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Chapter 1

Design of Synthetic Gene Networks

1.1 Introduction

The engineering of biological organisms to perform complex tasks is still in its
infancy. There are numerous applications where the extreme genetic engi-
neering of an organism can result in the insertion of a “program” of incredible
usefulness. Possible applications include modifying a simple bacterium to
detect small quantities of chemicals or proteins, such as TNT [2], and using
gene therapy to treat a multitude of human diseases, including diabetes and
cancer, by inserting the corrective DNA that produces the needed therapeu-
tic proteins at the right times [3]. By rearranging naturally provided molecular
components, such as transcription factors, mRNA hairpins, and DNA opera-
tor and promoter sites, into novel configurations, a variety of synthetic gene
networks have been constructed to exhibit potentially useful dynamical or
logical behaviors [4, 5]. In addition, by creating entirely new genetic com-
ponents, including polydactal zinc fingers [6, 7, 8, 9, 10, 11, 12], chimeric
activator or repressor fusion proteins [13, 14, 15], libraries of novel bacterial
promoters with tunable basal expression [16], and RNA molecules that form
small molecule-binding secondary structures [17, 18], we can extend the ca-
pabilities of our toolbox of genetic components to sensing new molecular
signals and responding in with new phenotypes.

There are numerous examples of synthetic gene networks. Many of
these gene networks, including transcriptionally or translationally regulated
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bistable switches [19, 20], transcriptional [21] or metabolically coupled [22]
oscillators, combined switch-oscillators [23], cascades [24], feedback loops
[25, 26], population-dependent activation in bacteria [24, 27] and yeast [28],
combined metabolically coupled population-dependent activation systems
[29], and light-repressed kinase-activated transcription factors [30], are pro-
totypes of synthetic genetic programs generating increasingly complex be-
haviors. As more molecular components are characterized, an important
goal is to identify additional gene and protein networks that exhibit new or
improved behaviors.

However, it is still not well understood how the molecular interactions
between DNA binding sites, RNAs, and proteins influence the dynamics
of gene expression and the resulting phenotypes. In order to understand
how these interactions affect the overall dynamics, one may develop math-
ematical models that quantitatively describe all of the significant molecular
interactions in the synthetic gene network and compare the model results to
experimental observations. Various types of models exist, from Boolean and
graph networks to jump Markov processes. The purpose of modeling * is
to gain insight into the key molecular interactions in the system, to connect
molecular events to the observable behavior of the system, and to either
study how small changes will affect the system’s dynamics or predict which
changes must be made in order to obtain a certain dynamical behavior.

Computational biology is, of course, a broad topic with numerous exam-
ples [31]. By using the chemical partition function, the effects of different
genetic components on the regulation of transcription, including activator or
repressor transcription factors, operator placement, DNA-looping, and other
factors, has been studied [32, 33, 34]. Mathematical analyses of various
rationally designed gene networks have also been performed, including a
mixed feedback loop gene network [35] and a feed forward loop genetic
network [36]. Synthetic gene networks have also been designed to study
the virulence cycle of HIV [37] and to partially stop the onset of AIDS [38].

*My brief answer to the advantages and limitations of physical/chemical modeling is thus: An experiment shows
what happens when reality exists at one of many possible configurations. A simulation models what happens when one
of an infinite number of configurations is assumed to be real. Not all configurations occur in reality. And there’s too
many real configurations to perform each experiment. So a model without experiments can be wrong. And an experiment
without a model is worthless. That’s why you need both.
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Genetic networks have been modeled to study the effects of stochastic res-
onance and noise on cellular memory [39], calcium oscillations [40], neu-
ron dynamics [41], enzyme futile cycles [42], and quorum sensing [43]. Fi-
nally, optimization techniques can identify a synthetic gene network with cer-
tain desired behaviors, including ones using either evolutionary computation
[44, 45] and simulated annealing [46]. This is a brief list of studies and is not
meant to be exhaustive.

In our work, we model the interactions participating in regulated gene
expression as a system of chemical and biochemical reactions and use
stochastic process theory to determine the stochastic dynamics of the sys-
tem. Stochasticity is caused by the small numbers of participating molecules,
such as regulatory DNA-binding proteins, and has been experimentally ob-
served in gene expression [47]. These mathematical models attempt to
quantitatively predict the dynamics of the synthetic gene network in response
to environmental and regulatory stimuli. They also present a systematic
means of identifying the regulatory connections between genes that result
in certain dynamical or logical behaviors, such as bistable switching or os-
cillations, and how the kinetics of the constituent interactions quantitatively
change the behavior of the synthetic gene network.

1.1.1 An Overview of the Chapter

We begin by presenting a brief review of regulated gene expression. We
first focus on describing the important mechanistic interactions between the
gene expression machinery and its DNA and RNA binding sites in terms
of the transcriptional and translational initiation, elongation, and termination
processes. We continue by detailing how the DNA and RNA sequences af-
fect the basal rates of these processes, including the sequence determinants
that modulate the kinetics of the rate-limiting steps of gene expression. We
then discuss how the binding of regulatory molecules, including activating or
repressing transcription factors and microRNAs, can also modulate the rate
of gene expression. Finally, we discuss the participation of the RNA Degra-
dosome and the proteosomes in degrading RNA and protein molecules and
how bacteria can specifically target RNA and protein molecules for faster
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degradation.

In the next section, we discuss how we model regulated gene expression
in bacteria as a system of chemical and biochemical reactions. We present
our systematic method of converting the significant molecular interactions in
the transcription and translation processes of gene expression, including all
protein-DNA, protein-RNA, protein-protein, and RNA-RNA interactions, into
a system of chemical reactions. The kinetics and thermodynamics of these
interactions are empirically measured in the laboratory and are summarized
where they are available. Ordinarily, one uses a full kinetic mathematical
description of the system of chemical reactions. However, in many cases,
it is often more feasible to assume that the protein-DNA interactions at the
promoter are in chemical equilibrium. In this case, we describe how to ap-
ply the chemical partition function as a simpler mathematical description of
the mechanistic interactions involved in Holoenzyme and transcription factor
assembly.

In the third and fourth sections, we present our work on designing syn-
thetic gene networks to perform two different useful behaviors. The first
example is a system of fusion proteins, called a protein device, which acti-
vates gene expression if and only if two different transcription factors are both
present [48]. The activation of gene expression thus mimics the Boolean
"AND” logical function. The system has a number of advantages, includ-
ing modularity, scalability, high fidelity, and a rapid response to its pair of
inputs. By connecting together multiple protein devices, one may program
bacteria to respond to a specified set of inputs with a pre-determined genetic
response. The second example is a system of three genes whose repressor
regulatory connections spontaneously produce long-lived oscillations [49].
We explore how the structure of the promoter region controls the period and
amplitude of these oscillations.

1.2 An Overview of Regulated Bacterial Gene Expression

Gene expression is the mechanistic process by which a cellular organism
converts the stored information in its genome into the production of func-
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tional RNA and protein molecules. These molecules regulate and catalyze
all of the biochemical reactions in the cell and are responsible for metabolism
and cell growth, signal transduction, cell motility, and cellular differentiation.
By controlling the production of these molecules through the regulation of
the gene expression mechanism, the cell can dynamically sense its envi-
ronment and alter its internal behavior, including the ability to replicate itself
and change its environment. In short, everything that separates a cellular
organism — or, using a common definition, life — from its purely chemical
counterpart, arises from the regulated expression of its genes.

Here, we will review the orchestrated series of catalyzed biochemical re-
actions that first transcribes the base pair sequence of DNA into the ribonu-
cleic acid sequence of messenger RNA followed by the translation of that
mMRNA into the polyamino acid sequence of a protein. The original grand hy-
pothesis was given the name “the Central Dogma” by Francis Crick [50]. The
focus is on bacterial gene expression because, compared to eukaryotes, the
biochemical machinery inside a simple bacterium, such as Escherichia coli,
is more understood at a quantitative level. We then describe the many mech-
anisms by which a cellular organism can alter the rate of gene expression in
response to intracellular signals at the molecular level. We will find that, in
every step of the process from DNA to mRNA to protein, there are numerous
ways for an organism to increase or decrease the final rate of production of
an RNA or protein. In order to design synthetic gene networks, we must
harness these mechanisms for our own purposes.

1.2.1 Transcription

The expression of a gene begins with transcription. Transcription is an en-
dothermic series of biochemical reactions where the RNA polymerase, a
catalytic protein made of up four subunits called o, B, ', and ®, binds to
double stranded DNA and converts its base pair sequence into an RNA tran-
script containing a sequence of ribonucleotides [51] complementary to the
template strand of the DNA. The mechanism of transcription can be sepa-
rated into three distinct steps: initiation, elongation, and termination.
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Transcriptional Initiation

To initiate transcription, RNA polymerase must bind to the beginning of a
gene, called the promoter recognition region [52]. However, the RNA poly-
merase itself has only weak attractive interactions (or low affinity) for DNA
and is only capable of “sliding” across DNA, looking for regions of greater
affinity. Instead, another protein called a o-factor [53] binds strongly to the
promoter and uses its strong attractive interactions with RNA polymerase to
form a larger multisubunit complex called the Holoenzyme [54]. The initial
binding of the Holoenzyme to the promoter DNA is often the rate limiting
step of transcriptional initiation [55]. The structure of the Holoenzyme forms
a pair of pincers with an entrance and exit for double stranded DNA and an
exit channel for single stranded RNA.

After the Holoenzyme forms and binds to promoter DNA, its pair of pin-
cers can undergo a closed-to-open conformational change that allows dou-
ble stranded DNA to enter the complex through the entrance channel, but
only by unwinding into the two separate coding and template strands. The
Watson-Crick hydrogen bonding between DNA base pairs (e.g. the A:T
and G:C binding) is strong, but the RNA Polymerase has stronger protein-
DNA interactions that facilitates the unwinding. The unwinding of the double
stranded DNA is often called melting. The same Watson-Crick base pairing
also exists between DNA and RNA base pairs, but it is significantly weaker
and, since RNA substitutes a uridine nucleic acid for a thymine one, includes
the alternate A:U base pairing. Once the template strand of the DNA is in-
side, it may form Watson-Crick base pairing with complementary monomeric
ribonucleic triphosphates, such as ATP, GTP, CTP, and UTP, which are free
floating in solution. In order for the RNA polymerase to translocate forward
and begin transcription, it must break the protein-DNA interactions behind it
and form new ones in front of it. This is referred to as promoter escape.

The RNA polymerase uses the complementary base pairing between
DNA and RNA and the high energy bond in the triphosphate to catalyze
the polymerization of ribonucleotides in the 5’ to 3’ direction. The 5’ and &
refers to the positions of the carbon backbone of the ribose sugars. For the
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first ten nucleotides, the efficiency of this polymerization is extremely low,
resulting in the repeated release of short RNA transcripts (called abortive
initiation). Once an RNA transcript is aborted, the RNA polymerase will
backtrack and rebind at the promoter site to repeat the initiation process.
After the first ten nucleotides have been polymerized, the c-factor will par-
tially or completely unbind from the Holoenzyme complex, leading to further
conformational changes. These structural changes increase both the rate
and efficiency of the polymerization reaction by tightening the protein-DNA
contacts. After these structural changes, the process of transcriptional elon-
gation begins.

Transcriptional Elongation

During transcriptional elongation, the RNA polymerase is tightly bound to
the DNA and continues adding complementary ribonucleotides onto the end
of the RNA transcript at 30 to 50 nucleotides per second, depending on
the concentration of the monomeric ribonucleic acid triphosphates [56]. The
RNA polymerase:DNA:RNA complex is often called the transcriptional elon-
gation complex. The complex will infrequently catalyze the addition of an
incorrect ribonucleotide due to a faulty DNA:RNA base pairing, leading to
an error in transcription. To correct these errors, it has an inefficient editing
mechanism. The catalytic site has a constant, but relatively slow, rate of
excision of existing nucleotides followed by a backtracking motion. Because
movement of the nascent mMRNA transcript through the exit channel is much
slower when an incorrect RNA:DNA base pairing exists, the excision activity
favors the removal of slow-moving incorrect ribonucleotides, but also leads
to sporadic removal of correct ribonucleotides. In the end, transcriptional
elongation results in fewer than 1 in 10* errors, but is more error prone than
DNA replication, which has fewer than 1 in 107 errors.

Transcriptional Termination

RNA polymerase will continue transcribing DNA into an RNA transcript until
it disassociates from the DNA, releasing its strong protein-DNA interactions,
and resulting in transcriptional termination [56]. Anything that prevents the
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RNA polymerase from continuing its polymerization reaction and transloca-
tion forward will result in its disassociation. There are two general classes of
terminators: (1) proteins or RNA secondary structures that prevent the for-
ward translocation of RNA polymerase and (2) AT rich RNA sequences that
weaken the DNA:RNA base pairing inside the catalytic active site of RNA
polymerase [56]. The most common terminator is an RNA sequence that
utilizes both mechanisms. Any AU rich mRNA sequence followed by a GC
rich two-fold symmetric sequence will terminate transcription. The AU rich
sequence weakens the affinity of the RNA:DNA base pairing because A:U
base pairing has two hydrogen bonds while G:C base pairing has three. The
GC rich two-fold symmetric sequence halts translocation of the RNA poly-
merase by folding into a high affinity hairpin structure. Once the RNA poly-
merase unbinds from the DNA it releases its synthesized RNA transcript.

1.2.2 Translation

Translation is an endothermic series of biochemical reactions that reads the
sequence of an RNA transcript and synthesizes the corresponding primary
amino acid sequence of a protein. The translation process may also be sepa-
rated into the three steps of initiation, elongation, and termination. However,
the only type of RNA transcript that is translated is messenger RNA, which
comprises less than 10% of the total mass of RNA in a cell [57]. Messenger
RNAs (mRNA) contain special sequence determinants in its 5’ UnTranslated
Region (UTR) that enables a ribosome to bind to it and begin translation.
In addition, bacteria often organize the translation of multiple co-regulated
proteins into a multi-protein gene, called an operon. The mRNA transcripts
transcribed from operons contain multiple start sites for protein translation,
resulting in the sequential translation of multiple different protein products.
Other types of RNA transcripts lack these sequence determinants and in-
stead serve a variety of functional roles by binding to proteins, other RNAs,
or small molecules and playing a key role in a variety of processes, includ-
ing the regulation of translation (e.g. shRNAs and microRNAs [58, 59]), the
catalysis of reactions (e.g. ribozymes [60]), and the sensing of the intracel-
lular environment (e.g. aptamers [17, 18]). In this section, we focus on the
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roles of the ribosome, messenger RNA, ribosomal RNA, and transfer RNA
in the translation process.

The ribosome is a large multisubunit macromolecular complex contain-
ing 55 different protein and RNA molecules, separated into the 50S and
30S protein subunits and 5S, 23S, and 16S RNA subunits [61]. The RNA
molecules in the ribosome, called ribosomal RNA (rRNA), are responsible
for binding to messenger RNA, initiating the translation process, and assist-
ing in the catalytic polymerization of additional amino acids. Another type of
RNA transcript, called transfer RNA (tRNA), is responsible for converting the
nucleotide sequence in an mRNA transcript into a corresponding amino acid
sequence of a protein. This transfer of information is accomplished entirely
via Watson-Crick interactions between RNA molecules.

Translational Initiation

Translation initiation begins when the smaller 30S ribosomal subunit, con-
taining the 16S rRNA and the initiator tRNA, binds to the 5 UTR region
of an mRNA transcript. Any attractive interactions that increase the affin-
ity between the 30S subunit and 5> UTR will increase the rate of translation
initiation. One such interaction is the Watson-Crick RNA:RNA base pairing
that exists between the 3’ end of the 16S rRNA and a special sequence,
called the Shine-Dalgarno sequence [62], located in the 5 UTR. In gram
positive bacteria, this interaction is the primary one responsible for transla-
tion initiation. However, in gram negative bacteria, the ribosomal S1 protein
located in the 30S subunit also has strong attractive interactions with AU
rich sequences in the 5" UTR [63, 64]. A second important interaction is
the presence of the ribonucleotide sequence AUG that binds to the initiator
tRNA and signifies the start site of protein synthesis. The total effect of these
attractive interactions is the physical alignment of the mRNA within the 30S
subunit, leading to the binding of the larger 50S subunit, and the initiation of
translation. Lastly, there are three translation initiation proteins, named IF1,
IF2, and IF3, that bind to the assembled ribosome and mediate the needed
conformational changes.

Importantly, once a ribosome begins translation and translocates forward,
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leaving the 5 UTR vacant, another 30S subunit may bind and initiate an addi-
tional round of translation. Multiple ribosomes may simultaneously translate
the same mRNA transcript, leading to the synthesis of many proteins per sin-
gle transcript. In addition, because bacteria lack a nuclear membrane, the
translation of the mRNA transcript begins as soon as the 5° UTR has been
transcribed. Consequently, in bacteria, both the transcription and translation
processes occur at the same time and in close proximity.

Once the larger 50S subunit binds, the mRNA transcript is securely sand-
wiched between the two ribosomal subunits, forming the ribosomal elonga-
tion complex [65]. Translational elongation is a highly efficient and proces-
sive series of endothermic chemical reactions that involves numerous repeti-
tive conformational changes, Watson-Crick RNA:RNA base pairing, and cat-
alyzed chemical reactions. It involves the orchestration of the ribosome,
MRNA, and tRNA molecules.

Transfer RNAs are RNA transcripts that fold into clover leaf secondary
structures and become enzymatically modified to contain covalently modi-
fied base pairs, such as psuedouridine, dihydrouridine, inosine, and N,N-
dimethyl gaunine [57]. While there are only 20 natural amino acids in a
protein, there are at least 31 different tRNAs in bacteria, leading to multi-
ple tRNAs carrying the same amino acid. There are two unique interactions
in a tRNA that are responsible for converting the mRNA sequence into an
amino acid sequence of a protein. The first is the anti-codon loop, a three
letter sequence of ribonucleotides, that forms selective RNA:RNA base pair
hydrogen bonds with a corresponding codon in the mRNA transcript. The
other selective feature is a short single stranded sequence in its 3’ end. This
sequence binds to an aminoacyl-tRNA synthetase, an enzyme that attaches
the correct amino acid to the tRNA to create an amino acyl-tRNA. Except
in some simpler organisms, there is typically a single aminoacyl-tRNA syn-
thetase for each amino acid. The synthetase uses ATP hydrolysis to create
the high energy amino acyl-tRNA covalent bond, which is later used in the
polymerization reaction.
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Translational Elongation

The ribosomal elongation complex contains a channel and three binding
sites. The channel allows single stranded mRNA to enter and exit [57].
The binding sites, called the A, P, and E sites, are the locations in which
the amino acyl-tRNAs enter the ribosome, help catalyze the polymerization
reaction, and exit the ribosome, respectively. Between polymerization reac-
tions, the mRNA transcript is locked into position so that three base pairs of
its sequence are each accessible to A and P sites [66]. The elongation of
the polypeptide chain then occurs in three steps:

1. A charged amino acyl-tRNA enters the A site and uses its anti-codon
loop to form Watson-Crick RNA:RNA hydrogen bonds with the codon in
the mRNA transcript. Amino acyl-tRNAs with the correct anti-codon:codon
interaction will stably bind to the A site, thus reading the mRNA se-
quence. The amino acyl-tRNA in the A site is adjacent to another tRNA
in the P site.

2. The amino acyl-tRNA in the P site also forms RNA:RNA base pairing
with its accessible mRNA transcript codon sequence. The 50S subunit
of the ribosome uses the charged amino acid and the high energy bond
in the amino acyl-tRNA to catalyze a peptidyl transferase reaction, co-
valently adding the amino acid to the C-terminal end of the polypeptide
chain. The reaction is coupled to multiple conformational changes in
the ribosome, moving the amino acyl-tRNA in the A site into the P site
and the now empty tRNA in the P site into the E site.

