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Transcription factors control gene expression by binding to regulatory
DNA sequences upstream of genes
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Activators increase gene expression.
Repressors decrease gene expression.

Transcription factors are themselves proteins that

are encoded by genes.

A gene regulatory network (GRN) consists of a set of
transcription factors that regulate the level of
expression of a set of target genes, which can

include other transcription factors.

The dynamics of a GRN is how the expression of

genes in the network change over time.

Yeast respond to the environmental stress of cold shock by changing
gene expression

« Littleis known about which transcription factors
response.

« The Dahlquist Lab studies the global transcriptional response
to cold shock using DNA microarrays, which measure the
level of MRNA expression for all 6000 yeast genes.

« We have collected expression data from the wild type strain
and five transcription factor deletion strains (Acinb, Agin3,
Ahmo1, Azap1, Ahap4 ) before cold shock at 30°C and after 15,

30, and 60 minutes of cold shock at 13°C.

« The Dahlquist Lab has shown that yeast deleted for the Hap4
transcription factor, a heme activator protein, show impaired
growth at cold temperatures, implying that it is important for

regulating the response to cold shock.

« We use mathematical modeling to determine the relative

regulate this

influence of each transcription factor in the GRN that controls

the cold shock response.

Microarray at 60 minutes after cold shock

The Ahap4 strain microarray data was used to derive a family of related
GRNs from the YEASTRACT database

 An ANOVA test of the Ahap4 strain DNA microarray data showed that 1794 genes (29%) had a log,
fold change significantly different than zero at any of the time points, with a Benjamini & Hochberg

corrected p value < 0.05.

« These genes were submitted to the YEASTRACT database, which returned a list of candidate
regulatory transcription factors that potentially regulate those target genes, in order of significance.

 The transcription factors for which we had deletion strain microarray data were added to the list of
the 29 most significant regulators to generate the largest GRN we modeled with a total of 34 genes
and 102 edges. Transcription factors and edges were removed from the GRN in a stepwise fashion
in order of least to most significant until the network was pared down to 15 genes and 28 edges.

« The purpose of comparing a family of related networks is to determine which sized network models
the experimental data best, accounting for indirect effects of other regulatory transcription factors

upon cold shock gene expression.

For each gene in the network, a nonlinear differential equation
determines the rate at which the gene is expressed

« The model, called GRNmap (Gene Regulatory Network modeling and parameter estimation) was

implemented in MATLAB (Dahlquist et al. 2015).

« The MATLAB code and executable are available under an open source license at

https://github.com/kdahlquist/GRNmap/.

« Each gene has a differential equation that models dXi (t) P

the change in expression over time as
production — degradation
« Degradation rates for each gene were taken from
protein half life data from Belle et al. (2006)
« We use a sigmoidal production function where:
« P;is mRNA production rate for gene i
« d;is the mRNA degradation rate for gene i
 wis weight term, determining the level of
activation or repression of jon i
 bis aunique threshold for each gene

dt

. Sigmoidal Curve

\\ b determines

the position of
the threshold

» The production rate (P; ), weight (w ), and threshold = X

(b) values were estimated from DNA microarray
data using a penalized least squares approach.
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 Erepresents the error between estimated values and microarray data values.

« 0is the penalty term, which is the combined w, P,
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L-curve analysis suggests a good alpha value to be 0.002

Deletion_added_dHAP4_15_genes

0.75
]

LSE
0.73 0.74
| |

0.72
|

0.71
|

0.70
]

Penalty Term

The alpha value (a) controls the flexibility of

the model fit to the data.
Choosing the best alpha value is best
through iteration.

done

The estimation was run iteratively for a series

of different alpha values ranging from

0.8

down to 0.0005 where the parameters output
from one run was used as the initial guesses

for the next run.

For each alpha value ranging from 0.0005 to
0.8, the Least Squares Error (LSE) was plotted

against the penalty term.

The best alphais one that minimizes both the
LSE and the penalty term, and therefore lies

near the “elbow” of the L-curve.

Network derived from Ahap4 data can be visualized using GRNsight

15 genes, 28 edges
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* In- and out-degree distributions were manually plotted. These plots
show how many genes are connected to other genes in the network as
source (out) or by target (in).

* It makes sense that the fewest number of connections would occur
most frequently, as the majority of the transcription factors have a
small number of connections to genes in the rest of the network.

» The statistical program Gephi was able to calculate the exact connections of in-degree, out-degree, and total degree

for each gene in the GRN.

