edges. 
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Number of Connections 

15 genes In degree/Out degree 

In

Out

• Least squares error (LSE) represents the total error between the model outputs 

and data points for all five networks. A large LSE represents difficulty with the 

model fitting the data. 

• The minimum theoretical LSE represents the ideal theoretical model fit for each 

network based on the average of the data.  

• The ratio is the LSE divided by the minimum theoretical LSE and shows how 

close the LSE is to the ideal minimum LSE.  

• As the LSE is fairly small, the model fit well, but did not fit the exact minimum 

theoretical LSE, as the ratio is larger than 1. So the model had more errors than 

the ideal theoretical model, but is still considered a good fit on the network. 
 

Network Parameters LSE Minimum 

theoretical LSE 

Ratio 

15 genes, 

28 edges 

58 0.706 0.485 1.455 
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• In- and out-degree distributions were manually plotted.  These plots 

show how many genes are connected to other genes in the network as 

source (out) or by target (in). 

• It makes sense that the fewest number of connections would occur 

most frequently, as the majority of the transcription factors have a 

small number of connections to genes in the rest of the network. ​ 

In Degree, Out Degree, and Total Degrees  
for all 15 Genes in the GRN 

In-Degree Out-Degree Degree 

ACE2 1 1 2 

ASH1 3 1 4 

CIN5 2 4 6 

GCR2 0 1 1 

GLN3 1 0 1 

HAP4 5 0 5 

HMO1 1 5 6 

MSN2 2 7 9 

SFP1 3 1 4 

STB5 1 2 3 

SWI4 1 3 4 

SWI5 1 1 2 

YHP1 4 1 5 

YOX1 3 0 3 

ZAP1 0 1 1 

 

 

• The statistical program Gephi was able to calculate the exact connections of in-degree, out-degree, and total degree 

for each gene in the GRN.  

• From the GRNsight visualized network as well as the Gephi outputs, MSN2, CIN5, HMO1, HAP4, and YHP1 are some of 

the most active genes, with having total degree of 9, 6, and 5, respectively. 

• This level of connectivity can be examined in more detail with further statistical tests.  

 

• The eccentricity centrality of a network shows how easily accessible a 

node is from other nodes (Pavlopoulos et al. 2011) 

• The eccentricity is calculated using an algorithm for identifying the 

max{dist(i,j)} where i is the node listed in the table and j is any other node 

in the network. 

 

𝐶(𝑥) =
1

 𝑑 𝑥, 𝑦𝑦
(𝑛 − 1) 

ACE2 ASH1 CIN5 GCR2 GLN3 HAP4 HMO1 MSN2 SFP1 STB5 SWI4 SWI5 YHP1 YOX1 ZAP1 

Eccentricity 
Centrality 

3 2 3 3 0 0 3 2 4 5 2 3 1 0 4 

ACE2 ASH1 CIN5 GCR2 GLN3 HAP4 HMO1 MSN2 SFP1 STB5 SWI4 SWI5 YHP1 YOX1 ZAP1 

Closeness 
Centrality 

0.5 0.667 0.636 0.458 0 0 0.55 0.769 0.4 0.375 0.8 0.5 1 0 0.4 

• Eccentricity centrality is a directional statistic, which only takes a node’s 

out degree into account  

• To have a high eccentricity centrality means that the gene is connected 

indirectly to many other genes in the network. This indicates these genes 

with high eccentricities have a greater impact on other nodes than a node 

with low eccentricity. 

 

Gephi was used to compute the graph properties of the Δhap4 data-derived network  

𝑔 𝑣 =  
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠≠𝑣≠𝑡

 

ACE2 ASH1 CIN5 GCR2 GLN3 HAP4 HMO1 MSN2 SFP1 STB5 SWI4 SWI5 YHP1 YOX1 ZAP1 

Betweenness 
Centrality 

3 10 5 0 0 0 0 14 9 0 0 7 11 0 0 

• Betweenness Centrality is a centrality measure that indicates how often a 

node is found on a shortest path between two nodes, s and t. (McSweeney, 

2009.) 

• The betweenness centrality of a node can be calculated by the following: 

 

 

 

 

where 𝜎𝑠𝑡(𝐯) is the number of shortest paths that pass from s to t and 𝜎𝑠𝑡 is        

the total number of shortest paths from node s to node t 

 

• Without these “between” nodes, there would be no way for two separated 

nodes to communicate. 

• Betweenness centrality requires there to be at least one in degree and one out 

degree in order to be calculated, so in cases where there is either no in degree 

or no out degree, the betweenness centrality of those nodes is 0. 

• Nodes with high betweenness centralities are key genes associated with 

regulating other genes in the network, and are known as “bottlenecks” that 

must be passed through in the network. 

• Closeness Centrality is a centrality measure that indicates how long it will take 

for information from a node x to reach other nodes in the network. 

(McSweeney, 2009) 

• The closeness centrality of a node can be determined using the following 

formula: 

 

 

 

   which is looking at the average shortest path from x to all other nodes 

• Closeness centrality, like eccentricity centrality is a directional statistic, which only 

takes a node’s out degrees into account. 

• Nodes with high closeness centralities are the most central nodes in the network. 

These are the nodes that can communicate the quickest in the network. 

• The directional aspect of the closeness centrality measure means those genes and 

nodes with no out-degree connections have a closeness centrality of 0.  

http://dondi.github.io/GRNsight/
http://dondi.github.io/GRNsight/
https://gephi.org/
https://gephi.org/
https://github.com/kdahlquist/GRNmap
https://github.com/kdahlquist/GRNmap