3. A second set of conformational changes in the ribosome loosens its
tight grip on the mRNA transcript, pulls it forward by exactly three base
pairs, and then locks it down again to prepare for around round of catal-
ysis. The empty tRNA in the E site loses its RNA:RNA base pairing,
exits the ribosome, and eventually becomes charged again by binding
to an aminoacyl-tRNA synthetase.
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Translational Termination

The process of translational elongation continues until a stop codon is reached,
which is either UAA, UAG, or UGA. These stop codons have no correspond-
ing tRNAs, leading to the stalling of the processive ribosomal motion. A
protein release factor can bind to stalled ribosomes and catalyze the addi-
tion of a water molecule onto the C-terminal end of the polypeptide, ending
the chain and allowing the protein to exit the ribosome. Without the catal-
ysis of additional peptide bonds, the ribosome loses affinity for the mRNA
transcript and disassociates into the 30S and 50S subunits.

Importantly, the ribosomal RNAs (and not the proteins!) are more re-
sponsible for the catalysis of the peptidyl transferase reaction, the mRNA
sequence recognition, and the structural core of the ribosome macromolec-
ular structure. The proteins serve as an additional glue that keeps the core
structure together, mediate the different conformational changes of the ribo-
some, and ensure a more processive motion. Besides ribosomal proteins,
there are other proteins, called additional elongating factors, that assist in
removing incorrectly added amino acids and reducing errors in protein syn-
thesis.

1.2.3 The Regulation of Transcriptional Interactions

The kinetic rate of each mechanistic step in the process of transcription can
be manipulated by a number of determinants: the DNA sequence of the
gene, the availability of different o-factors, and the presence or absence of
additional DNA-binding proteins whose only purpose is to regulate the rate of
expression of one or more genes [67, 55]. These latter molecules are called
transcription factors. The rate-limiting step of the transcription process, the
step with the slowest rate, is typically transcriptional initiation. Transcrip-
tional initiation itself consists of multiple binding events and conformational
changes and each of these internal steps may be targetted for regulation.
Here, we focus on a number of different mechanisms of the regulation of
transcriptional initiation.



CHAPTER 1. DESIGN OF SYNTHETIC GENE NETWORKS 13

® B |
| o | Opa Op3 Gp2
| o |
35 10 pal
(UPS) D Spacer DD (DIS) | (ITR)
Extended
-10

Figure 1.1: The linear alignment of the RNA polymerase subunits, the conserved protein domains
of sigma factors, based on 67%, and the different regions of promoter DNA are shown. The promoter
DNA is subdivided into multiple genetic elements: the upstream element (UPS), the -35 and -10
hexamers, the extended -10 region, the spacer, the discriminator (DIS), and the initial transcribed
region (ITR). The core RNA polymerase, composed of the aauwBp’ subunits, contacts the promoter
at two regions: the two o subunits can form attractive interactions with an AT rich UPS region and
the BB’ crab claw wraps around the DIS and ITR regions. The ¢’° family of sigma factors have
four conserved domains; the three that are shown have been crystallized while 6p; is disordered in
solution. The 6p;,, 6p3, and 6p4 domains respectively form contacts with the -10 hexamer, extended
-10, and -35 hexamer regions. The 6’ housekeeping sigma factor contains all four domains while
the 6° general strong response factor contains only the 6p, and 6p3 domains, thus explaining why
it only binds to the -10 and extended -10 regions.

Table 1.1: A list of consensus sequences for E. coli ¢ factors.

Sigma Factor -35 Spacer Length -10/-10 extended
c’0 TTGACA 15-19 bp TATAAT [68]
o None CTATACT [69]
62 TTGAAA 12-16 bp CCCCATTT [70]
of TAAA 13-17 bp GCCGATAA [68]

Holoenzyme and Promoter DNA Interactions

The first and primary rate-limiting step of transcriptional initiation is the rate
at which both o-factor and RNA polymerase (the Holoenzyme) can bind to
the promoter and initiate transcription. A productive initiation event requires
the Holoenzyme to successfully undergo the closed-to-open conformational
change, escape from the promoter region, and then successful transcribe
the first 10 ribonucleotides. The sequence of the promoter recongition re-
gion is a significant determinant of the kinetic rate of each of these steps.
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Figure 1.2: A plaster atomic model of the RNA polymerase-c factor (Holoenzyme) complex bound
to promoter DNA is shown. The model shows how the (light green) -35 and -10 hexamers in
the (red) promoter DNA contact the (orange) Gpy, (blue) 6p3, and (dark green) 6p4 sigma factor
protein domains. The (yellow) linker between the Gp3 and 6ps domains and the (grey) core RNA
polymerase are also shown. (Image courtesy of the Pingry school in Martinsville, NJ in coordination
with Dr. Tim Herman of the Milwaukee school of Engineering.)

We will discuss the different regions of the promoter and how each one in-
teracts with the Holoenzyme. In addition, there are multiple ¢-factors, each
having varying affinities to different promoter sequences [71]. By regulat-
ing the steady-state concentration of each o-factor, bacteria can alter the
expression rates of their entire genome in response to metabolic or environ-
ment stresses, such as a lack of food or heat shock.

Relative to the start of transcription (defined as +1) of a gene, a bacterial
promoter is located from -60 to 20 base pairs and is separated into the pro-
moter recognition region (PRR) from -60 to +1 bp and the initial transcribed
region (ITR) from +1 to +20 bp. The basal or constitutive rate of gene ex-
pression of a bacterial promoter varies between 10~4 - 1.0 mRNA transcripts
per second and depends on the sequence of both the PRR and ITR. Within
this range, the basal rate is increased or decreased by the presence or ab-
sence of key sequence determinants that mediate protein-DNA interactions
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with the Holoenzyme. The nucleotides in the sequence determinant typically
make electrostatic interactions with amino acids of the multi-domain o-factor
or the a-subunit of RNA polymerase. The spacing of the sequence deter-
minants also determines the relative positioning of the Holoenzyme on the
promoter and incorrect spacing can lead to torsional stress and an entropic
barrier.

Overall, any sequence determinant that mediates a protein-DNA interac-
tion that increases the rate of a rate-limiting step of transcriptional initiation
will result in the greater production rate of mRNA transcripts. However, too
many sequence determinants with strong protein-DNA interactions will de-
crease the total rate of mMRNA production by preventing the Holoenzyme from
escaping the promoter and initiating transcription. Consequently, the rate of
transcription initiation depends on the promoter sequence in a highly com-
plicated manner, dependent on a multi-dimensional potential energy surface
with multiple intermediate states of varying depth and breadth.

The bacterial promoter recognition region can be further separated into
seven distinct regions, called the upstream (UPS) domain, the -35 hexamer,
the spacer region, the extended -10 sequence, the -10 hexamer, and the
discriminator (DIS) (see Figure 1.1) [72]. The -35 hexamer, the -10 hex-
amer, the extended -10, and the spacer regions make electrostatic contacts
with the o-factor. The structural differences between o-factors determine
their affinity to different sequence determinants. The “housekeeping” c'0
(gene name: RpoD) factor controls global gene expression in the absence
of environmental or metabolic stresses. It contains four protein domains,
makes electrostatic contacts with the -35 and -10 hexamers, and requires
the spacer to be between 17-19 base pairs to minimize the torsional stress
between protein domains.

In Escherichia coli, there are five additional c-factors of the 6’0 type,
including 6° (RpoS), 632 (RpoH), 6 (RpoE), 6 (RpoF), and Fecl, whose
steady-state active concentrations are up- or down-regulated according to
the cell’s phase of growth or stress condition [71]. For example, the o3-factor
is a global regulator of gene expression in response to any environmental or
metabolic stress [69] and induces cell growth to shift into stationary phase
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[73] while the 62 factor responds more specifically to the denaturement of
cellular proteins, due to heat shock [70]. In Table 1.1, we list the consensus
determinant sequences for four important E. coli o-factors. A consensus
sequence is the most common promoter sequence that binds to protein, but
not necessarily the one that binds the strongest.

Importantly, it is not only the promoter sequence, but also the concen-
tration of active o-factor and the binding competition between c-factors that
determine the rate of Holoenzyme formation at the promoter. To downregu-
late a large number of genes with similar sequence determinants, bacteria
can preferentially degrade, sequester, or stop production of the correspond-
ing o-factor . The sequences of most promoters also partially match multiple
consensus sequences, resulting in the competitive binding of two or more -
factors to a promoter. This combination of sequence determinants allows a
bacteria to fine tune the basal regulation of genes across their entire genome
according to multiple stresses and with different magnitudes of response.

In contrast, the upstream and discriminator domains do not make signifi-
cant contacts with the o-factor. An AT rich sequence in the upstream domain
will make numerous attractive interactions with the o-subunit of RNA poly-
merase, greatly increasing its affinity to the promoter, but also decreasing
the rate of promoter escape [74]. The discriminator region modulates the
initial rate of the unwinding, or melting, of double stranded DNA and also
determines the starting nucleotide for transcription [75]. The length of the
discriminator region is typically 6-8 base pairs with more GC content some-
times resulting in a slower closed-to-open conformational change.

Overall, the sequence of a promoter will determine the basal rate of
Holoenzyme formation, promoter escape, and initiation of productive tran-
scription. The dynamic changes in active o-factor concentration enable the
bacteria to make genome-wide changes to this basal rate. However, in order
to selectively regulate single genes in response to a stimulus, the bacteria
must utilize additional DNA-binding proteins, called transcription factors.
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Table 1.2: A list of the thermodynamic binding free energies between the lac, tet, and ara tran-
scription factors and their respective DNA operators at physiological temperature, pH, and salt
concentration.

Transcription Factor [ Operator Sequence [ AGpinging keal/mol
Lacl tetramer 0, AATTGTGAGCGGATAACAATT | —14.12 to —14.90 [78, 79]
Lacl tetramer 0, AAATGTGAGCGAGTAACAACC —13.22 [78]
Lacl tetramer 03 GGCAGTGAGCGCAACGCAATT ~ —12[78]
Lacl tetramer Non-specific —6.3to —8[79, 80]
TetR dimer 0 ACTCTATCAATGATAGAGTC —15.0 [81]
TetR dimer 0, TCCCTATCAGTGATAGAGA ND
AraC dimer I CATAGCATTTTTATCCATAA ~ —10.7 [82]
AraC dimer b AGCGGATCCTA ~ —8.9 [82]
AraC dimer L+ CATAGCATTTTTATCCATAA ... —16[82]
... GATT AGCGGATCCTA

Transcription Factor, Holoenzyme, and Operator DNA Interactions

A transcription factor is any DNA-binding protein that modulates the rate of
production of mMRNA transcripts by interacting with the Holoenzyme. Tran-
scription factors most often regulate the rate of the transcriptional initiation by
modulating the binding affinity of the Holoenzyme to promoter DNA, altering
the rate of its closed-to-open conformational change, blocking its promoter
escape, or a combination of these effects. The motifs that confer a DNA-
binding capability to a protein domain includse CysoHis, or Cys,Cys, zinc
fingers, steroid receptors, leucine zippers, helix-turn-helices, and helix-loop-
helices [76]. Each DNA-binding protein binds to a consensus DNA sequence
between 9 and 20 base pairs, called an operator. The DNA operator local-
izes the transcription factor to a spatial position adjacent to the Holoenzyme,
enabling it to make attractive or repulsive electrostatic, van der Waals, or
hydrophobic interactions [77].

Transcription factors may bind to DNA as a monomer or they may form
multi-subunit complexes that bind to quasi-symmetric DNA sequences in a
cooperative fashion. In addition, DNA-binding proteins are often composed
of multiple protein domains with some providing a DNA-binding capability
while others conferring a transcriptional regulatory activity. In Table 1.2, we
show the DNA sequences of the operators that bind to the /ac, tet, and ara
transcription factors and their corresponding Gibbs free energies of binding.
Notice how the sequences of the lac O, and O3 operator sites deviate from
the sequence of the O; site, resulting in a weaker protein-DNA interaction.
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Table 1.3: A list of the thermodynamic binding free energies between the inducer-bound lac and tet
repressors and their respective DNA operators.

DNA-Binding Protein ~ Operator [ Inducer [ AGypinging keal/mol

LaclI tetramer 0, IPTG —10.9 [78]
TetR dimer 0, aTC —11 [81]

In addition, note how the relatively weak protein-DNA interactions between
the AraC dimer and either the I} or I, sites may be strengthened by simul-
taneously binding to an adjacent I/l site with a 4 bp spacer. The total
Gibbs free energy is, however, not simply the sum of the two because of
the entropic costs of bending the protein dimer. Finally, also note that all
DNA-binding proteins have the capability to bind to non-specific DNA with
a relatively weak electrostatic interaction. The specificity of a transcription
factor towards its operator site is always relative to its binding to non-specific
DNA.

A variety of transcription factors can also bind to small molecules, called
inducers, that (once bound) trigger a conformational change that either strength-
ens or weakens the affinity to their DNA operator. These transcription factors
are often used as intracellular sensors that turn specific genes on or off in
the presence or absence of a specific small molecule, such as a food source
or antibiotic. In Table 1.3, we list the inducers of the /ac and tet repressors
with the corresponding Gibbs free energy of their DNA-binding interactions,
once bound to their inducer.

The regulatory effect of the transcription factor depends on the location
of its operator, the interactions that the protein forms with the Holoenzyme
once it is bound, and any adjacently bound proteins that may strengthen
or interfere with this interaction. A transcription factor that participates in
any interaction that either increases or decreases the overall rate of mMRNA
production is respectively called an activator or repressor [83, 84]. The most
common type of bacterial transcription factor is a repressor that binds to a
promoter-overlapping operator site and uses van der Waals forces to prevent
the Holoenzyme complex from binding, which is also called steric hindrance.
The repressing effects of steric hindrance largely depend on the location of
the operator and the extent of its overlapping with the promoter region.
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Bacterial activators are less common, but many examples exist; synthetic
examples of bacterial activators have also been constructed [85]. A bacte-
rial activator possesses attractive electrostatic or hydrophobic interactions
with the Holoenzyme so that, once it binds to a spatially adjacent position, it
can increase the rate of Holoenzyme formation or its closed-to-open confor-
mational change. Activators often bind to DNA operators directly upstream
of the -35 or UPS element of the promoter while also forming electrostatic
interactions with the C-terminus of the a-subunit of RNA polymerase. The
presence of an activator often results in a 10 to 100 fold increase in the rate
of MRNA production. In addition, a second transcription factor, called a co-
factor, can bind to an adjacent position relative to the first one to strengthen
or weaken its activating or repressing interactions [52]. Multiple cofactors
can bind to combinatorially control the regulated rate of transcriptional initia-
tion according to the presence or absence of multiple DNA-binding proteins.
However, in order to remain clear of the processive forward motion of the
Holoenzyme, activating transcription factors must bind upstream of the pro-
moter, creating a restriction on the number of activating proteins that can
both bind close enough to the Holoenzyme to confer a favorable interaction.
The evolution of gene regulation has overcome this constraint by utilizing
long range regulatory effects, such as DNA looping.

DNA Looping and Long-Range Effects

Like other polymers, double stranded DNA can spontaneously, sporadically,
and transiently form loops with varying optimal persistence lengths. How-
ever, if one or more proteins bind to a pair of operator sites at a sufficient
distance, they can stabilize the transient loop into a stable structure. This
stable structure creates a three dimensional space in which additional attrac-
tive or repulsive interactions may form with the Holoenzyme at the promoter.
Stable loops which prevent the Holoenzyme from binding to the promoter
will result in repression while loops that place activating transcription factors
in a favorable position will increase the rate of transcriptional initiation [34].
The activation or repression of transcriptional initiation depends on the loop
length, the size of the loop-mediating proteins, and typically oscillates with a



CHAPTER 1. DESIGN OF SYNTHETIC GENE NETWORKS 20

period of =11 bp [86], which corresponds to the phase of the double helix of
DNA.

By using multiple DNA-binding proteins to form loops of varying lengths
with different activating or repressing capabilities, bacteria can dramatically
increase the combinatorially regulation of transcriptional initiation. Transcrip-
tion factors may coregulate gene expression by stabilizing a DNA loop to
allow another protein to confer its regulatory activity or, conversely, it may
destabilize a DNA loop by sequestering the needed operator site or stabi-
lizing another competitively forming DNA loop. The sequence of the DNA
[87] and any proteins bound to it can also change the elastic properties of
DNA and, consequently, change the optimal persistence length of a putative
DNA loop. All of these interactions can take place hundreds to thousands
of base pairs from the promoter, leading to the possibility of significant long-
range effects in gene regulation. Further, these long-range effects contribute
towards the organization of the entire bacterial genome into regions of sus-
tained activation or repression of transcription [88]. These long-range effects
are thought to be less significant in bacteria, but are highly important and
common place in eukaryotes.

Bacteria use a diversity of mechanisms to regulate transcriptional initia-
tion and control the production of mMRNA transcripts. To gain an even finer
control over the production of proteins, bacteria also regulate the translation
process.

1.2.4 The Regulation of Translational Interactions

The rate of production of proteins through the translation of mRNA tran-
scripts is most commonly regulated at its initiation and elongation steps.
Similar to how the sequence of promoter DNA controls the basal rate of tran-
scription, the sequence of the 5’ UnTranslated Region (UTR) of an mRNA
transcript controls the basal rate of translation. Sequence determinants in
the 5 UTR make significant RNA-RNA and Protein-RNA interactions that
control the rate of ribosome assembly and translation initiation. After initi-
ation, the coding sequence of the mRNA transcript also plays a minor, but
sometimes significant, role in the rate of translation elongation. In addition,



CHAPTER 1. DESIGN OF SYNTHETIC GENE NETWORKS 21

proteins or RNA molecules can bind to the 5> UTR or coding regions of the
mRNA transcript to further modulate the rate of translation. These protens
and RNA molecules are called translation factors.

mRNA Secondary Structures and mRNA:rRNA Interactions

An mRNA transcript is produced as single stranded RNA, but can use RNA:RNA
Watson-Crick base pairing to form RNA duplexes. Unlike double stranded
DNA, however, double stranded RNA is more forgiving of bulges, hairpins,
and other mismatched base pairing. Consequently, strong RNA:RNA inter-
actions can readily associate in solution with as few as four ribonucleotides
and can extend to large stable secondary structures. Importantly, unlike pro-
tein structure, it is possible to calculate putative RNA secondary structures
using a variety of modern computational methods [89]. For our purposes,
we use the successor to Mfold, called UNAfold [1], to calculate the minimum
free energy (MFE) of an RNA secondary structure or RNA duplex.

The Protein-RNA and RNA-RNA interactions between the 5 UTR of the
MRNA transcript and the 30S ribosome subunit are the primary mechanism
by which the ribosome binds to the 5’ end of the mRNA transcript and initi-
ates translation. The 30S subunit binds to the mRNA transcript at the ribo-
some binding site (RBS). Its footprint includes either a U rich sequence tract
or the Shine-Dalgarno (SD) sequence, which is UAAGGAGG, followed by a
minimum spacer of about 5 bp (measured from the end of the SD sequence),
the initiation codon AUG, and about 5-10 additional base pairs (called the
downstream box) [90]. The U rich sequence binds to the ribosomal S1 pro-
tein [63] while the SD sequence forms an RNA:RNA duplex with a comple-
mentary sequence located in the 3’ end of the 16S rRNA [62]. Together with
the initiator codon, these interactions mediate the assembly of the ribosome
at the translation start site. Deviations from the SD or U rich sequences or
nonoptimal spacing can result in the reduction of the basal rate of translation
initiation.