 From the GRNsight visualized network as well as the Gephi outputs, MSN2, CIN5, HMO1, HAP4, and YHP1 are some of

« GRNsight generates weighted network

graphs using the output spreadsheets 15 genes,
produced by GRNmap. 28 edges
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The fit of the model parameters is close to the minimum theoretical least squares error

Least squares error (LSE) represents the total error between the model outputs
and data points for all five networks. A large LSE represents difficulty with the

theoretical LSE « The minimum theoretical LSE represents the ideal theoretical model fit for each
58

0.706 0.485 1.455 network based on the average of the data.
« Theratio is the LSE divided by the minimum theoretical LSE and shows how
close the LSE is to the ideal minimum LSE.
« As the LSE is fairly small, the model fit well, but did not fit the exact minimum
theoretical LSE, as the ratio is larger than 1. So the model had more errors than
the ideal theoretical model, but is still considered a good fit on the network.

The individual parameters reveal details about the behavior of individual genes

Optimized weights

 Upper left. The 28 edges in the network, with the source node
listed first, and the target node listed second.

* Negative weight values signify repression, whereas positive
values signify activation.

« MSN2 -> HAP4 is the strongest relationship within the network,
with a repression weight of nearly 6. This can also be visually
confirmed in the GRNsight network.

« SWI5->ASHL1 is the largest activation relationship, with an
estimated weight of 4.
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the most active genes, with having total degree of 9, 6, and 5, respectively.

 This level of connectivity can be examined in more detail with further statistical tests.

Gephi was used to compute the graph properties of the Ahap4 data-derived network Conclusions and Future Directions

« The eccentricity centrality of a network shows how easily accessible a -

node is from other nodes (Pavlopoulos et al. 2011)
« The eccentricity is calculated using an algorithm for identifying

the .

max{dist(i,})} where i is the node listed in the table and j is any other node

in the network.

Eccentricity

Eccentricity centrality is a directional statistic, which only takes a node’s - DNA microarray data from the Ahap4 deletion strain subjected to cold shock was analyzed using an

out degree into account
To have a high eccentricity centrality means that the

_ ANOVA test, the YEASTRACT database, and an ordinary differential equations model called GRNmap
gene is connected that modeled the dynamics of each gene in candidate gene regulatory networks. From larger networks,

indirectly to many other genes in the network. This indicates these genes the 15 gene, 28 edges network was determined to be the best candidate for data analysis.

with high eccentricities have a greater impact on other
with low eccentricity.

nodes than a node « The weighted output network was visualized using GRNsight.
« The Gephi results are consistent with the in-degree, out-degree statistics, where the genes with the
highest degree and overall degree measures are also found to have the highest betweenness centrality

centrality. The statistics from Gephi provided useful information through which to view the graph. While
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 Closeness Centrality is a centrality measure that indicates how long it will take .

for information from a node x to reach other nodes in the network.
(McSweeney, 2009)

« The closeness centrality of a node can be determined using the following
formula:

C(x) = n—1)

1
2y d(x,y) (

which is looking at the average shortest path from x to all other nodes
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« Betweenness Centrality is a centrality measure that indicates how often a
node is found on a shortest path between two nodes, s and t. (McSweeney,
2009.)

« The betweenness centrality of a node can be calculated by the following:

g(v) = z 05t (V)

0}
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where ag,:(v) is the number of shortest paths that pass from s to t and o, is
the total number of shortest paths from node s to node t

Betweenness

0.55

Closeness centrality, like eccentricity centrality is a directional statistic, which only

takes a node’s out degrees into account.

Nodes with high closeness centralities are the most central no
These are the nodes that can communicate the quickest in the n
The directional aspect of the closeness centrality measure mea

MSN2 has the highest betweenness centrality and the highest degree measure, it only has the second
highest closeness centrality measure, which indicates that while it is a very important node in the graph,
SWI4 is more centralized in the graph.
« The LSE and the ratio of output LSE to theoretical minimum LSE for the network demonstrated that the
des in the network. model has more errors than a theoretically ideal run. However, this is to be expected for any model run,
etwork. and the ratio demonstrates a close fit as it was only slightly above 1.
ns those genes and « ASHI1 had the strongest activation input in the network, from SWI5. This may have affected the size of

nodes with no out-degree connections have a closeness centrality of O. the production rate and optimized threshold b levels.

0.769 0.4 0.375 0.8 0.5 1

Without these “between” nodes, there would be no way
nodes to communicate.

* In addition to the above, future directions include running Gephi statistical analysis on the other gene
family networks. Then, comparisons of the Ahap4 network statistics to the other deletion gene networks
could be done. It would also be interesting to run Gephi analysis on networks of larger size in order to
see how the centrality of nodes and connections change with the deletion of important nodes and
edges.
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