However, additional RNA:RNA interactions that sequester the U rich or
SD sequences will repress translation initiation. The most common example
is the formation of an mMRNA secondary structure within the ribosome binding
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Table 1.4: A selected list of ribosome binding sites (RBSs). The DNA sequences starting with
AGGA and ending with a start codon are shown. The sequences are qualitatively ranked by their
translation efficiency (average proteins per mRNA transcript with all other determinants equal) with
one being the most efficient. The Gibbs free energies of the mRNA folding into a secondary struc-
ture (AGo1ding) and the rRNA:mRNA hybridization (AGpyyp,iq) are shown for comparison. (Calcu-
lating using UNAfold [1])

RBS Sequence H Ranking ‘ AG fo1ding kcal/mol | AGpypriq keal/mol

AGGAGGAAAAAA ATG 1 >1.5 -14.6
AGGAATTTAA ATG 2 0.1 -10.3
AGGAAACAGACC ATG 3 -0.2 -12.6
AGGAAACCGGTTCG ATG 4 -2.8 -16.0
AGGAAACCGGTTC ATG 5 -2.5 -13.7
AGGAAACCGGTT ATG 6 -0.7 -10.7
AGGACGGTTCG ATG 7 -1.3 -16.1
AGGAAAGGCCTCG  ATG 8 -1.8 -12.6
AGGACGGCCGG ATG 9 -3.1 -11.2

site that occludes the SD sequence from binding to the 16S rRNA. These
secondary structures often consist of hairpins of 4 or more nucleotides with
Gibbs free energies of about -1 to -3 kcal/mol. As an example, in table 1.4,
we present nine different ribosome binding sites (ending at the start codon)
and the the Gibbs free energies of the their RNA:mRNA and mRNA:mRNA
interactions. At equilibrium, the mRNA secondary structure will rapidly fold
and unfold with the probability of it existing in the folded state proportional to
the Boltzmann factor, exp (—% . As the mRNA secondary structure
grows in stability, it will more frequently exist in the folded state and sequester
the SD sequence from binding to the 30S ribosome subunit [91].

Consequently, the overall basal rate of translation initiation arises from the
competition between the formation of any mRNA secondary structures and
the attractive protein-RNA or rRNA:mRNA interactions. However, the exact
formula relating the rate of translational initiation to the sequence of the RBS
is still unknown, partially due to the ribosomal S1 protein’s ability to bind to
U rich sequences and other less quantified variables.

Translation Factors: Proteins and RNAs

In addition to mMRNA secondary structures, both proteins [92] and other RNA
molecules [59] can bind to the ribosome binding site and sequester the SD
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or U rich sequences. Similar to repressing transcription factors, these trans-
lation factors can bind and sterically prevent the ribosome from assembling.
The most important examples are regulatory RNAs [58] whose complemen-
tary or antisense sequence to regions in the ribosome binding site cause
them to form strong RNA:RNA duplexes, which includes short-hairpin RNAs
and microRNAs. Because viruses often encode their genomic information
as double stranded RNA, bacteria will rapidly degrade long RNA:RNA du-
plexes, resulting in the targetted degradation of the mRNA transcript and the
cessation of translation. If the complementary sequence is short enough,
the RNA:RNA duplex does not trigger targetted degradation and only se-
questers the sequence from other interactions. These regulatory RNAs may
be used as sequence-specific translational repressors for an arbitrary RBS
sequence.

Codon Usage, Translational Pausing, and Frameshifting

Once the ribosome initiates translation and begins the elongation process,
the coding sequence of the mRNA transcript can alter the rate of elongation
through its codon usage or by including long stretches of repeat Us or As.
Because there are 64 possible codons, but only 20 natural amino acids,
there are redundant codons that result in the incorporation of the same
amino acid into an elongating polypeptide, which has been named the de-
generate genetic code. However, the rate in which the ribosome translates
these redundant codons can vary. Through evolution, the concentration
of amino acyl-tRNAs that correspond to more frequently used codons are
much higher than the ones that correspond to rare codons. Consequently,
the translation elongation rate of a rare codon can be much slower, and
can causing translational pausing, because of the scarcity of the needed
amino acyl-tRNA. The frequencies of codon usage can therefore be corre-
lated with the rate of their translational elongation. By analyzing the fre-
quency of codons in the genome of an organism, one can construct a codon
table that estimates the translational elongation rate of each of their codons.
These codon tables are publically available at many web sites (e.g. http:
//www.kazusa.or. jp/codon/) and differ from organism to organism.
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The repeated usage of rare codons can result in longer translational paus-
ing and possibly the dissociation of the ribosome subunits. When inserting
a gene from one organism into another, it is common to codon optimize the
MRNA coding sequence by replacing all rare codons with frequently occur-
ring ones, resulting in an increased rate of translation [93]. However, multi-
domain proteins often require translational pausing at their domain borders
to allow the individual domains to correctly fold. Therefore, the repeated us-
age of rare codons at strategic points in the mRNA sequence can serve an
important functional role.

Finally, repeated tracts of the same nucleotide followed by a stable sec-
ondary structure, such as a hairpin, can cause the ribosome to sometimes
skip a nucleotide, causing a frameshift [66]. The frameshift can result in
the appearance or disappearance of a downstream stop codon. Bacteria
and viruses sometimes use frameshifting to vary the composition of a multi-
domain protein, using the stop codon to conditionally or randomly add an
additional protein domain.

1.2.5 Messenger RNA and Protein Degradation and Dilution

The steady-state concentrations of mMRNAs and proteins are determined not
only by their production rates via transcription and translation, but also by
their degradation and dilution rates. By altering the degradation rate of an
mMRNA transcript or protein, bacteria can quickly increase or decrease the
concentration of an RNA or protein without interfering with its transcription or
translation process. The degradation rate of an mRNA transcript or protein
has a number of sequence determinants and typically depends on the for-
mation of secondary or tertiary structures that bind to the degradative ma-
chinery. By changing these sequence determinants, bacteria add another
layer of control to the fine tuned production of mMRNA and protein molecules.
In addition, other protein and RNA molecules can dynamically regulate the
degradation rate of a protein or RNA by binding to it and sequestering its
binding site with the degradative machinery or by mediating stronger inter-
actions between the degradative machinery and the target, resulting in in-
creased targetted degradation.
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However, when bacteria are in their exponential phase of growth, the ef-
fects of cell division can play a greater role in determining the steady-state
concentration of mMRNA transcripts and proteins. The rate at which bacteria
replicate and distribute their cytoplasmic contents to daughter cells —called
the dilution rate —is, of course, determined by the cell growth rate. The cell
growth rate can be affected by a variety of different conditions, including nu-
trient and oxygen availability, the presence of antibiotics or other toxic chem-
icals, and the cell surface contact (ie. whether the bacteria are growing in
solution or adhered to an agar plate). The dilution rate is often higher than
the degradation rate of bacterial proteins, making it a key determinant of its
steady-state concentration. Of course, the dilution rate is an approximation;
cell replication is a highly orchestrated cascade of events that includes DNA
replication, the separation of the bacterial chromosome, and the invagina-
tion of the plasma membrane to create two separate daughter cells. A more
accurate description of the process of cell replication is as a random discrete
event (discussed below).

RNAses and the RNA Degradosome

The degradation of an mRNA transcript involves the coordinated enzymatic
activities of a variety of endo and exonucleases and associated auxiliary
proteins [94, 95]. Many of these proteins form a macromolecular complex,
called the RNA degradosome. In general, an RNA endonuclease can attack
and cut the mRNA transcript in the middle of the transcript while an RNA
exonuclease binds to the tri- or mono-phosphate ends of a transcript and
sequentially degrades its ends. In bacteria, the only RNAse exonucleases
that have been found are the ones that bind to mono-phosphate or poly-
adenylated 3’ ends and degrade in a 3 — 5’ direction. Endonucleases and
exonucleases often coordinate their degradative activities in a “cut and chew”
mechanism, where the endonuclease creates new 3’ mono-phosphate ends
followed by the repeated degradation of the 3’ end until the exonuclease
either runs out of transcript or is blocked by an mRNA secondary structure.

Importantly, the first nucleolytic attack on the mRNA transcript is typically
the rate-limiting step. Any ribosome that encounters the cut will simply fall
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off, resulting in an unproductive translation product. However, any unaffected
coding region with an intact ribosome binding site can rebind to a ribosome
and lead to the productive translation of that coding region. Consequently,
mRNA transcripts with multiple start sites and coding regions can be de-
graded in a location-specific mechanism that results in each coding region
having a different effective half-life, leading to varying rates of protein produc-
tion. The variation in protein production among coding regions of an operon’s
mRNA transcript can be used to balance their steady-state concentrations
in stoichiometric proportions, which is often needed when protein subunits
bind together to form multimeric complexes or when optimizing a metabolic
pathway [96].

In Escherichia coli, the degradosome is composed of RNAse E, PNPase,
and an auxilary helicase and enolase. In addition, RNAse Il and IIl and
PAP1 all play important roles in the regulated degradation of mRNA tran-
scripts. RNAse E is an endonuclease that cuts single stranded RNA at AU
rich sequences and with greater efficiency when it binds near the 5’ end. The
exact sequence or structural specificity of RNAse E is still uncertain . RNAse
lll is also an endonuclease, but binds to a double stranded RNA secondary
structure called the proximal and distal boxes [97]. Other mMRNA secondary
structures can sequester the RNAse E and Ill binding sites and reduce the
endonucleolytic rate of attack. Finally, the exonucleases RNAse I, PNPase,
and PAP1 work together to polyadenylate the 3’ ends of an mRNA transcript
and sequentially degrade it in a 3° — 5’ direction.

The actions of these enzymes can be blocked or enhanced by the pres-
ence of a stable mRNA secondary structure, by the binding of a complemen-
tary regulatory RNA molecule [98], or by the presence of an elongating ribo-
some. The 3" UTR ends of mRNA transcripts often have small secondary
structures that prevent their rapid degradation by exonucleases. RNAse
binding sites can also become transiently occluded by the ribosome itself,
especially in efficiently translated mRNA transcripts or at the ribosome bind-
ing site [99].
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Peptide Tags and the Proteosome

The degradation of proteins in the cytoplasm requires the coordinated ac-
tions of multiple protease and substrate-binding proteins, collectively referred
to as the proteosome. In bacteria, there four different families of proteins that
each make up a proteosome, named CIpAP/XP, ClpYQ (HslUV), Lon, and
FtsH, with each consisting of an ATPase and proteolytic domain or subunit
[100, 101]. The protease subunits form a large multimeric macromolecular
complex with numerous proteolytic active sites surrounding a large chamber.
The ATPase domain is responsible for binding to protein targets, denaturing
them into a disordered state, and translocating them inside the chamber in
an ATP-dependent reaction. Once the targeted protein is inside the prote-
olytic chamber it is rapidly degraded into small peptides.

If a bacterial protein contains a binding site for the ATPase domain in
a proteosome it will become more rapidly targeted for degradation. These
binding sites are often short peptide sequences near the C- or N-terminals,
enabling their easy accessibility. For example, the ssrA tag is a 11 amino
acid peptide that, when fused to a protein in the cytoplasm, can bind to
any of the ClpXP, CIpAP, or FtsH proteosomes to become more rapidly de-
graded [102]. The presence of the ssrA tag reduces the half-life of a pro-
tein by about 10 fold. Bacteria use the ssrA tag to rapidly degrade partially
translated protein products whose ribosomes have stalled. The ssrA RNA, a
tRNA-like RNA molecule, binds to stalled ribosomes and substitutes the RNA
sequence for the ssrA tag into the stalled ribosome machinery, enabling it to
finish the translation of the protein, but also including the ssrA peptide tag at
the C-terminal end.

The half-lives of proteins may also be regulated by producing an adaptor
protein whose purpose is to mediate stonger interactions between a target-
ted protein and a proteosome [100]. By dynamically producing these adap-
tor proteins in response to environmental or metabolic stimuli, a proteosome
can more rapidly bind to and degrade a specific protein and, consequently,
reduce its steady-state concentration in the cell. The classic example is the
general stress response in E. coli where a recognition factor RssB binds to
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the sigma factor 6° for preferential degradation by the ClpXP proteosome.

1.3 The Modeling of Gene Networks

The goal of modeling a system of regulated genes, called a gene network,
is two-fold:

1. to accurately capture the dynamics of the regulated production of RNA
and protein molecules

2. to connect experimental modifications of the molecular interactions in
the system to changes in the kinetic constants of the model and, con-
sequently, the system level behavior of the model

Our goal does not require us to model each and every molecular interaction
and protein conformational change in the system. We must make some sim-
plifying assumptions, but our reason for doing so is not to make the result-
ing mathematical equations more readily solvable. Instead, we only make
simplifying assumptions when modern techniques may not experimentally
probe the difference between series of interactions, such as in the rapid and
coordinated conformational changes of a large protein. Consequently, the
results of these types of models are directly applicable and comparable to
experimental results, which is our main goal.

We model gene networks by breaking down their protein-DNA, protein-
RNA, protein-protein, and RNA-RNA molecular interactions into a system of
chemical and biochemical reactions with mass action rate laws and whose
kinetic parameters or thermodynamic free energies are largely empirically
measured and taken from the literature. We treat the creation or destruc-
tion of stable non-covalent bonds, such as the formation of a protein:DNA
complex, as a common biochemical reaction.

It is important to note that our model is created like an algorithm. Given
a sequence of DNA with defined and characterized genetic components,
the system of chemical reactions can be written down according to well de-
fined set of rules, similar to a program. For a complicated gene network,
the model-generating algorithm remains the same; it is applied to each and
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every molecular interaction in each gene in the network, including the regu-
latory steps in transcription, translation, mMRNA and protein degradation, and
enzymatic reactions that often play regulatory roles (e.g. phosphorylation
or methylation). Consequently, we can detail the system of reactions for a
generalized gene regulated by transcription or translation factors and then
apply that same algorithm to all genes in the network.

The system of reactions also includes unique species for each of the DNA
operators, promoters, ribosome binding sites, and other distinct regions in
DNA or RNA molecules in the system. This allows us to explicitly write down
the Protein-DNA, Protein-RNA, and RNA-RNA regulatory interactions be-
tween distinct binding sites without resorting to the usage of Hill kinetics and
other nonsensical rate laws with associated fudge factors. Importantly, the
molecular interactions between a transcription or translation factor and its
DNA or RNA binding site are context-free; when the binding site is moved to
a different location in the sequence the kinetics of the molecular interaction
remain unchanged. Any cooperative binding between transcription or trans-
lation factors is explicitly included by creating attractive interactions between
adjacently binding factors.

1.3.1 Kinetics and Equilibrium Data

Before describing the reactions in the model, we first discuss the relation-
ships between kinetic, equilibrium, and thermodynamic data, their empirical
measurement, and some necessary approximations. Every reaction in the
model has a corresponding kinetic rate that describes the rate of association
of its reactant molecules and the formation or destruction of any covalent
bonds or stable non-covalent interactions. For biological systems, the nu-
merous degrees of freedom of a pair of reactant molecules necessitates a
largely empirical measurement of their kinetics. Consequently, it is important
to only include reactions in the model whose kinetics or equilibria data may
be feasibly measured.

Consider a bi-molecular reaction with a forward and backward kinetic con-
stant, &/ and k. The pair of kinetic constants also define an equilibrium dis-
association constant, K; = k” /k/, and an equilibrium association constant,
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K, = 1/K,. The equilibrium constants can also be related to the Gibbs free
energy of binding or reaction, AG, between the two molecules via

AG
K; =exp <ﬁ) (1.1)

and AG
Ka = eXp (W) (12)

Using a variety of experimental techniques [103, 104], including surface
plasmon resonance, electromobility gel shift assays, and fluorescence-based
tagging, the kinetic and equilibrium constants of a protein binding to DNA or
RNA, including Holoenzyme formation on promoter DNA and transcription
factor interactions with their operator sites, can be empirically measured.
Because the equilibrium constant and Gibbs free energies depend only on
the relative concentrations of the bound and unbound state of the DNA or
RNA molecule, it is more easily measured. Consequently, equilibrium data
is more commonly available than kinetic data.

In situations where only equilibrium data is available, one can assume
that the forward rate of binding of a large protein to its DNA or RNA bind-
ing site is diffusion-limited [105], use the size of the protein to calculate its
forward binding kinetic, and then use the equilibrium data to calculate the
backward binding kinetic. To do this, we use a first principles description of
two particles diffusing in a three dimensional space. The Smoluchowski rate
for a diffusion-limited reaction is

k' =4nDa (1.3)

with a diffusion coefficient, D, and target size, a. The diffusion coefficient of
a free particle of diameter d in a homogeneous fluid undergoing a random
three-dimensional walk may be calculated using Einstein’s relation
kT
- 3nnd

(1.4)

Plugging in Eq. 1.4 into Eqg. (1.3), we obtain the kinetic rate of association in
terms of temperature, T', the viscosity of the fluid, 1, and the ratio between
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the diameter of the protein and its target site, a/d, so that
K =T-=—2 (1.5)

If we assume that fluid is aqueous and the temperature is physiological so
that 1 =1 x 1073 Pa s and T = 30°C, then the association rate is k/ =
3.3590 x 109§ in units of [M s]~!. The size of the protein will typically be
much larger than the size of the DNA binding site and so we may assume
that a/d =~ 0.1, leading to an approximate association constant of Kk ~ 108
[M s]~!. Consequently, if we lack kinetic data, but have equilibria data, then
we may approximate the backward kinetic constant as k? = 108 x K.

Of course, these approximations ignore any electrostatic interactions be-
tween the protein and its target site and also any sliding of the protein along
the DNA or RNA molecule that reduces the dimensionality of the random
walk. These additional interactions can increase the diffusion-limited rate of
association. Conversely, if the protein must bind to its target size in a specific
conformation, then the association rate will accordingly decrease. We now
review the systems of reactions models the each of the regulated processes
in gene expression.

1.3.2 Regulated Transcription

The production of mMRNA transcripts via transcription can be broken down
into the basal transcription processes of transcriptional initiation, elonga-
tion, and termination and the regulatory interactions that modulate the rates
of each these steps. The basal transcription process is modeled using
five chemical reactions. For E. coli, we use four free kinetic parameters
for the basal transcription process, controlling Holoenzyme formation and
the closed-to-open conformational change. The remaining parameters have
been experimentally determined. The number of chemical reactions that
model the transcription factor binding interactions will, of course, depend on
the number of transcription factors and DNA operators. We present a gen-
eralized reaction scheme for an arbitrary number of activating or repressing
transcription factors.
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The Basal Transcription Process

The formation of the Holoenzyme complex on the promoter is modeled by a
pair of reversible reactions. It is possible that either the o-factor binds first
to the promoter followed by RNA polymerase recruitment or that the o-factor
binds first to RNA polymerase to form the complex and then to promoter
DNA. It is also possible that both events occur. Consequently, we assume
that the ordering of these events is insigificant and that a single complex,
called RNAPoG-factor, binds and unbinds to the promoter DNA in the following
reaction

RNAP-6 + Promoter = RNAP:P

with forward and reverse kinetic constants, kI];NAP and ngAP. These kinetic
constants will depend on the sequence determinants in the promoter DNA
and the availability of the active form of the ¢ factor.

If there are adjacent operators near to or within the promoter, then they
must also be included in the pair of reactions. These operators are repre-
sented as unique species, but are part of the same contiguous DNA molecule
that includes the promoter and coding DNA sequences. By representing
them as unique species, we can explicitly write down the regulatory interac-
tions that occur when each is bound by a transcription factor. Importantly,
even though there are more than two reactant “species” in the reaction, the
rate law is still 2"¢ order bi-molecular; the additional species can not individ-
ually diffuse in space. For example, if there are two overlapping operators
within the promoter region, labeled O; and O,, so that the RNA-G complex
can only bind to the promoter when these operators are unbound, then the
pair of reactions is

RNAP-6 + Promoter + O; + O, 2 RNAP:P:0;:0,

with a 2" order bi-molecular rate law and kinetic constant. The operators
may bind to repressor transcription factors whose steric hindrance prevents
the RNA polymerase from binding.

Conversely, if an adjacent (typically upstream) operator, O4, binds to an
activator transcription factor, TF4, with attractive interactions towards the
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RNA polymerase, the pair of reactions would be
RNAP-6 + Promoter + TF4:01 = RNAP:P:TF4:01

with an increased k,’;NAP or a decreased kb, , » quantifying the attractive in-
teractions that either recruit the RNA polymerase-G complex or stabilize its
assembly on the promoter.

Once the Holoenzyme complex has assembled on the promoter it must
undergo the closed-to-open conformational change, unwinding the DNA and
preparing for promoter escape. Because there are numerous steps in this
process which are individually unprobable by quantitative experimentation,
we assume that the conformational change is a single first order step

RNAP:P — RNAP*:P

with a well-defined kinetic constant, k;,;;. If the Holoenzyme formation in-
volved the presence of any DNA operators then they must be carried over
into future reactions. For example, for the case of two overlapping operators,
the conformational change must be

RNAP:P:0;:0, — RNAP:P*:0;:0,

After the conformational change, the Holoenzyme complex must escape
the promoter region by translocating forward. In the process, the interactions
between the ¢ factor and RNA polymerase become weaker and the ¢ factor
may disassociate completely, but we do not track the release of ¢ factor. The
promoter escape step is modeled as a first order reaction

RNAP*:P — RNAP:DNA; + P

with a kinetic constant k.s.qpe- In the escape reaction, the promoter “species”
is regenerated, allowing another Holoenzyme to assemble there. Likewise,
if there are any operators involved in the assembly reaction, they must also
be regenerated. Using the same example with two overlapping operators,
the promoter escape step is

RNAP:P*:01:0, — RNAP:DNA; + P + O; + Oy
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After the RNA polymerase escapes the promoter region it will begin the
process of transcriptional elongation. The RNA polymerase will translocate
forward and transcribe DNA to produce an mRNA transcript with a partially
sequence-dependent rate, k.;,,,. This may be modeled by a series of N first
order reactions,

RNAP:DNA; — RNAP:DNA, — ... — RNAP:DNAy_| — RNAP + mRNA

where N is the number of nucleotides in the DNA coding sequence. Because
N is typically a large number (200 - 1000 base pairs), it becomes impracti-
cal to include each translocation step in transcriptional elongation. However,
with large N, the delayed production of mRNA transcripts becomes impor-
tant. Consequently, we need a way to more practically model transcriptional
elongation while retaining the delay.

We note that, when using stochastic chemical kinetics, the reaction times
of each reaction are an exponentially distributed random number. Impor-
tantly, if a series of events each has an exponentially distributed waiting
time, then the amount of total time to go from beginning to end is gamma
distributed [106]. Therefore, by assuming that the rate of elongation, k.o,
is sequence-independent, we can collapse the N first order reactions into a
single first order reaction

RNAP:DNA; — RNAP + mRNA

that is y-distributed with a single kinetic rate, k;o,g, and a number of steps,
N. The average delay time of this reaction is simply N/kel,mg while the vari-
ance of the delay time is N/kglong. The rate of transcriptional elongation also
depends on the growth rate of the cell [107] and varies between 30 and 70
nucleotides per second.

Transcription Factors

The binding and unbinding of the i** transcription factor to its operator DNA
site, O;, are represented by a pair of reactions

TF,' + Oi = TF,’ZO,‘
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with forward and backward kinetic constants, k/;F, and kl;"F,- . Additional pairs
of reactions are created for each operator site in the system. If two operator
sites bind to the same transcription factor then there will be two pairs of
reactions.

If the transcription factor is a repressor and binds to an operator that over-
laps with the promoter, then its sole regulatory effect is to prevent the RNA
polymerase from binding. This is modeled by requiring that the overlapping
operator take place in the initial Holoenzyme assembly reaction. If a repres-
sor transcription factor is bound to the overlapping operator then the assem-
bly reaction can not take place. Consequently, no additional reactions are
require to model the repression of transcriptional initiation by a bound over-
lapping operator. Conversely, if the transcription factor is an activator, then
(as shown above) pairs of additional reactions must be created to quantify
the attractive interactions between a bound activator and RNA polymerase.

Cooperative binding between adjacently binding transcription factors may
be modeled by treating the two transcription factors as binding to both oper-
ators and then modifying the kinetic constants when one transcription factor
has already bound. The first two pairs of reactions model either transcription
factor binding to the operators with base kinetic constants, k]TCFi and k’; B

TF1 +O1 + O 2 TF1:01:07
TF2 + 01 + 02 = OliTFQZOZ

and the second pair of reactions models the cooperative (or anti-cooperative)
binding of the second transcription factor with either increased (or decreased)

. . coop coop
kinetic constants, k" and kr "

TF2 + TF1201202 = TF1:01:TF202
TF1 + O1:TF2:00 = TF101:TF2:0;

If there are a large number of cooperatively binding transcription factors, the
number of unique species and reactions can become quite large, especially
if the transcription factors each possess interactions with RNA polymerase.
In these cases, it is sometimes more feasible to switch to an equilibrium
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description of protein-DNA interactions at the promoter by using the chemical
partition function.

1.3.3 The Chemical Partition Function and Equilibrium Holoenzyme Formation

The chemical partition function can be used to calculate the probability of
finding the promoter at one of its regulatory states while the system is at
chemical equilibrium [108]. It assumes that all promoter-DNA interactions
between transcription factors, the Holoenzyme, and other trans- proteins
are at equilibrium with their operator, promoter, and other DNA sites, re-
spectively. Because the mathematical description uses only equilibrium data
about the interactions, such as their Gibbs free energies, its application is
more feasible when information about the protein-DNA interactions is limited
or if the number of regulatory states is too large, making a full kinetic de-
scription unwieldly. The regulatory states of the promoter are all possible
combinations of each DNA binding site being either bound or unbound, in-
cluding all possible ways that two, three, or more proteins can simultaneously
bind to the promoter DNA.

While this number can be quite large for a simple system, the resulting
answer is an algebraic equation describing the probability of each of these
states. Here, we use the chemical partition function to describe only the for-
mation of the Holoenzyme on the promoter. By summing together the prob-
abilities of all of states in which the Holoenzyme has successfully assembled
on the promoter, one may calculate the probability that the promoter is in a
“transcriptionally ready state”. Other processes in gene expression, includ-
ing the closed-to-open conformational change and transcriptional and trans-
lation elongation, are non-equilibrium processes; assuming their interactions
are at chemical equilibrium would be invalid.

In order to apply the chemical partition function, one follows these steps:

1. Enumerate all of the promoter-DNA interactions in the system with their
changes in Gibbs free energies, AGp;ging-

2. Enumerate all possible regulatory states in which the promoter may ex-
ist, including the reference state, i =1,...,5.
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Table 1.5: The enumeration and Gibbs free energies of the regulatory states of an example promoter
with two operators and a single transcription factor. N4: Avagadro’s number. V: Volume.

#| P 01 0y | AG!! hi

1 — — — 0 1

2 | RNAP — — AGraap [RNAP]

3 — TF, — AGrr [TF;]

i —  — TF AGrr [TF,]

5 | RNAP — TF; AGrr +AGgynap + AGTE-RNAP [TF;] x [RNAP]

6 | RNAP TE, — | AGrr + AGryar + AGrrrvar [TF;] x [RNAP]

7 | RNAP TF; TF; | 2AGrr + AGgryap +2AGrr-rNaAP %[TFl] x ([TF{] - Nf%v) X [RNAP]
8 — —  — AGTF:NSDNA [TF]

3. Compared to the reference state, list the total change in Gibbs free
energies, AG?"’, for each regulatory state in terms of the AG of the
participating protein-DNA interactions.

4. Determine the number of identical ways the ith unique regulatory state
may assemble by calculating its combinatorial factor, A;.

5. Invoke the ergodic theorem in terms of a canonical partition function: At
equilibrium, the probability of each states is proportional to its combina-

_ tot
torial factor multiplied by the Boltzmann factor or, P; o hiexp( ﬁg' )

6. Determine the probability of the promoter being in a “transcriptionally
ready state” by summing up the probabilities of the states in which the
Holoenzyme is assembled.

For example, consider a promoter containing two adjacent operator sites,
O and O,, within the promoter region, P. The two operator sites each bind to
the same transcription factor, TFy, with a A Gyp;uging = AGrF. The transcrip-
tion factor also has a binding affinity to non-specific DNA with a A Gpnging =
AGrr-Nspna- The Holoenzyme complex binds to the promoter region with
a AGpinging = AGryap- When both the Holoenzyme complex and transcrip-
tion factor are bound, they interact with one another with a AGyp;nging =
AGTF-RNAP, Which may be either positive or negative for repulsive or at-
tractive interactions, respectively. In this example, there are a total of eight
unique regulatory states, including the reference state and a psuedo-state
representing all of the non-specific binding of the transcription factor to ge-
nomic DNA. In Table 1.5, we list the regulatory states of this example pro-
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moter, their change in Gibbs free energies, and their combinatorial factors.

Because the proteins diffuse in a free solution of volume V, the combinatorial

factor has units of concentration, making it more of a “density” of states.
The probability of the promoter existing in its it regulatory state existing

AG_I{)I
, h; exp (— RF )
i AGH
Yicshiexp (‘ﬁ)
The probability of the promoter being in a “transcriptionally ready state”, P;,i,

is simply the sum of the probabilities in which the Holoenzyme complex is
bound to the promoter, which includes states 2, 5, 6, and 7, or

is

(1.6)

Pyit = Py 4+ Ps+ Ps+ Py (1.7)

The rate of the Holoenzyme complex undergoing the closed-to-open confor-
mational change can be calculated by using

r = Kinit X Pinit (1.8)

The remaining steps in the basal transcriptional and translation process are
described using a kinetic representation and proceed as normal. By using
the chemical partition function, however, a promoter with numerous regula-
tory interactions may be practically modeled. The equilibrium assumption is
more-or-less valid under most kinetic regimes.

1.3.4 Regulated Translation

Like transcription, the regulated process of translation can be modeled by
first describing the basal translation process and then adding the regulatory
interactions that alter its rates.

The Basal Translation Process

The 30S and 50S subunits of the ribosome first bind and assemble onto the
ribosome binding site (RBS) on the mRNA transcript. After the ribosome
has assembled, it begins the elongation process by translocation forward
and freeing up the RBS. This is modeled by two irreversible reactions
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Ribosome + mMRNAgrps — Rib:mRNARggs
Rib:mRNAzps — MRNARgps + Rib:mRNA;

with a kinetic constant for translation initiation, k.., and a kinetic constant
for translation elongation, kgéong. Similar to transcriptional elongation, the
process of translational elongation may be modeled by a series of A first
order reactions, where A is the number of codons in the coding sequence
of the mRNA transcript. Because A is typically large (67 - 667 codons), we

may describe translational elongation as a single y-distributed reaction

Rib:mRNA; — Ribosome + Protein

sl

with a sequence-independent kinetic constant ;...

Translation Factors and mRNA Secondary Structures

Any mRNA secondary structures that sequester the ribosome binding site
from accessibility will decrease the effective rate of translation initiation. Con-
sequently, we can model the formation of these secondary structures by a
pair of reversible reactions -mRNA secondary structure

MRNAgps = mMRNALZC*

whose change in Gibbs free energy may be determined by using an RNA
secondary structure calculator.

Besides secondary structures, any other RNA or protein that binds to the
ribosome binding site can also sequester its accessibility. For each of these
non-coding RNAs (ncRNA) or translation factor proteins (SLF), we create a
pair of reversible reactions

NcRBNA + mRNAgrps = ncRNA:mRNARggs
SLF + mRNAgps = SLF:mRNARrgs

with appropriate forward and backward kinetic constants.

1.3.5 mRNA and Protein Degradation and Dilution

All molecules in the cell eventually become degraded or diluted with cell
growth. The degradation of molecules involves the active participation of an
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enzymatic reaction, such as the RNA Degradosome or a proteosome. In
addition, all molecular species in the cell become diluted with cell growth
and division. We treat these two processes independently. In addition, since
we have not included the changing production rates of RNA polymerase or
ribosome, we also do not include their degradation or cell dilution.

We model the basal degradation rates of RNA molecules in the system
using first order reactions, such as

mRNARBS — 0
NncRNA — 0

whose first order kinetic constants can be quantified using half-lives. These
reactions assume that the concentration of the RNA Degradosome remains
constant. The basal degradation rate is sequence-dependent and is in-
creased by the presence of RNAse binding sites and by the absence of
sequestering secondary structures.

Similarly, the basal degradation rate of protein products, transcription fac-
tors, and translation factors can be modeled by using first order reactions,
such as

Protein — 0
TF; — 0
SLF — 0

with corresponding half-lives. Again, these reactions assume that the con-
centration of the proteosomes remain constant. The basal degradation rate
depends on the presence or absence of peptide tags that bind to a proteo-
some.

The presence of adaptor proteins often increases the degradation rate
of RNA or protein molecules. We can approximately model their effects by
treating these adaptor proteins, called a degradation factor (DF), as an en-
zymatic catalyst for RNA or protein degradation, using the reactions

DF + RNA = DF:RNA — DF
DF + Protein = DF:Protein — DF
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The degradation factor reversibly binds to the RNA or protein molecule and
shuttles it to the RNA Degradosome or proteosome for destruction.

The dilution of RNA and protein species may be modeled using two dif-
ferent approaches: the first approximates cell replication as a continuous
process while the second describes it as a discrete event. In the first case,
the volume of the bacterial cell remains constant and the dilution rate of each
cytoplasmic RNA and protein species is described by a first order reaction,
similar to the degradation reaction

RNA — 0
Protein — 0

The kinetic constants of these reactions are all, however, the same: the
kinetic rate of cell replication, which is k., = log2 /tacr, with an average cell
replication rate of z4¢.

In the second approach, we treat cell replication as a random discrete
event that occurs according to a Gaussian distribution. The contents of the
cytoplasm may also be distributed to daughter cells according to a Binomial
distribution. The volume of the bacterial cell exponentially grows, starting
from an initial condition V,,, accordingto V =V, exp (k¢ (t —t,)), Where k., is
the same kinetic constant described above and ¢, is the time of the previous
cell replication event. The time of the next cell replication event is sampled
from a Gaussian distribution where the mean is the average cell replication
time, t,.r, and the standard deviation is empirically measured from experi-
ments and is typically ~ 5-10% of #,.,. At this time, the number of molecules
of each cytoplasmic RNA and protein species can be either halved or sam-
pled from a Binomial distribution, where the number of trials is the number
of molecules of each chemical species and the probability of distribution is
1/2. The volume may be either halved or reset to Vj. In a more algorithmic
format, this procedure is as follows:

1. Step 1: Starting at an initial time 7, and volume V,,, select a Gaussian
random variable #, ~ N(t4cr, /0. 1t4cr).

2. Step 2: Between 1, and ¢,, the volume increases continually according



CHAPTER 1. DESIGN OF SYNTHETIC GENE NETWORKS 42

to V. =V,exp (ke (t —1,)).

3. Step 3: At =1¢,, the volume is either reset to V =V, or the volume is
reduced by half V. =V /2. At the same time, the number of molecules
of each cytoplasmic chemical species, which is X;, is sampled from the
Binomial distribution according to X; ~ Binomial(X;,0.5). The time of
the last cell replication is then reset to ¢, = 1, and the algorithm repeats.

Using this model, the stochasticity arising from cell replication may also be
included.

1.3.6 Protein - Protein Interactions

Transcription factors and other regulatory proteins often interact with one
another via protein-protein interactions. One common example is the mul-
timerization of a transcription factor to a dimer or tetramer complex, which
then binds to its cognate DNA operators. These multimerization reactions
may be modeled using -homodimers, tetramers

2TF = TFy (o)
2TFy o) <= TRy (4

Similarly, if two different transcription factors bind together to form a het-
erodimer complex, the reactions may be straightforwardly written down as

TFl + TF2 = TFliTFz

Finally, there are a variety of enzymes that covalently modify transcrip-
tion factors to either activate or deactivate their DNA-binding capabilities.
A common example are kinases and phosphatases, which can specifically
bind to their target and add or remove a phosphate group. If both a kinase
and phosphatase target the same protein for activation and deactivation, it is
called a futile enzyme cycle. We model a futile enzyme cycle using two sets
of enzymatic reactions

Kin + TF = Kin:TF — Kin + TF(®)
Phos + TF(?) = Phos:TF(P) — Phos + TF
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Futile enzyme cycles are often used to activate or deactivate a transcription
factor because the concentration of active factor is very sensitive to small
changes in the concentration of kinase or phosphatase enzyme, which is
referred to as zero-order ultrasensitivity [109].



Chapter 2

Stochastic Numerical Methods

2.1 Introduction

As engineers and scientists study and manipulate smaller and smaller sys-
tems, the mathematics that we use to quantitatively describe these systems
must change. As length and time scales decrease, previously valid approx-
imations begin to break down, forcing us to return to a more first principles
description of the system. Once we remove the mean-field and continuum
approximations that are often used in a number of fields, including material
science, fluid mechanics, chemical kinetics, and thermodynamics, we dis-
cover that the mathematical representation of these systems becomes prob-
abilistic. Consequently, we must use the theory of stochastic processes to
describe the dynamics of these systems and stochastic numerical methods
to solve the resulting equations.

In this chapter, we review material on probability theory, stochastic pro-
cesses, the simulation of jump Markov and Poisson processes, and the nu-
merical integration of stochastic differential equations. The material in this
chapter can serve as the skeleton of a curriculum for a graduate-level course
on applied stochastic processes and non-equilibrium statistical mechanics.

2.1.1 An Overview of the Chapter

In the first section, we present a brief introduction to probability and stochas-
tic processes, in which we focus on teaching the fundamentals using com-
mon sense principles while avoiding the sometimes obscure route through

44
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measury theory. We first discuss the Laws of probability theory and their
application in describing a special type of mathematical object called a ran-
dom variable. We then list a number of commonly used random variables,
their distributions, and their uses. Finally, we describe a variety of different
stochastic processes, from random walks to stochastic differential equations,
and use simple arguments to formulate the connections between them. We
also describe the Wiener and Poisson processes, which are two especially
important types of stochastic processes.

In the second section, we detail the stochastic numerical methods that
simulate jump Markov processes and Poisson processes. Specifically, we
describe the three original variants of the stochastic simulation algorithm
and the t-leaping family of stochastic numerical methods, including the Bi-
nomial leaping methods. We conclude by explaining why these methods are
deficient for our purposes.

In the next section, we describe the rigorously derived theory behind the
numerical integration of It6 stochastic differential equations. Because we use
this theory to construct our first hybrid stochastic method, we delve deeply
into its origins. We explain why stochastic integrals are different from their
Riemann counterparts and how to numerically generate or approximate their
values. We then present the 1t6 Formula and the It6-Taylor expansion and
use them to derive a number of stochastic numerical methods, including
Runge-Kutta style ones. We continue with Implicit-style stochastic numerical
methods and adaptive time step schemes.

In the fourth section, we present our first new stochastic numerical: The
hybrid jump/continuous Markov process stochastic simulator (HyJCMSS). It
dynamically partitions an arbitrary system of chemical reactions into slow/dis-
crete and fast/continuous reaction subnetworks, approximates the fast/con-
tinuous subsystem by describing its effects with a chemical Langevin equa-
tion, and describes the occurrences of the slow/discrete reactions with a
system of differential Jump equations. Because both the chemical Langevin
equation and the differential Jump equations are Ité stochastic differential
equations, we use a stochastic numerical integrator to simultaneously solve
the coupled equations. The solution is computed in much less computational
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time compared to the stochastic simulation algorithm, especially when the
system contains many frequently occurring reactions. We present a rigorous
measurement of the stochastic numerical method’s accuracy and computa-
tional speed up using a variety of examples.

In the fifth section, we present our second newly developed stochastic nu-
merical method: An equation-free probabilistic steady-state approximation
(PSSA). It dynamically partitions an arbitrary system of chemical reactions
into slow/discrete and fast/discrete reaction subnetworks, detects whether
the fast/discrete subnetwork has caused the state of the system to converge
to a quasi-steady state marginal distribution, extracts samples from the sys-
tem at quasi-steady state, and substitutes those samples back into the cal-
culations to dramatically speed up the simulation of both the fast and slow
dynamics while retaining accuracy. When the system has a modest to signif-
icant separation of time scales, the algorithm’s computational running time
is much less than the stochastic simulation algorithm. It is important to note
that the algorithm retains accuracy in both the fast and slow dynamics, thus
sacrificing little to nothing for the computational speed up.

In the final section, we present our open-source software package, Hy3S:
Hybrid Stochastic Simulation for Supercomputers. Together with a simple-
to-use Matlab-driven graphical user interface, the software simulates the
stochastic dynamics of an arbitrary system of chemical reactions using MPI
parallelized versions of our HyJCMSS algorithm. The HyJCMSS algorithm
is implemented with four different stochastic numerical integrators, including
the Euler-Maruyama and Milstein stochastic numerical methods with fixed
steps and with an adaptive time step scheme. The software also includes
MPI parallelized versions of the Next Reaction variant of the stochastic simu-
lation algorithm. The software package is a fast and scalable computational
engine for computing the stochastic dynamics of any chemical reaction net-
work with multiple time scales.
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2.2 A Brief Introduction to Probability and Stochastic Processes

This section provides a brief review of the concepts and formulae behind
probability theory and stochastic processes, using a descriptive approach
that aims to prepare the reader for the following sections. We focus on
probability, random variables, and stochastic processes while avoiding the
overuse of measure theory, which is rarely taught to non-mathematicians.
Accordingly, this introduction is not meant to be exhaustive. There are many
texts that include similar introductions, including Gillespie’s “Markov pro-
cesses: Introduction to physical scientists” [110], van Kampen’s “Stochastic
processes in physics and chemistry” [111], and Mircea’s “Stochastic Cal-
culus: Applications in Science and Engineering” [112], but we are most in-
debted to Peter Kloeden and Eckhard Platen’s “Numerical solution of stochas-
tic differential equations” [113] for its clarity and breadth.

2.2.1 Probability

To begin applying probability theory on a system, all of the possible events
and their outcomes are enumerated. An event is any combination of out-
comes that can be recorded as having occurred or not. The rolling of a
6-sided die is a good example system. When we roll the die the possible
outcomes are that either the 1, 2, 3, 4, 5, or 6 face is facing up. These
outcomes are denoted by m®1,®>, ®3, W4, W5, g and the set of all possible
outcomes, Q = {w1,0;, W3, 04, W5, W}, is called the sample space. If the
the 6-sided die is tossed N times and the number of times each outcome
occurs is N, then the relative frequency of each outcome is f; = N;/N. For
a small number of rolls, this relative frequency will change. However, as the
number of rolls is increased, the relative frequency will converge to a con-
stant, called a probability p;. The limit limy_.. f;(N) = p; is the probability
of the ®; outcome and follows certain rules, called the Laws of Probability.
For a 6-sided fair die, the probability of each outcome is p; = 1/6 so that
each outcome has the same (uniform) probability of occurrence.

The simplest type of event is the elementary one, A = {®;}, but we will
often consider other events that include two or more outcomes. For example,
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if we are only interested in die rolls that equal 3 or less, then the events
A1 = {1, 0,,03} and its complement, A{ = A = {04, ®5, 0}, can both be
studied. Another useful event is “All possible outcomes”, which is simply the
sample space, Q. An event may be considered as any possible combination
of the elements in the set Q. The special case A = Q2 has the complement
A€ = 0, which is the event “Nothing happens”.

The Laws of Probability are similar to mass, momentum, or force conser-
vation in that they are a detailed accounting of what can go “in”, what can
come “out”, and how much accumulates. Consequently, there are definite
relationships between the probabilities of different occurrences of events. If
we are interested in an event, A, the probability of its occurrence is P(A) =
Y wca Pi- Gonsequently, the first Law is that “Something Must Always Hap-
pen” or

PQ)= Y pi=1 2.1)

Likewise, the corollary to that Law is that “Nothing Never Happens” or P(0) =
0. In many systems, however, the occurrence of “nothing” is a legitimate out-
come and must be included in the sample space. Mathematically, “Nothing”
is whatever remains after removing all possible outcomes to an event. Also,
since the event A is a subset of outcomes contained in the sample space,
Q,orAC Q,then 0 < P(A) < 1 must always be true.

The second Law of Probability is that “If an Event Occurs, then its Com-
plement Event Did Not Occur”, which yields P(A) + P(A¢) = 1. For example,
if we only record whether the die roll is even- or odd-valued, then the even-
valued event is A = {®y,04,...,0} with probability P(A) = 1/2 and its
complement, A€, is the odd-valued event with probability P(A¢) = 1/2. The
outcome of the die roll, ®;, lives in either the A or A events and, conse-
quently, both events may not simultaneously occur. If we repeat the rolling
of the die, the resulting probabilities of each event will reflect the above law’s
consequences. We may generalize this Law by considering any two events,
A and B, such that they do not share the same outcome. The application of
the second law to the events A and B leads to the “OR = Addition” Law or

P(AUB) =P(A)+P(B) iff ANB=10 (2.2)
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but the two events must be mutually exclusive and not share a similar out-
come.

For example, if we are tracking all of the even-valued outcomes of the
die roll and also the question “Was the die roll even?” then the events are
A ={m}, Ay = {ms}, A3 = {w¢} and Ay = {w;, 04, s }. Consequently,
the events are not independent because the outcomes m,, 4, and g are
all present twice. Logically, Aj C A4 is true and so P(A;JA4) # P(Ay) +
P(A4). This leads us to the next aspect of probability theory: the conditional
probabilities of events whose outcomes are shared. We say that events A,
A,, and Az are conditioned on the event A4. Once A4 occurs, we know that
the die roll was even-valued. Given this knowledge, the probability of the die
roll yielding 2, 4, or 6 is now 1/3 and not 1/6. In general, the conditional
probability of an event A, conditioned on another event B with P(B) > 0, is

P(ANB)

P(A | B) = 2.3
A1B) =5 23)

Equation (2.2) can be modified to include conditional events by using
P(AUB) = P(A)+P(B)— P(A | B) 24)

If the events A and B are independent (or lacking conditioning), such that
P(A|B)=P(A)and P(B|A) = P(B), then Eq. (2.3) simplifies to the “AND
= Multiply” Law, such that

P(ANB) =P(A) P(B) iff A and B are independent (2.5)

Equations (2.2) and (2.4) may be used to answer questions about the
likelihood of different combinations of outcomes, such as “What is the prob-
ability that the die roll is either 3 or 6 for three rolls in a row?”. The question
is translated into an event, A,;;, and can be broken up into three separate,
independent events, A1y, As,g, and As,,, each describing the outcome of
a single roll, where A;, = {®3, w6} and so on for Ay,; and As,,. The first
event, Ay, may occur when the die roll is either 3 or 6. By the “OR =
Addition” Law, we add the probabilities of rolling a 3 or 6 together so that
P(A1y) =1/3=1/6+1/6. Because each die roll is independent of one
another and identically distributed, the probabilities of the second and third
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events are the same as the first, yielding P(A1s) = P(A2nq) = P(A3,4). The
final event occurs when A1y, and A,,s and As,, all occur. Again, because
the rolls are independent, the “AND = Multiply” Law is used to multiply their
separate probabilities together, yielding P(A,;) = 1/9 = (1/3)3.

Using these Laws, we can tie together the sample space €2, the collection
of events 4, and all of their probabilities, P, into a triplet (Q, 4, P) called a
probability space, which succinctly summarizes the information in the sys-
tem. The collection of events, 4, are all possible k, j such that

Uﬁilj A; and ﬂﬁzl]‘- A; are events if Ay,..., A, are events

P (Uilj‘ Al-) = Zéil]‘. P(A)) if Aj,... A, are mutually exlusive
(2.6)
The probability space is a formal structure within which mathematicians ver-
ify that the events, outcomes, and probabilities are all self-consistent with
one another and that the laws of probability remain true.

The idea of a probability space is most needed when we begin to consider
events composed of continuous-valued outcomes. If we allow that our die roll
produces a real-valued number uniformly between zero and one, ® € [0, 1],
then the number of possible outcomes suddenly becomes infinite. The out-
come o = 0.14621 is different from the outcome ®w = 0.14622 and so on.
Because the probabilities of each outcome must add up to one and there are
an infinite number of points in [0, 1], then the probability of selecting a single
point in [0, 1] is actually zero! We sidestep these technical difficulties by al-
ways defining an event as a subinterval in [0, 1], such as A = [0.146,0.147].
The relative measure of this subinterval is 0.001 = (0.147 — 0.146) /(1 —0)
and so P(A) = 0.001. The measure of the subinterval is the relative quantity
of probability compared to a total amount of probability occupying a space,
which is called a measure space. Because of these technical difficulties, the
formal description of probability theory is based in Measure theory, which
itself is based on the integration of spaces and domains.

Armed with these Laws of Probability, we may now define a special type
of variable whose values are defined on a probability space. These variables
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are called random variables and have a corresponding probability distribu-
tion.

2.2.2 Random Variables and Probability Distributions

The formal definition of a random variable, X(®), is a function that, given
some probability space (Q,4,P) will return an event, A = {®} C 4 and
o € Q, that occurs with probability P(A). The outcome, , is often expressed
as one or more independent variables, x, such as time, a position, a veloc-
ity, or a number of successes. The probability of the random variable, X,
producing a value of x is then a function of x, or P(x). The function P(x)
over the variable x is called a probability distribution function (PDF). Other
names include the probability density function, the probability distribution,
or more casually, as “the distribution”. For more clarity, we may write the
PDF as P(X = x) to emphasize that the random variable can take any al-
lowable value of x. The allowable values of x determine whether the random
variable and its probability distribution are either discrete-valued, x € Z, or
continuous-valued, x € K.

If the allowable values of x are discrete-valued, then the first Law of Prob-
ability states that the sum of their probabilities must be one, or

i=oco
Y PX=i)=1 (2.7)
|—=—o0

Likewise, if x is continuous valued everywhere then the sum becomes an

integral,

/ T P(X=x)dx=1 (2.8)

Any function f(x) may be a probability distribution function if (a) f(x) > 0 for
all values of x and (b) P(x) = f(x) satisfies either Egs. (2.7) or (2.8) if x is
discrete or continuous valued, respectively. These restrictions say nothing
about what the PDF looks like on x and so there are a great many possibili-
ties. The PDF may be a smooth function or it may be discontinuous. It may
have multiple peaks or be entirely flat. It may be symmetric or asymmetric. It
could be the delta function, 8(x — ¢), which is equal to one only when x = c.
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A few of the most commonly used probability distributions will be reviewed
below.

There are other quantities that describe the characteristics of a random
variable. Each probability distribution also has a corresponding cumulative
distribution function (CDF), F (x), which is

Flx) = / P(X = x') d¥ (2.9)

—0Q

Unlike the PDF, the cumulative distribution function is always a continuous,
increasing function in x. When given some a and b such that a < x < b,
then F(a) < F(x) < F(b) is always true. The moments of the probability
distribution provide additional information. The n/” moment of a continuous-
valued PDF around a constant c is

My (c) = /_ Z (x— )" P(X = x)dx (2.10)

If ¢ = 0 then the first moment is simply the average or mean of the random
variable, or

u= /:ox P(X = x)dx (2.11)

If c = u then we call these the central moments. Of course, the first central

moment is zero. The second central moment is called the variance, 62,

o’ = / ) (x—u)2P(X = x)dx (2.12)

The square root of the variance is called the standard deviation. The third
and fourth central moments, us and u4 are related to the skewness and
kurtosis of the distribution, which are respectively y; = u3/ cland Yo =y =
c*. The skewness measures the lopsidedness or asymmetry of a probability
distribution while the kurtosis measures whether the probability distribution
is tall and skinny or short and squat. The excess kurtosis is often used in
practice, which is 5" = ,u4/64 — 3. If we do not know the PDF of a random
variable, but we have collected many samples of its values, X; i =1...N,
then we may calculate the mean and variance of the PDF using

‘“:% I'\LI Xi 52:%\7 ﬁv:l (Xi—/l)2 (2.13)



CHAPTER 2. STOCHASTIC NUMERICAL METHODS 53

Table 2.1: Four important characteristics of five useful probability distribution functions

Distribution Mean u | Variance 6> | Skewness y; | Excess Kurtosis o
Uniform, URN(a, b) (a+b)/2 | (b—a)?/12 0 —6/5
Exponential, Exp(2) At A2 2 6

Poisson, Poisson(At) , At At (At)~1/2 ()~ !
Gamma, Gamma(N, ) NA™! NA 2 2/V/N 6/N
Gaussian, N(u,6?) u c’ 0 0

Importantly, for Eq. (2.13) to be true, the samples X; must be independent
(ie. not conditioned on each other) and identically distributed according to
the same PDF, which is abbreviated as i.i.d. Finally, one may rewrite Eq.
(2.13) in terms of an expectation value, which is simply y = E(X) =<X >
and 62 = E((X —u)?) =< (X —u)?>.

2.2.3 Commonly Used Random Variables

There are an unlimited number of different random variables, but some have
special notability because of their use in applications, such as in finance
or physics. There are currently 68 commonly used probability distributions
listed on Wikipedia at http://en.wikipedia.org/wiki/Probability_
distribution. Because of their usage in stochastic chemical kinetics, we
focus on the uniform distribution, the exponential distribution, the Poisson
distribution, the Gamma distribution, and the Gaussian distribution. In Table
2.1, we list the important characteristics of these probability distributions.

Uniform Probability Distribution Function

Consider a continuous-valued random variable, X, which may take any val-
ues a < x < b, and with a constant probability P(X = x) = c¢. By the Laws
of Probability, the probability distribution function, called the uniform distribu-
tion, must be

0 x<a

Px)=<% L a<x<b (2.14)


http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Probability_distribution
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Figure 2.1: The probability distribution function, P(X), and cumulative distribution function, F(X),
of a uniform random variable, X ~ URN(a,b)

so that c = 1/(b — a). Likewise, the cumulative distribution function is

0 x<a
Fx)=<2¢ g<x<b (2.15)
0 x>b

The PDF and CDF of this random variable is shown in (2.1). A random
variable generated with a uniform distribution on (a,b) is denoted by x ~
URN(a,b). If the a, b are omitted then it is assumed thata =0 and b = 1.

Generating Samples of Non-Uniform Random Variables

Uniformly distributed random variables are the basis for the generation of
all other computer generated random numbers. In conversation, a “Uni-
form Random Number” or URN is a uniformly distributed random number
on (0,1) so that 0 < x < 1. Using modern computers and a variety of differ-
ent numerical algorithms [114, 115], one may generate a stream of uniformly
distributed psuedorandom numbers whose properties closely mimic a “true”
URN. Given such a generator, one may “stretch” the uniform distribution into
any other probability distribution functions and generate samples of a ran-
dom number with another distribution. In general, there are two ways to
convert a URN into a random variable with a different probability distribu-
tion. The first is called the inversion method while the second is called the
rejection method.
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In the inversion method, we equate the cumulative distribution function of
the desired random variable, F(x), with a random number u taken from a
URN generator. We then solve for x in terms of u, yielding

F(x)=u x=F1(u) (2.16)

The cumulative distribution function is often complicated and not invert-
ible. Consequently, the rejection method is typically used. The rejection
method uses a helper distribution, g(x) to generate a random variable from
the distribution P(x) by performing the following procedure:

1. Choose an appropriate helper distribution g(x) and a bounded limit M
2. Generate a sample, x ~ g(x), and another sample u ~ URN

3. fu< 1\% then accept x as a valid sample of the distribution P(x)

4. Otherwise, reject x and repeat the above step

The helper distribution g(x) is different for each desired probability distribu-
tion P(x).

The most common example of an inversion method is the random num-
ber generator for the exponential distribution [116]. Examples of the re-
jection method include the Box-Muller, Polar, and Ziggurat algorithms [113,
116, 117] for generating Gaussian random numbers, a variety of algorithms
for generating Gamma distributed random numbers [116], and the Markov
Chain Monte Carlo sampling of the Maxwell-Boltzmann distribution using
the Metropolis criteria [118]. The memory and computational cost of these
algorithms vary and new ones are continuing to be developed.

Exponential Probability Distribution Function

The exponential distribution function describes the distribution of times be-
tween events, called waiting times, which occur with a constant rate, denoted
by A. lts random variable has non-negative, continuous values and is de-
noted by x ~ Exp(A). These random events may be the arrival of people, the
radioactive decay of atoms, or the collision and reaction of two molecules.
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Figure 2.2: The probability distribution function, P(X), and cumulative distribution function, F(X),
of an exponentially distributed random variable, X ~ Exp(A)

lts probability and cumulative distribution functions, shown in Figure 2.2 are

hexp(—Ax) x>0
P(x; x)_{ exp(—Ax) x2 2.17)
0 x<0
and
| —exp(—Ax) x>0
F(x; \) = { exp(~Ax) x> (2.18)
0 x<0

Importantly, the exponential distribution is the only memoryless distribution;
after having waited 10 seconds for an event to happen, the probability of it
occurring in the next 10 seconds is the same as before. More formally, we
say that the probability of the arrival time 7' follows

P(T >t+s|T >s)=P(T >t) forallt,s >0 (2.19)

In stochastic chemical kinetics, we use the exponential distribution to model
the times in which molecules collide and react with one another.

Poisson Probability Distribution Function

The Poisson probability distribution describes the distribution of the number
of times an event occurs within a time interval, T, if the event occurs with a
constant rate, A. Its random variable has non-negative, discrete values and
is denoted by n ~ Poisson(A ). Like the exponential distribution, the Poisson



CHAPTER 2. STOCHASTIC NUMERICAL METHODS 57

0.4 ——— 1 oG008 0000000
L lT=1 0.9 ..o
035 ¢t AT=4 1 ’ 0
e LAT=10 08¢ *0
03+ 1 *0
0.7 b *0
025+ 06 F 0
P(n) o2 F(n) o5t
() (n) .o
04 F
0.15 [ 25]
03| *O
0.1
0.2 *o o AT=1
0.05 + 01k *0 AT=4 |
' *0 ® AT=10
0 -~ M e
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
n n

Figure 2.3: The probability distribution function, P(n), and cumulative distribution function, F(n),
of a Poisson distributed random variable, n ~ Poisson(A )

process is often used to describe the arrival of people or radioactive decay,
but now the random variable is measuring the number, n, of people or atoms
that have arrived or decayed in a length of time, 7. Shown in Figure 2.3,
the probability and cumulative distribution functions of the Poisson random
variable are

exp(—Ar) ()" >0
P(n; A) = n! - (2.20)
0 x<0

and

F(n; Mt) = fp(n;x ) 2.21)
i=0

The Poisson distribution is the starting point for the t-leaping family of stochas-
tic simulation techniques [119].

Gamma Probability Distribution Function

The Gamma probability distribution function describes the arrival times be-
tween an event which consists of a series of many individual events, whose
waiting times are each exponentially distributed. For example, consider a
Olympic hurdler who needs x ~ Exp( A ) seconds to jump over each hurdle
and there are N hurdles to jump before reaching the finish line. If only the
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Figure 2.4: The probability distribution function, P(X), and cumulative distribution function, F(X),
of a Gamma distributed random variable, X ~ Gamma(N,A)

start and end times are recorded, then the the total race time, x, will have
a Gamma distribution with rate A and shape parameter N. When N = 1
the Gamma distribution simplifies to the exponential distribution. A Gamma
random variable has non-negative, continuous values and is denoted by
x ~ Gamma(N,A). Shown in Figure 2.4, the probability and cumulative dis-
tribution functions of a Gamma distributed random variable are

P(x; A, N) =21 SRR gor x> 0 (2.22)
where N is a positive integer and
N, \x

where v is the lower incomplete gamma function, a complicated function ca-

pable of being numerically evaluated. In biology, the arrival times of mMRNA

transcripts or proteins proceeding through transcriptional or translational elon-
gation, respectively, can be described using the Gamma distribution.

Gaussian Probability Distribution Function

Due to the Central Limit theorem, the Gaussian or normal probability distri-
bution is the most commonly occurring distribution in Nature. The Central
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Limit theorem states that the distribution of the sum of n independent ran-
dom variables, taken from any distribution with a finite variance, will even-
tually converge to the Gaussian distribution for large n. More formally, the
theorem states that, given the sum of a sequence of i.i.d random variables,
Sy, taken from any distribution P(X), such that

S, =X1+X+...+X, X~ anyP(X) (2.24)

with a mean, u = E(S,), and variance 6> = E((S, — u)?) < o, then, as
n — oo, the form of the original probability distribution, P(X ), does not matter
and the distribution of S,, will always converge to a Gaussian distribution with
a mean of nu and a variance of ng2. Consequently, if the quantity of interest
has an unknown probability distribution, but it occurs very frequently, then it
is valid to approximate its distribution as a Gaussian one with an empirically
measured mean and variance.

A random number generated according to the Gaussian distribution has
continuous values and is denoted by x ~ N(u,6%). Shown in Figure 2.5,

the probability and cumulative distribution functions of a Gaussian random
2

variable with a mean u and variance 6~ are
1 (x —p)?
P(x;u,0) = — 2.25
(x;4,0) S 2n€XP< o (2.25)
and .
F(x;u,c)= 1+ erf (2.26)
=3 (et (G5))
where erf(x) is the error function,
erf(x / exp( —y (2.27)
\/_

In stochastic chemical kinetics, the occurrences of many chemical reactions
in a large enough time increment can be validly approximated as a Gaussian
random number.

2.2.4 A Brief Overview of Stochastic Processes

Consider a sequence of random variables, X,,X,—1,X,—»2,...,X1, that de-
scribes a quantity of something observed attimest, >1, 1 >t,_2> ... > 1.
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Figure 2.5: The probability distribution function, P(X), and cumulative distribution function, F(X),
of a Gaussian distributed random variable, X ~ N(u,c?)

X, is called a stochastic process indexed by ¢. The index t can be either
discrete or continuous valued, creating either a discrete-time or continuous-
time stochastic process, respectively. The random variables X; may also be
either discrete or continuous valued, generating a stochastic process with
either discrete or continuous states. The joint probability distribution of a
stochastic process fully describes all possible outcomes of its sequence of
ordered pairs (X;, t;). By plotting X; vs. ¢; for i = 1...n, one may visualize
a trajectory of the stochastic process, which is the history of one possible
set of outcomes. Besides its joint probability distribution, a stochastic pro-
cess has other quantities that characterize its behavior, including its mean,
variance, covariance, and moment generating function. Assuming they are
well-defined, the mean and variance at any instant of time ¢ are

u(t)=E(X(1)) o*(r)=E((X(1) —pu(1)*) (2.28)
and the covariances are
C(s,1) = E( (X(s) — u(s)) (X (1) —u(r)) ) (2.29)

for any s, € [0,T]. Notice that the covariance simplifies to the variance
whens = t.

A stochastic process (X;, ;) can be classified according to the probability
distribution of its random increments, P(X;11 — Xi; ti+1 —t;). The distribution
may be conditioned on all past and future values of the stochastic process,
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it may completely independent of any past or future values values, or it be
conditioned on only a small subset of the past or future. The distribution may
also be a function of  or X. Depending on the conditioning and functional
dependence of the distribution of the random increments, different stochastic
dynamical behaviors will arise. Below, four examples of different stochastic
processes are briefly reviewed, including random walks, Markov processes,
Lévy processes, and stochastic differential equations.

Random Walks

An unbiased random walk is a stochastic process whose random increments
are independent and identically distributed according to a constant probabil-
ity distribution with zero mean, ori.i.d X;;1 — X; ~ P(X) with E(X) = 0. The
time step is discrete so that t;_1 —t; = 1. The joint probability distribution of
the sequence (X;, f;) then greatly simplifies to

PXp=Xn, Xn—1=%n—1,..., X1 = X3ty =Tp, ty—1 =Tn—1,--., 11 =T1)
= P(Xn = Xy :n) P(Xn_l =Xp—13lp—1 =n— 1) P(Xl =X1;1 = 1)
(2.30)

Forexample, if P(Xj+1—X; = +1)=1/2and P(Xj11—X; = —1)=1/2,
then a random walk starting at X, has mean u = 0 and variance oZ=1.
In Figure 2.6, three trajectories of the same random walk are shown. Im-
portantly, an unbiased random walk in one or two dimensions is recurrent;
from a starting point, the walk will eventually visit any other state in the do-
main within a finite (but possibly very large) time. Gambling games are often
modeled using random walks, where a gambler wins or loses an amount of
money with some probability. Because the random walk is recurrent, the
gambler’s amount of money will eventually visit zero and he will be forced to
stop playing. Consequently, the unbiased random walk is often (and aptly)
called the gambler’s ruin. To compare, a stochastic process that leaves and
never revisits a state again is called transient.
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Figure 2.6: Three trajectories of the random walk called Gambler’s Ruin, starting at X, = 100, are
shown. The red gambler is not doing so well.

Jump Markov Processes

A stochastic process is called a memoryless or Markov process if the prob-
ability distribution of the increments, P(X; 1 — X;), has “forgotten” the past
and depends only on the present value, (X;, f;), such that the conditioning
of the distribution simplifies to

P(XH_] —X;; lit1 | Xi=xi, Xi1=Xi—1,..., X1 =x15ti="Tj, ti_1 =Ti_1,..., 1 = ’Cl)
= P(Xip1 — X3 tiy1 | Xi = xisti = T5)
= P(Xip13tip1 | Xi = xi3ti = 7))
(2.31)
The joint probability distribution of the sequence (X;, ;) fori =0,...,n then
simplifies to

P(Xn :xna anl :.anl,..-, Xl :xl;tn :TYH tnfl :Tnfla"w tl :Tl)
= P(Xn = Xp;In ‘Xn—l;tn—l :Tn—l) P(Xn—l =Xn—1:ln—1 ‘Xn—Z;tn—Z :Tn—2)"'

P(Xn—Z = Xp—25h—2 ’ Xn—33th—3 = Tn—S) cee P<X1 =X1:11=T1 ‘ Xo;to)
(2.32)
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with an initial condition (X,,#,). A Markov process has discrete time if the
time increments are restricted to integers and continuous time if they are
not. We will restrict our focus to continuous time Markov processes to better
understand physical systems.

If the states of a continuous time Markov process are discrete valued,
then the process is called a jump Markov process. A jump Markov process
will spontaneously transition from state X; to an adjacent state X; at a jump
time t;y1. The Markov process does not otherwise change its state in be-
tween jump times, causing the trajectory to have a discontinuous path. The
derivative of the random increments, d(X; | — X;)/0 t, with respect to time
is also undefined. By enumerating all possible states of the system (e.g.
X = {x1,x2,...,xy} in one dimension), one can construct a Markov chain
X(t) € X. The probability of finding the system at any state in the Markov
chain at time ¢ is summarized with a probability vector, P(X(t) = x;). Be-
cause of the Markovian property, the probability of transitioning from one
state to another adjacent state can be rewritten as a transition matrix. The
transition matrix M(#;, 1;;) has elements p % /(t;1; t;) so that

Pt ) = P(X (tir1) = x| X (1) = x;) (2.33)

which are the probability distributions of the frequency of transitions from
state X; at time #; to X; at time 7;;;. These distributions may be any con-
tinuous valued probability distribution. However, if the transition distributions
depend only on the length of the jump time A t = ¢, | —t;, then the Markov
chain is called homogeneous and the transition probabilities may be rewrit-
tenas p k, j(A t). Homogeneous jump Markov processes are the most com-
mon Markovian processes when modeling physical systems with discrete
states, such as chemically reacting systems. Therefore, it is important to
understand how these processes evolves over time.

By the first Law of Probability, a transition to another adjacent state must
always occur and so the elements of the transition matrix satisfy

i phiat =1 (2.34)
k=1
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and the probability of finding the system at X (¢ + A ) is the matrix algebra
P(X(t+At)) = P(t)M(A?) (2.35)

If we take the derivative of the transition probabilities with respect to time, in
the limit, we obtain the instantaneous rates or propensities of each transition,
a’ J, which are

k, j .
limp ;0 %&At) JFk
a®J= (2.36)

lima o220 1 j=k

The transition probabilities then satisfy the following Kolmogorov forward

equation

dp Z p (2.37)
and also the Kolmogorov backward equat/on

dp Z a "(t) (2.38)
fork, j=1...N.

The stationary solution of a jump Markov process is a probability vector,
P33(X), and time-invariant transition probabilities, p * /, that satisifies both

dphi(t) & ik
———==Y p™iatm=0 2.39
dt m:1£ ¢ ( )
and
PS(X) =P (X)M (2.40)

where the transition matrix M has elements p kJ . If the stationary solution
of a jump Markov process is recurrent, then it is also ergodic. An ergodic
stationary solution will continue to visit all of its states with a frequency that
is proportional to their probability. Consequently, a jump Markov process,
X (¢) € X with an ergodic stationary solution, P55(X), will satisfy

T—>oo

N
lim — Z FX) =Y flx)P>(x;) (2.41)
i=1
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for any function f(x). The ergodic condition will be used in the formulation
of our equation-free probabilistic steady-state approximation in section ??.
If the Markov chain is both recurrent and reversible, the probabilities and
transition rates satisfy a condition called detailed balance, which is

prIPSS () = p PSS (x)) (2.42)

A reversible Markov chain is one in which, for each transition, there exists
another transition in the opposite direction.

The transition rates of a homogenous jump Markov process often depend
on the state of the system in some complicated way. In a multidimensional
system with the state vector X = {X|,X>,..., Xy}, explicitly writing down
the transition rates becomes unwieldly. Instead, one may collapse the matrix
of transition rates, a © /(X), into a system of j = 1,...,M types of transitions
which alter the state of the system by a constant value, A X;, with jump rates,
a;(X). In addition, it is often more appropriate to describe the time evolu-
tion of the probability vector, P(X;t), rather than the transition probabilities.
The Kolgomorov forward equation may then be rewritten in terms of the j
transitions to create the forward Master equation, which is

dP(Xit) _ Y [aj(X (1) = A X (1)) P(X(£) — A X (1)) — a;(X (1)) P(X(2))]

dt >
(2.43)

The Master equation describes the time evolution of the probability vector

in terms of the transition rates of the jump Markov process. There is also a

backward Master equation, which is

dP(X;t)

dr Y [aj(X(1) +A X(1) P(X(t) + A X (1)) — a;(X(t) P(X(t))]

! (2.44)

Consider that this stochastic process is Markovian (ie. memoryless) and
that the only memoryless probability distribution is the exponential distribu-
tion. Consequently, the jump times of the k — j transitions with k # j are
exponentially distributed with rate a*/ or A t ~ Exp(a® /). Due to Eq.
(2.34), the jump time to any k = j transition is also exponentially distributed,

but witharate } ; a k. J. These facts are extremely important in simulating the
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dynamics of a homogenous jump Markov process whose transition matrix is
too unwieldly to manipulate.

Continuous Markov Processes

If the states of a continuous time Markov process are continuous valued,
then the process is called a continuous Markov process. A continuous
Markov process continuously jumps from one state to another so that its
trajectory is a continuous path. The derivative of its random increments,
d(Xi+1 —X;)/0 t, with respect to time is now defined, but in a special way. A
subset of continuous Markov processes are homogenous ones whose ran-
dom increments are sampled from a continuous-valued Markovian probabil-
ity distribution that depends only on X; and the time between observations
At =tjy1 —t;. These times are not jump times. One may repeatedly “zoom
in” on the dynamics of a continuous Markov process, decreasing the length
of time between observations, and viewing a rescaled version of the same
stochastic dynamical behavior. Consequently, the dynamics of a homoge-
nous continuous Markov process are fractals.

A homogenous continuous Markov process X (7) € X has a conditional
transition probability

P(s, x;t, X) =P(X(r) =X | X(s) =x)

(2.45)
= / p(xAt, y)dy
xeX

where p(x;At, y) is called the transition density of the process, equivalent
to the transition probabilities of a jump Markov process. A homogenous
continuous Markov process is called a diffusion process if well-defined drift
a(x,t) and diffusion D(x,t) coefficients exist such that

a(x,) = limy_y o 75 EX() = X(s) | X(5) = )
(2.46)
D)2 =limy, o 75 E((X (1)~ X())2 | X(s) =)

Similar to the Kolmogorov forward and backward equations in Egs. (2.37)
and (2.38), the transition density p(x;A ¢, y) of a diffusion process satisfies



CHAPTER 2. STOCHASTIC NUMERICAL METHODS 67

0.05 . . . . - —0.05 4
-0.06 _|| n |IilkM
O - ’ | | \
2 —0.07 ."’|,|H \ fdn'\ |I II‘lv\ll\ |
] ~0.05 . i Ny | | )i
o . -0.08 | \“ﬁl f Y \"I
g 0.09 " Uf I H I.h’l |
-0.1 : - \J
01" |I ll'i
-0.15 011 W
0 0.2 04 06 08 1 0.1 '
0.4 0.45 0.5 0.55 0.6
-0.05 °
S 10 -0.06 ' JMW
g 9.98 -0.07 'M] |
Y . [
S 99 ~008 " Hi{ |,
& -0.09 * 'J""'ﬁp h r*‘rj
8 994 . \
-0.1 \
9.92 P
0 02 04 06 08 1 011 Y
Time 0.45 0.5 0.55

Figure 2.7: (Left) A single trajectory of the displacement and velocity of a Brownian particle is
shown with a diffusion coefficient, D = 1, on the interval 7' = [0, 1]. (Right) The same velocity
trajectory is shown on T = [0.4,0.6] and T = [0.45, 0.55], showing the fractal behavior of the
Wiener process.

a partial differential equation called the Fokker-Planck equation,

2
w + aa_x {a(x,t) plx,1)} — %% {De0?pn =0 @47)
A diffusion process may have a stationary solution, p(x,t) = p(x), that sat-
isfies Eq. (2.47) when 2 = 0.

One of the most well-known examples of a homogenous continuous Markov
process is the Brownian motion of a large particle surrounded by water
molecules [120]. In a planar system, it is a four-dimensional continuous
Markov process ({d¥,d,v},v!}; t;) where d¥ and d; are the displacement
of the particle and v} and v, are the particle’s instantaneous velocity in the
x and y cartesian directions. The water molecules in the system continu-
ously collide with the particle and exert instantaneously applied forces on it.
The motion of the particle and all of the water molecules may be described
by Newton’s law. However, because there are so many water particles, one
may approximate their applied force on the particle as a Gaussian distributed
random variable. Consequently, Newton’s law for only the particle’s motion
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becomes

(2.48)
4vl0) — N(0,4D? dr) L1 — N(0,4D%d1)
where any friction on the particle has been neglected, the average positions
of the water molecules are assumed to be unchanging, and D is the diffu-
sion coefficient of the particle. The velocities of the particle in the x and y
cartesian directions are a Gaussian distributed random variable with zero
mean and 4D?dt variance. Equation (2.48) is called a Langevin equation
with additive noise. The integration of the Langevin equation describes a
single trajectory of a Brownian particle in time.
The probability distribution of all possible trajectories of the Brownian par-
ticle satisfies the Fokker-Planck equation

op(x,t) 02 p(x,1)
o —D o 0 (2.49)
The solution to Eq. (2.49) is simply the Gaussian distribution with zero mean
and 4D ¢t variance and may be checked by the reader. Interestingly, a Brow-
nian particle has no stationary solution. As time goes to infinity, the variance
also goes to infinity, indicating that the Markov process is not ergodic. In

Figure 2.7, the Brownian motion of a particle with D = 1 is shown. The frac-

tal behavior of a continuous Markov process is illustrated by zooming in to
smaller and smaller time intervals.

The reader may notice that the Langevin equation in Eq. (2.48) implies
that a Gaussian random number, N(0,dt), is a well-defined quantity; how-
ever, when the Langevin equation was first proposed, this was not true.
Since then, mathematicians have studied the derivatives and integrals of
stochastic processes, including a specially defined one called a Lévy pro-
cess. The integral of a Gaussian random number with a zero mean and a
variance of dt is now called the Wiener process, which is a type of Lévy
process. The Langevin equation itself has been generalized to describe the
time evolution of many different continuous valued continuous-time stochas-
tic processes. These differential equations are called stochastic differential
equations. These topics will be briefly discussed below.
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Lévy Processes

Consider a stochastic process, X(z), with random increments X (t;+1) —
X (t;). If the increments are independent and their distribution depends only
on the time in between the increments, ;11 —t;, then the stochastic process
is called a Lévy process. The increments of a Lévy process are random
variables that are decomposable into three components: a drift motion, a
diffusion motion, and a jump motion. The three motions are respectively
caused by a deterministic process, the Wiener process, and the Poisson
process, each rescaled with parameters o, ¢, and A. The Lévy process,
X (1), changes over time from #; to ¢, | according to

X(ti41) = X (t:) +0tip1 — 1) + (W (ti1) = W (t:)) + (Pu(tir1) — Pa(ti),

(2.50)
where 0, G, and A are time-independent constants, W (¢) is the Wiener pro-
cess evaluated at #, and P, (¢) is a Poisson process with rate A evaluated
at . The Wiener and Poisson processes are both, by themselves, Lévy
processes. Their increments are respectively distributed according to the
Gaussian and Poisson distributions, so that

W (tig1) = W(ti) ~ N(O, i1 —1;)
2.51)
Pk<ti+1) — Px(ti) ~ Poisson (7\,<tl‘+1 — ti))

The Wiener process has mean u(t) = 0, variance 6%(t —s) =t — s, and
covariances C s; = min(s, 7). The Poisson process has mean u(t) = At,
variance 6% = At, and covariances C s ; = Amin(s, t).

Consider what happens to the Wiener and Poisson processes when the
time increment #;,.1 —¢; shrinks to zero as in

W(tie1)—W(t)

dVVt = hmtiH_;l._)o s

(2.52)

Py (tix1)—Pp(t:)

dP?\, r— hmti+l_ti_’0 tiy1—t;

The limits in Eq. (2.52) are the definitions of the derivatives of the Wiener and
Poisson processes with respect to time and are denoted by dW; and dP ;.
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Figure 2.8: A Lévy process is the sum of a deterministic, Poisson, and Wiener process. (Left)
Single trajectories of the deterministic, Poisson, and Wiener processes are shown with oo = —1 and
6 = A =1 on the interval T = [0, 10]. (Right) The resulting Lévy process is shown on the interval
T =[0,10] and T = [0, 100].

However, the limits do not exist in the normal sense. Both the Wiener and
Poisson processes are nowhere differentiable using the common definition.
Instead, they are the abstract represention of a Wiener and Poisson process
integrated over a dt of time. The mean and variance of dW; and dP,; are,
respectively, 0 and 1, and A and A, but they must always be integrated along
some time interval to obtain a real number.

In Figure 2.8, we show how the deterministic process, the Wiener pro-
cess, and the Poisson process evolve over time withao= —lando=A=1
and how they combine to form a Lévy process. A more generalized Lévy pro-
cess may also be created by allowing o, G, and A to depend on ¢. An even
greater generalization of these scaling functions leads us to a definition of a
stochastic differential equation.

Stochastic Differential Equations

If we consider a Lévy process, X (¢), with constants o, o, or A that are now
functions of both X and ¢, then the evolution of the stochastic process be-
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comes

lit1 lit1 lit1

X(ti—H) :X(l‘i)—l— OC(X,I/) dr’ + G(X,t/) dWy + dP;b(th/)
" " " (2.53)
where the integrals of dW; and dP,, are Lebesgue-Stielties integrals that
may integrate discontinuous functions and dW; and dP , ; are the derivatives
of the Wiener and Poisson processes, respectively. Because the parame-
ters depend only on the current state and time, the stochastic process is
Markovian. However, the increments may no longer be independent, so it
is not necessarily a Lévy process. By taking the derivative of Eq. (2.53)
with respect to time, we obtain a Markovian stochastic differential equation
or SDE
dX(t) =ouX(t),t) dt +0(X(t),t) AW, +dP yx p (2.54)

that is driven by a deterministic process, a Wiener process, and a Poisson
process.

A stochastic differential equation describes how some quantity, X (¢), changes
over time while being affected by a stochastic process. The quantity X (¢) be-
comes a stochastic process and its rate of change can be decomposed into
its component drift, diffusion, and jump terms, represented by the determin-
istic, Wiener, and Poisson processes. By setting 6 = A = 0, Eq. (2.54) sim-
plifies to an ordinary differential equation, which is the familiar deterministic
(non-random) process. By setting A = 0, Eq. (2.54) simplifies to either an
Ité or Stratonovich stochastic differential equation, depending on our usage
of either the 1td6 or Stratonovich interpretation of a stochastic integral, such
as [ f(X(t)) dW;. More generally, if &, G, or A depend on either the past or
future values of X (¢) then the stochastic differential equation becomes Non-
Markovian, such as a stochastic delayed differential equation. In stochastic
chemical kinetics, we often use a system of Markovian [t6 stochastic differ-
ential equations to describe the dynamics of a chemically reacting system. In
section 2.4, the numerical solution of these stochastic differential equations
will be discussed.
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2.3 The Numerical Simulation of Jump Markov and Poisson Processes

Jump Markov and Poisson processes are often used to model dynamic sys-
tems with discrete states, such as the movement of inventory in a supply
chain, the assembly of parts in @ manufacturing line, or the servicing of cus-
tomers. In our case, we are most interested in describing the stochastic
dynamics of a chemically reacting system by modeling the occurrences of
reactions as either a jump Markov or Poisson process. The discrete states
of the system are the number of molecules of each chemical species and
the transitions between adjacent states are the occurrences of the chemical
reactions. The jump Markov process description is more exact; it treats each
reaction occurrence as an exponentially distributed event with a time inde-
pendent rate. The Poisson process description is an approximation; it bun-
dles together multiple reaction occurrences into a single jump. The number
of reaction occurrences that occur in a single jump is a Poisson distributed
event with a time-dependent rate.

Most chemical reaction networks have non-linear reaction kinetics and
a very large or possibly infinite number of discrete states. Accordingly, the
equations governing the time-evolution of their probability distributions, such
as the Kolgomorov and Master equations, are often intractable to solve.
Instead, by generating possible trajectories of each process, we can suffi-
ciently sample the probability distribution of the system and how it changes
over time. These techniques are generally classified as kinetic Monte Carlo
methods as they historically originate from the Monte Carlo sampling of equi-
librium systems. Consequently, in this section, we focus on different kinetic
Monte Carlo techniques for simulating jump Markov and Poisson processes.

2.3.1 Definitions

Consider a well-stirred, isothermal chemical reaction network with j =1,... .M
reactions and i = 1,..., N species in a volume, V. The state vector X;(¢) is
the number of molecules of the i’ chemical species at a time . The rate of
the j” reaction is a;(X(¢)) and also depends on the state vector. The effect
of each reaction on the state vector is determined by the stoichiometric ma-



CHAPTER 2. STOCHASTIC NUMERICAL METHODS 73

trix, v. The vector v; describes the effect of the j’"* reaction on the number
of molecules of each chemical species.

The states of the system can be described as an N-dimensional lattice
that spans all non-negative integers. At each state, there are M transitions
corresponding to the chemical reactions that may occur in the system. |If
the system is open (ie. if there is mass transfer across the boundaries of
the system), then the total number of possible states is infinite, but many of
those states will be rarely visited. For the remainder, we will assume that the
system may be open. Accordingly, the detailed balance condition can not be
assumed.

The transition rates of each reaction are described by a rate law, so that
a;j(X(t)) = f(X(t)). These transition rates are also called propensities in
the literature. Here, we will restrict ourselves to describing only the mass
action rate laws with zero, one, two, or three reactant molecules. These rate
laws are called the 07, 1, 274 and 3"¢ order mass action rate laws. The
rate laws may be written down in terms of the number of molecules of the
reacting chemical species and with a modification to the kinetic constants,
but the rate laws themselves are the same. The probabilistic interpretation of
a rate law is the number of different ways the reactant molecules may collide
multiplied by a probability of a collision resulting in a reaction. Therefore,
the rate law for a stochastic process may be separated into a combinatorial
factor and a specific kinetic constant. When writing down the rate law in
terms of the number of molecules in the system, the specific kinetic constant
depends on the volume of the system and is described as the mesoscopic
kinetic constant. When writing down the rate law in terms of concentrations,
the specific kinetic constant is volume-independent and is described as the
macroscopic kinetic constant. These differences reflect nothing more than
two different ways of separating the rate law into a combinatorial factor and
a specific kinetic constant. The simplest way to see the connection is to
write down the units for the mesoscopic and macroscopic kinetic constants
for each rate law. For completeness, we list the rate laws in terms of the
number of molecules in the system and four hypothetical chemical species,
A, B, C, and D and describe how the mesoscopic kinetic constant, denoted
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Table 2.2: A list of the mass action rate laws for stochastic chemical kinetics. Ny: Avagadro’s number. V:
Volume. Molec: Molecules

Order Reaction Rate Law [Molec/sec] Units of ¢ Units of k Conversion
oh — A a=c [Molec/sec] [Molar/sec] c=kV Ny
1% A—B a=c#A [1/sec] [1/sec] c=k
2nd Bj- A+B—C a=c#A#B [Molec sec] ! [Molar sec] ! c= VLA
2"d Mono- 2A — B a=cH#A(#A—1)/2 [Molec sec] ! [Molarsec]~!  ¢= VZ—K‘,A
374 Trj- A+B+C—D a=c#A#B#C [Molec sec] 2 [Molarsec] 2 c¢= v 1@)2
374 Bj- 2A+B—C a=cH#A(#A —1)#B/2 [Molec sec] 2 [Molarsec] 2 c¢= (va’;)z
3" Mono- 3A — B a=c#A(#A—1)(#A—2)/6 [Molecsec]| > [Molarsec]| > c¢= (V?V’; 7

by c is related to the macroscopic kinetic constant, denoted by &, with their
corresponding units.

2.3.2 The Stochastic Simulation Algorithm

In the mid-1970s, two different kinetic Monte Carlo techniques were devel-
oped to simulate the dynamics of a jump Markov process. The first numeri-
cal scheme, the N-fold algorithm by Bortz, Kalos, and Lebowitz (BKL) [121],
simulates a dynamic trajectory of an Ising model, which is a classical exam-
ple of a jump Markov process describing physical systems, including simple
liquids and ferromagnetism. In contrast to previous Monte Carlo algorithms
that describe the equilibrium properties of a system, the N-fold algorithm
introduces a method of calculating the jump times between transitions in a
non-equilibrium system. The second numerical scheme is the stochastic
simulation algorithm by Daniel Gillespie [122, 123]. The stochastic simula-
tion algorithm (SSA) generates a trajectory of a chemical reaction network
modeled as a non-equilibrium jump Markov process. Its recent popularity
arises from the observation that gene expression in biological organisms
can be accurately modeled as a jump Markov process. The SSA was first
proposed in two equivalent variants, the Direct and First Reaction variants.
Later, in 2000, the Next Reaction variant was created by optimizing the First
Reaction variant for large reaction networks [106]. We now briefly review
these three variants of the stochastic simulation algorithm.

All three variants of the stochastic simulation algorithm seek to answer
these questions:



CHAPTER 2. STOCHASTIC NUMERICAL METHODS 75

e What is the time of the next reaction occurrence?
e Which reaction occurs at that time?

These two questions describe the events in the system. The outcomes of the
events are a jump time, T, and the identity of the next reaction to occur, which
is u. The joint probability distribution P(t, u) of these events is sampled from
the distribution,

P(t, u)dt = a,exp (—TZa j> (2.55)

J
There are two different ways to sample T and u from this distribution, reflect-
ing the differences between the Direct and First Reaction variants.

Direct Variant

In the Direct variant, the time of the next reaction occurrence, 7, is an ex-
ponentially distributed random number with rate }_;a;. The T is calculated

according to
—log(URN
T= %5 Dy, (2.56)
Y14
and the identity of the next reaction, u, is a uniformly distributed random num-
ber with probability density a,,/}.;ja;. The random variable u is determined

by finding the integer, u, that satisfies

u—1 M u
Y aj<URNy Y a;< ) q; (2.57)
j=1 Jj=1 J=1

where both URN; and URN; are uniform random numbers on (0, 1). Once
the pair (u, T) has been sampled, the state of the system at the next jump
time is simply determined by

X=X+v, t=1 (2.58)

After the state of the system has been altered, the reaction propensities are
recalculated according to their rate laws. By repeating this simple proce-
dure, one can generate a history of the pairs (u, i) for k =1,2,..., A for
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A reaction occurrences. The computational cost of one iteration of this pro-
cedure is (a) the calculation of the reaction propensities, (b) the generation
of the two uniform random numbers, and (c) one division and a number of
insignificant additions. Importantly, the computational cost of the Direct vari-
ant is directly proportional to the number of reaction occurrencs and directly
proportional to the number of reactions in the system.

First Reaction Variant

In the Next Reaction variant, the time of the each reaction occurrence, T},
is an exponentially distributed random number with rate a;. Now, there is a
vector of reaction times, t; for j = 1,...,M, which are calculated according
to

_ —log(URN;)

T = . +1 (2.59)
j

The identity of the next reaction occurrence, u, is the one that occurs first
and may be determined by calculating the minimum value of the vector of
reaction times, t;, or

T = ffgn(T) (2.60)

Again, after determining the pair (T, u), the state and time of the system is
updated according to
X=X+v, t=1 (2.61)

The reaction propensities, a, are recalculated according to their rate laws,
and a trajectory of the state over time is generated by repeating the above
procedure. The probability distribution of selecting T, in the First Reaction
variant is exactly equivalent to the distribution of T in the Direct variant. How-
ever, the computational cost of the First Reaction variant is different. Per
iteration, the computational cost of the First Reaction variant consists of (a)
the calculation of the reaction propensities, (b) the generation of M uniform
random numbers, (c) M divisions and many other insignificant additions, and
(d) finding the minimum value of an array of floating point numbers. There-
fore, the computational cost is greater than the Direct variant. Its description
illustrates how one may sample the same joint probability distribution in two
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different ways. By using optimizing data structures and reusing random num-
bers in an appropriate fashion, however, it is possible create another variant
of the stochastic simulation algorithm that is most efficient for large, realistic
chemical reaction networks. This variant is called the Next Reaction method.

Next Reaction Variant

The Next Reaction variant of the stochastic simulation algorithm [106] is
an optimized version of the First Reaction variant that greatly reduces its
computational cost, especially when simulating the stochastic dynamics of
chemical reaction networks with many reactions and species. It uses two
different optimized data structures to minimize the computational cost asso-
ciated with recalculating the reaction propensities and finding the minimum
reaction time. The method also minimizes the generation of uniform random
numbers by reusing previously generated ones whenever appropriate and
valid. We briefly review these improvements.

The first optimizing data structure is a dependency graph. It minimizes
the computational cost of recalculating the reaction propensities by identify-
ing the reaction propensities which have changed since the previous itera-
tion. By only updating the reaction propensities which have changed, one
may significantly decrease the total computational time. The dependency
graph can be represented as a two-dimensional list, D;;, where the 7 row
of D holds the list of reaction propensities which must be updated when the
jth reaction occurs. The list of reaction propensities consists of all reactions
whose rate laws depend on a reactant or product of the j”’ reaction. The de-
pendency graph is created in the beginning of the simulation and then stored
for all remaining iterations of the algorithm. Consequently, after each exe-
cution of a reaction, the list of reaction propensities that are updated is D;
and the length of that list is often much shorter than the total number of re-
actions in the system. Consequently, the computational cost of recalculating
the reaction propensities is significantly reduced.

The second optimizing data structure, an indexed priority queue, is re-
sponsible for finding the minimum value of a list of numbers, performed in
Eq. (2.60). An indexed priority queue is a minimum-top binary tree whose
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parent and children elements are each swapped until all parent elements
store a lesser value than the value of their children elements. It is similar
to a heapsort, but its values and dependencies are persistent and regularly
updated. The advantage of using an indexed priority queue is that finding a
minimum of a list of numbers takes O(M1logM) swaps of elements, where
M is the number of reactions in the system. Other methods of finding a
minimum value, such as a quicksort, asymptotically take a greater number
of swaps. For our purposes, the indexed priority queue stores the reaction
times for each reaction, t;. After all of the reaction times are updated ac-
cording to Eq. (2.59), the indexed priority queue is also updated. Because
only a small number, r < M, reaction times require updating per iteration,
the indexed priority queue requires only O(rlogr) element swaps, which is
significantly reduced.

Finally, whenever a reaction has not occurred, its uniform random number
is reused. If the reaction propensity has not changed, the uniform random
number is reused and the reaction time remains the same. If the reaction
propensity has changed, the uniform random number may still be reused,
but the corresponding reaction time of the (k + 1) iterate of the algorithm
must be rescaled according to

k
a;

k+1
J o k+1
aj

(th—1)+t (2.62)

T
The reaction time remains distributed according to an exponential distribu-
tion, but its rate is now rescaled according to the new reaction propensity
with an appropriate weight on the time that has already occurred.

The main advantages of the Next Reaction variant of the stochastic sim-
ulation algorithm are that (a) it recalculates the reaction propensities only
when they have changed, (b) it minimizes the computational time required
to find the minimum reaction time, and (c) asymptotically, it only requires 1
uniform random number per iteration. For systems with many loosely cou-
pled reactions, the Next Reaction variant is the most efficient variant of the
stochastic simulation algorithm. Ultimately, however, the computational cost
of any variant of the stochastic simulation algorithm is directly proportional
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to the number of reaction occurrences. It is this drawback that has motivated
the development of approximate or hybrid stochastic numerical methods.

2.3.3 Poisson and Binomial Leaping

Because the stochastic simulation algorithm records the occurrences of each
reaction event in the history of a trajectory, its computational cost is directly
proportional to the number of reaction occurrences in the system. Conse-
quently, if there is a frequently occurring reaction, then the computational
cost of generating a trajectory will significantly increase. Because of this
disadvantage, the creator of the original SSA has since developed numer-
ous approximate stochastic numerical methods with varying success. Other
people have improved on these new methods or created entirely new ones,
including this author. One of the first approximate stochastic methods was
Gillespie’s T-leaping method [119]. We briefly review it here.

The key idea behind the t-leaping family of approximate stochastic nu-
merical methods is to execute multiple reaction occurrences as a single
event instead of a executing only a single reaction per event. The time in
which these reaction events occur is called the T-leap time and the number
of reactions which occur in that time is Poisson distributed with rate a; t. This
leap time must be larger than the jump time of a single reaction event, but
shorter than some unknown time in which the error of the Poisson approxi-
mation becomes too large. The multiple reaction occurrences are a “bundle”
of reaction events that may occur anytime within the interval [t, r 4 1]. In or-
der for the approximation to remain valid, the T-leap time must satisfy certain
constraints: during the interval, (a) the reaction propensities must not signif-
icantly change and (b) the number of molecules of each chemical species
must remain positive. If the T-leap time satisfies these constraints, then a
simple numerical scheme may be derived. First, the method begins by cal-
culating the reaction propensities of each reaction in the system. Second,
an optimal t-leap time is calculated using some criteria. Third, the state of
the system is updated by sampling the Poisson distributed number of reac-
tion occurrences, for each reaction, that have occurred in the time interval
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[t, 4 1], according to
X =X+ XM viKi(X(1)) K ~ Poisson(a;(X(t)) 1) (2.63)

Finally, the time is updated via t =t 4+ T. The procedure is then repeated. By
increasing the t-leap time, more reaction occurrences will occur in a single
bundle, significantly decreasing the computational cost, but also reducing
the accuracy of the approximation.

Conceptually, the T-leaping method is a valid approximation of a jump
Markov process. However, in practice, the leap time rarely satisfies the
above constraints. The reaction propensities of a system with a small num-
ber of molecules can dramatically change with only a few (or sometimes one)
reaction occurrences. Consequently, the t-leaping time must be reduced to
such a short time that only a few reaction occurrences are executed in a bun-
dle, leading to only a small reduction in computational time. If the leap time
is chosen too large, the number of molecules of species can often go nega-
tive, leading to an unrealistic and highly inaccurate trajectory of the system.
The leap time must also be chosen dynamically because both the reaction
propensities and the numbers of molecules of the species are changing over
time, consequently changing the criteria for leap time selection.

Since the original T-leaping method was published, Daniel Gillespie has
published five additional articles describing improvements to the method,
including implicit versions [124, 125, 126, 127, 128]. In each publication,
explicit or implicit versions of the t-leap method are proposed, each using
slightly different criteria, in order to improve the robustness and accuracy of
the numerical method. However, even in the latest publication in 2006, the
same obstacle remains: if the leap time is too large, the approximation is
invalid, and if the leap time is too small, the stochastic simulation algorithm
is more efficient. Finding the correct leap time (which changes during the
simulation) has proved to be very difficult. Why is this so?

Consider a stochastic differential equation driven only by a Poisson pro-
cess,

lit1

X = x4 dP yx.1m (2.64)

I
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The T-leaping family of numerical schemes is, in fact, an Euler-like numeri-
cal method for solving this stochastic differential equation. Importantly, the
Poisson process has a time-dependent rate A(X,t) = a;(X(z)) t. There is
currently no Taylor series expansion for a Poisson driven stochastic differen-
tial equation and so it is difficult to estimate the generated error when solving
this type of SDE using a specified time step. The error of this simple Euler-
like scheme in terms of the time step has only been recently characterized
[129] and is not first order with respect to T. In addition, no higher order
numerical methods for solving a Poisson-driven SDE have been proposed.
Now, compare this situation to a stochastic differential equation driven by a
Wiener process. Its Taylor expansion is known and numerous higher order
methods have been rigorously derived. Robust and capable numerical meth-
ods for the solution of Poisson driven SDEs will remain elusive until Poisson
driven SDEs are as rigorously studied as their Wiener process counterparts.
Without additional fundamental characterization of multidimensional coupled
Poisson processes with time-dependent rates, further progress in developing
T-leaping type methods that rely on Poisson processes will be slow.

Because of the difficulties in T-leaping and, more generally, with simulat-
ing a trajectory from a Poisson-driven SDE with time-dependent rates, two
recent numerical methods have been proposed that substitute a Poisson
process for a Binomial one [130, 131], although each implements the same
idea in different ways. One may describe the number of reaction occurrences
n; of the j'* reaction within the interval [t,  + t] according to the Binomial
distribution, which is

max |
n'r max_

P (nj; D, n’}lax) - n;! (n’!iax_nj)' prU(l—=p) (2.65)
H(n] !

where n}”‘” is the maximum number of occurrences of the j* reaction that

disallows any species from becoming negative and where p = min (a it/ nT“x) :
By using the Binomial distribution, one places an upper bound of n?’w‘x oc-
currences on the jth reaction, thus preventing any reaction from occurring
too many times and causing the number of molecules of any species to be-
come negative. Consequently, by substituting the Binomial distribution for
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the Poisson one, the problem of negative numbers is avoided. After using
Eqg. (2.65) to sample the number of reaction occurrences for each reaction,
nj, the state and time is updated accordingto X =X +} ;v;njandt =t +1.

The main difference between the two proposed numerical methods is the
way in which they sample from the multi-dimensional Binomial distribution.
One method randomly selects a reaction, calculates n’}m and p, samples
nj, and repeats the random selection of the remaining reactions. The other
method correctly samples the distribution by choosing the first reaction, cal-
culating n{"** and p, sampling n1, and then conditioning the number of occur-
rences of the second reaction on the the sampled value ni. However, while
the latter method’s conditioning of the distribution is correct, it is difficult to
implement for large, coupled reaction networks because of the dense condi-
tioning between Binomial distributions. In addition, neither method charac-
terizes the generated error in terms of the utilized time step and relates it to
an expansion of the Binomial process in terms of leading orders. Such char-
acterizations are necessary if the further development of leap-type methods
continues beyond the prototypical stage.

2.3.4 Conclusions

The stochastic simulation algorithm will always remain the exact solution of
a system of chemical reactions. Recent progress in leap-type methods have
met significant obstacles in terms of both computational efficiency and ac-
curacy. Instead, we have focused on the usage of It6 stochastic differential
equations to approximate the number of reaction occurrences in a time step.
This approximation is valid when both the reactant and product molecules
of a reaction are above a certain threshold (typically 100 molecules) and
when the reaction rate is fast enough (typically 10 molecules per second)
[132]. Importantly, when both the number of reactant molecules and the
reaction rate is large, the stochastic simulation algorithm becomes compu-
tationally intensive. Consequently, we use a valid approximation only in the
kinetic regime where the stochastic simulation algorithm becomes the most
slow, thus decreasing the computational cost of simulation while retaining
accuracy. Finally, as we show in the next section, the fundamental charac-
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terization of It6 stochastic differential equations has progressed far beyond
that of Poisson driven SDEs, allowing us to use rigorously derived numerical
methods to efficiently and accurately compute solutions.

2.4 The Numerical Solution of I1t6 Stochastic Differential Equations

Stochastic differential equations can accurately model a wide variety of sys-
tems, including stock and derivative prices in a financial market, the Brow-
nian dynamics of polymer molecules, the frequency of genetic alleles in a
population of biological organisms, the movement of automobiles on roads,
the spread of contagious diseases, and (of course) the stochastic dynam-
ics of chemical reaction networks. Consequently, because these equations
have so much utility, it is important to understand exactly how to solve these
equations, including the technical details that arise in their solution. Accord-
ingly, the numerical solution of stochastic differential equations deserves its
own section.

Our primary motivation is to correctly and accurately solve the chemical
Langevin equation, which describes the stochastic dynamics of a chemical
system with M reactions and N species that satisfies certain continuity re-
quirements. It has the form

dX; = Z]}/Izl\’jii’j(X(f)) dt+ZZ}/I:1Vji \/dej i=1,...,N

(2.66)
where X is the state vector of the number of molecules of each chemical
species in the system, v is the stoichiometric matrix that determines the ef-
fect of each chemical reaction on the chemical species in the system, and
r is the vector of reaction rates. In the previous section, we introduced the
dW as the differential of the Wiener process. In this section, we deepen
our understanding of the Wiener process and describe, in detail, how one
solves a differential equation that depends on it. Importantly, the chemical
Langevin equation is one of the most difficult types of stochastic differen-
tial equations to solve; it is multi-dimensional with multiple, multiplicative,
and non-communative Wiener processes. While many previously developed
stochastic numerical methods treat the less difficult cases, we focus our at-
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tention on the methods that may solve the chemical Langevin equation.

In this section, we describe the technical details behind the numerical
solution of It6 stochastic differential equations. We begin by stating def-
initions and describing the formal solution of linear SDEs. We continue
presenting some examples of analytically solvables SDEs, which we later
use to compare numerical and exact solutions. We then describe the dif-
ference between strong and weak solutions, the difference between 1t6 and
Stratonovich stochastic integrals, and the methods of numerically evaluating
or approximating these stochastic integrals. We conclude by detailing the
different numerical schemes for solving It6 SDEs, including explicit, Runge-
Kutta, implicit, and adaptive schemes.

2.4.1 Definitions and Formal Solutions

Consider a system with a state vector described by N variables. The state
vector is

X = {X1,Xs,...,Xn} where each variable is real-valued, or X; € R. The
system is affected by one or more continuous-valued random processes,
making the system a stochastic process. Because of the Central Limit the-
orem, a good model of a continuous-valued random process is the Wiener
process, W (t). For each random process affecting the system, an additional
Wiener process is added. One may mathematically model the time evolution
of a wide variety of such systems by using a Wiener-driven vector stochastic
differential equation of the form

M

dX(t)i=oi(X,1)di+ ) o;;(X,1)dW; (2.67)

j=1

where there are j = 1,...,M Wiener processes with dW; being the time
derivative of the j”“ Wiener process and with state variables i = 1,...,N.
For brevity, the notational time dependence of the Wiener process has been
suppressed. If both o; and 6; ; (for all £, j) are linear or constant with respect
to X;, then the stochastic differential equation (SDE) is also linear. If ; ; are
all constant, then the SDE is said to have additive noise. Otherwise, if any
o;, j is a function of X;, then the SDE has multiplicative noise. The stochastic
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differential equation in Eq. (2.67) is a useful notation for the integral form,
t
X(t),-:/ ou(X, ') di’ + Z G (X, 1) (2.68)
t, fo j=

where the integral of the Wiener process, [ f(X,7)dW, is called a stochastic
integral and may be evaluated using either the 1t6 or Stratonovich definitions.
In choosing a definition, the stochastic differential equation itself is classified
as either an It6 or Stratonovich SDE. However, one may convert an 1té6 SDE
to a Stratonovich one by a transformation of the drift coefficients.

Consider a scalar linear 1té6 SDE driven by a single Wiener process,

dX; = (al(t)Xt —I—az(t)) dt + (bl(l‘)Xt —i—bz(t)) dw, (2.69)
It has the formal solution
t t
Xi =Py, (Xt,, —|—/ (ax(s) — b1 (s)ba(s)) CIDS_JIO ds+ by (s )(1) dW1>
1o

to
(2.70)
where @, ; is the fundamental solution,

t 1 t
D, 4, = exp ( / <a1 (s) — Eb%(s)> ds+ [ by(s) dWl) (2.71)
I to

The mean u(t) and variance v(t) of the solution to Eq. (2.70) satisfies two
ordinary differential equations

W0 o (6)ut0) + aalr) o)
and
d;(tz) - (2“1<f )+ bt )) V(1) +b1(D)ba(Du(t) + b (1) +b5 - (2.73)

Importantly, the solution of a homogenous linear SDE with a; () = a, by (t) =
b, ax(t) = by(t) = 0, and initial condition X; ~ N(u,,v,) for any finite u,,
Vo, is also a Gaussian distribution with a mean and variance governed by
Egs. (2.72) and (2.73). Otherwise, the solution is not generally a Gaussian
distribution. For a vector system of multiple linear SDEs driven by multiple
Wiener processes, spectral decomposition of the drift vector and diffusion
tensor can yield a system of decoupled linear SDEs driven by a single altered
Wiener process whose formal solution remains Eq. (2.70).
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2.4.2 Explicit Solutions of Some Stochastic Differential Equations

The formal solution of a linear stochastic differential equation always ex-
ists and may be evaluated in many instances. These analytic solutions are
helpful when validating a stochastic numerical integrator or measuring its
error with respect to the time step. In the first example, the following non-
homogeneous scalar linear [t6 SDE with additive noise,

bh—X
dX, = (T ;) dt +dw; (2.74)

is satisfied by the solution

X, =X <1—t)+bt+(T—t)/t :
e T T o T

dw (2.75)

— S
In the second example, a homogenous scalar linear 1t6 SDE with multiplica-
tive noise, or

is satisfied by the solution

X, =X, exp ( <a — %b2> r+ bW(t)) (2.77)

Because the formal solution of any linear SDE exists and may be eval-
uated in many instances, one technique for solving a non-linear system of
SDEs is to convert it to a linear one. There are a variety of techniques to do
this, including non-linear transformations and redefining a single non-linear
SDE into a system of coupled linear SDEs. For example, to solve the follow-
ing non-linear scalar 1t6 SDE

dXt = (ath +bXt) dt +CXt dW] (278)

the transformation y = x! =" converts the non-linear SDE into a linear one

that satisfies
1

t T—n
X, = 0, <X01_” +a(l— n)/ @?_1 ds) (2.79)
o

with

®; =exp ((b — %c2> t+ cW(t)) (2.80)
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Stochastic differential equations may also describe a complex-valued stochas-
tic process driven by real-valued Wiener processes.

2.4.3 Strong and Weak Solutions

The formal solution of a general stochastic differential equation in Eq. (2.67),
including the ones in Eq. (2.75), (2.77), and (2.79), may be evaluated in two
different ways. The first is to generate a trajectory of the solution by creating
a single path for each Wiener process in the system and then evaluating
the state vector, X;, in terms of the Wiener processes and their integrals.
The second is to find a probability distribution P(X;) that is equivalent to the
distribution of all possible trajectories of the system. The former is called a
strong solution while the latter is called a weak solution.

Consider the generalized vector stochastic differential equation with mul-
tiple Wiener processes, shown in Eq. (2.67). It has a drift vector A; = a; and
diffusion tensor D%j = % Yk Gi7k0£j. If both terms are bounded and the dif-
fusion tensor is positive definite, then Eq. (2.67) has a weak solution P(X;,t)
that satisfies the Fokker-Planck equation

J0P(X;.t
ﬁ_ Zax (X1 +ZZ 2 (X,,) | P(Xiot) (281)

lljl

which is a partial differential equation with N dimensions.

It is possible that two different systems of stochastic differential equation
have the same weak solution, but different strong solutions. For example, a
two-dimensional system that oscillates out of phase in a clockwise direction
will have a different strong solution than one that oscillates out of phase in
a counter-clockwise direction. However, both of their weak solutions will be
the same. The strong solution also contains more information than the weak
solution. By generating many trajectories of each Wiener process and evalu-
ating an ensemble of strong solutions of the stochastic differential equation,
one may compute the distribution of that ensemble to obtain the weak solu-
tion. However, the opposite is not generally true. Except in certain cases,
one may not sample a probability distribution of a time-dependent system to
generate a strong solution.
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The strong solution of a general system of SDEs typically has no formal
solution. Instead, one must use a stochastic numerical integrator to simu-
late a trajectory of the stochastic differential equation. A stochastic numer-
ical method generates a strong approximation to the solution of an SDE if
the approximate numerically generated trajectory converges to an exact tra-
jectory of the SDE, given that the paths of the Wiener processes are fixed
and as the time step approaches zero. In other words, if the time step of
a stochastic numerical integrator is Atspg = ti11 —t; and if the paths of
all Wiener processes in the system at times ¢; fori = 1,..., n are fixed as
{Wi(t1),W;(t2),...,W;(tn)} for j =1,...,M, then the exact trajectory of a
d-dimensional stochastic differential equation can be evaluated at times #; to
be {Xi(t1), Xk (12), ..., Xi(t,)} fork=1,...,d. The numerical approximation
of the solution of the SDE that uses the same paths of the Wiener processes
is {Xi(t1),Xx(12),...,Xx(t,)} and is considered a strong approximation of
the SDE if

| X (i) — X ()| — O (2.82)

as Atspe — 0. Consequently, a stochastic numerical method that generates
a strong approximation to the solution of a stochastic differential equation
will converge, in the limit, to the exact solution in a path-wise sense. In the
remainder of this section, we focus on stochastic numerical methods that
generate strong solutions to non-linear stochastic differential equations.

2.4.4 It6 and Stratonovich Stochastic Integrals

The integral of the Wiener process may be interpreted in many ways. The
two most important definitions are the 1té and Stratonovich ones. These
different definitions have practical consequences and are briefly reviewed.

Consider a time interval [0, T| divided into n equal partitions 0 = tf") <

té") << t,i”) < tr(l'jr)l = T. A typical Riemann integral is defined as the
mean square limit of the sum of a twice differentiable and continuous function
f(t) evaluated at each ig") over the time interval 1", tl.(jz)l], or

i

/OT f(X;,t)dt = lzif (Xﬁgn)’ E_,l(n)) (ti(jz)l _ti(n)) (2.83)
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(m) _ ()

asn—ooandf, — 0. The evaluation times, ?;l@, are usually taken to

i+1 i
be &i = ( ) . Importantly, the value of a Riemann integral does not change
if E_,l( is chosen to be any other time, t < & tl+1 However, for a

stochastic integral, the choice of these evaluation times actually affects its
value.

Over the same time interval [0, T], a stochastic integral fOTf(Xt,t)th is
also defined as the mean square limit of a function f(¢) evaluated at each

E”(”) over the time interval [tl.( ") tl(+)1] or

o= £ (%o 87) {2 -} 284

l( +)1 l.( " 0. The Ité interpretation chooses the time evalua-

o

asn—oandt

tion points to be E_,i while the Stratonovich interpretation chooses the
evaluation points to be £ = (") +tl.(ﬁ)1) /2. The usage of the Stratonovich
definition of the stochastic integral is denoted by fOT f(Xi,t) odW;. Impor-
tantly, the choice of él@ is arbitrary, but the 1t6 and Stratonovich choices are
the only commonly used ones because the resulting stochastic calculi have
certain important behaviors.

For example, the 1td stochastic integral fOTXtth is
T n 1
/0 X dW, =Y X, {W,.., =W, } =X, exp (WT — ET) (2.85)
i=1

using the same mean square limit where X, = X(;—). Conversely, the Stratonovich
stochastic integral fOTXt odW; is

/OTXtoth Z)% (W, — W, } = X, exp (Wr) (2.86)
i=1

Consequently, the Stratonovich stochastic calculus is commonly used be-

cause it reproduces the familiar calculus described by the fundamental theo-

rem of calculus. The It6 stochastic calculus is distinctly different. The 1t6

definition of the stochastic integral is commonly used because it is non-

anticipative and a martingale. It is non-anticipative because its function eval-

uations depend only on ti(”) and not any future values of the function. It is
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a martingale because the expectation of an 1t6 stochastic integral is always
zero, or

T
E [ / f(Xt,t)th] —0 (2.87)
0

The same expectation for a Stratonovich integral is

T LT [0f(Xet)
E[/O f(X,,t)oa’Wt]—z/O E[ e ]dt (2.88)

which is not necessarily zero. Both stochastic integrals may also have non-
zero variances and other moments.

Importantly, it is straightforward to convert an 1t6 stochastic differential
equation to a Stratonovich one. The It6 SDE

dX; = a(X;,t) dt + b(X;,t) dW, (2.89)

is equivalent to the Stratonovich SDE

where . 2b(X,.1)
_ 2 oo\l

One may also define multiple It6 or Stratonovich stochastic integrals that
integrate a function f(X;,t) over multiple Wiener processes and/or time. For
example, if there are M Wiener processes in the system, then any of the
following single and double It6 stochastic integrals

Jf(Xe,t)ds ff(vat)dWS,j fff(let)dWZst fff(Xtvt)dWZ,jl dWs, j,
(2.92)
may be evaluated over all unique combinations of ji,j» =1,...,M. If in-
tegrating over two different Wiener processes, j; # j», both the It6 and
Stratonovich double stochastic integrals converge to the same value. Oth-
erwise, the remaining single and double stochastic integrals converge to dif-
ferent values.
The usage of either definition depends on the application. If the system of
interest has reasonably smooth derivatives and is being modeled as a ran-
dom process because it is more convienant to do so, then the Stratonovich
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definition may be more applicable because its calculus is equivalent to the
calculus of ordinary differential equations. A Stratonovich stochastic differ-
ential equation is often a good model of a real random process affected by
a random variable with a finite correlation, which is called colored noise.
For example, in finance, Stratonovich SDEs are often used to model the
dynamics of derivative and stock prices. Conversely, if the system is a phys-
ical or chemical process with uncorrelated transitions that depend only on
the present time, then the It6 stochastic integral may be more appropriate.
In addition, it is convienant to use the It6 definition if the martingale prop-
erty is required. In stochastic chemical kinetics, the collision and reaction of
molecules are modeled by using It6 stochastic differential equations because
the physical quantity in question, which is the number of reaction events in a
time increment, depends only on current number of molecules and has zero
correlation.

If the calculus of Stratonovich stochastic integrals is the same as ordi-
nary calculus, then what is the calculus of stochastic It6 integrals? The It6
Formula provides the answer.

2.4.5 The It6 Formula and It6-Taylor Expansions

The It6 formula is a general transformation analogous to the chain rule of or-
dinary calculus. The key difference is that mean square limit of the integral of
(th)2 goes to dt instead of 0 as in ordinary calculus, thereby creating addi-
tional terms of O(dt). Given a N-dimensional stochastic differential equation
with a M-dimensional Wiener process, written in vector form,

dX, = o, dt + o, dW, (2.93)

and some transformation ¥; = U(¢,X;) = U (¢, X', X?,...,XN), the 1t6 For-
mula is an expression for dY; in terms of the time-dependent drift vector and
diffusion tensor, a; and o;, and the transformation U(¢,X;). In vector form,

the 1t6 Formula is

oU 1
dY, = {W + ol vU+ St (607 v [VU])} dt +vU o, dW,  (2.94)
For example, given the scalar SDE dX; = f; dW; with a single Wiener

process and the transformation ¥; = U(z,X;) = exp (X;), an application of
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the 1t6 Formula yields
1
dy, = > 12, dt + £,Y; dW, (2.95)

To compare, using the same transformation on the equivalent Stratonovich
integral, dX; = f; odW;, yields dY; = f;Y; odW;, reproducing the familar chain
rule of ordinary calculus.

The It6-Taylor expansion is a generalization of the deterministic Taylor ex-
pansion for Ité stochastic differential equations. It describes how a stochastic
differential equation may be linearized in time with respect to a basis set of
integrals. The expansion arises from the repeated application of the It6 For-
mula on selected terms.

Consider the scalar 1té stochastic differential equation in integral form
t t

Xt = X[O + Cl(Xs) ds + b(XS) dWs (296)

ty t,
If the 1t6 Formula is applied to Eq. (2.96) with a transformation ¥; = f(X;),
where f(X;) is any continuous and twice differentiable function, then the
result is
t t
YV, =f(X)=rfX)+ | LOf(X,)ds+ [ L'f(X,) dw, (2.97)
to Iy

fort € [0, T]. The LY and L' operators are defined as

o 1,92
1=a —~+ §b2ﬁ (2.98)
and 5
L' = ba (2.99)

If f(x) = xis substituted into Eq. (2.97), then the original integral form of
the stochastic differential equation in Eq. (2.96) is obtained via L° f = a and
Llf = b. The solution X; can be rewritten into a term that depends on X,
and a residual that depends on time and X;, or

Xl‘ — Xl‘o —l—R() (2100)
with . ;
Ry = / a(X,) ds+ [ b(X,) dW, (2.101)
I

lo
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This transformation is the 07 order lt6-Taylor expansion of the solution X;
around X; , approximating the solution at time ¢ as X; . The residual of this
approximation, Ry, is of order O(1) and determines the leading order of the
error. In order to decrease the error, the It6 Formula must be reapplied on
terms in the residual.

By applying the 1t6 Formula to the coefficients in the residual R, such
that f(x) = a and f(x) = b are each substituted into Eq. (2.97), the final
result,

t t
Xt = Xl}, —|— a(Xto) / dS —|— b(Xt(,) / dWs ‘|‘R1 (2102)
Iy Iy

is the first 1t6-Taylor expansion of X; around X; with a remainder, Ry,

Rl_/ / Loa(Xx. dsdz+/ / L'a(X.) dW.ds
t, Jt, Io to

(2.103)
- / / LOb(X;) dW,dz + s b(X;) dW,dW;
t, Jt, Io J1o

of order O(dt). By repeatedly applying the It6 Formula to the lowest or-
der terms in the remainder, the resulting expression will be a continued
expansion in terms of the multiple It6 integrals, such as [ds, [dW;, and
[ [ dWdW,.

For example, by selecting the L!b o O(dt) term from the remainder in
Eq. (2.103) and substituting f(x) = L'b into the 1t6 Formula, the result

t 1 t s
X =X, +ax,) | ds+bx,) [ daw,+L'b(x,) / AW,dW, + R,
t, Jt,

t, t,
(2.104)
is the second It6-Taylor expansion of X; around X; with a remainder, R»,

t Ky
Ry =R — / / L'b(X.) dW.dW;
t() t()

t S Z t s Z
+ / / / LOL'b(X,) dW,dWidu + / / / L'L'b(X,) dW,dW,dW,
t, Jt, Jt, I JI, JI,

(2.105)
of order O(dr3/?). By expanding the double stochastic integral [ [ dW,dW,
of order O(dt), the remainder loses its lowest order term, but gains a triple
stochastic integral [ [ [ dW,dW.dW; of order O(dt3/?). Notice that the dr
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terms inside integrals contribute O(drt) to the integral, while the dW terms
inside integrals contribute O (M) to the integral. Therefore, in order to
obtain an It6-Taylor expansion that is accurate up to O(dt"), the expansion
must contain a term integrating a Wiener process 2n times and its remainder
must contain a term integrating a Wiener process by at least 2n + 1 times.

By using the It6 Formula to repeatedly expand terms inside the remain-
der, the It6-Taylor expansion of X; may be continued arbitrarily long. How-
ever, the difficulty in evaluating these expansions is the presence of multiple
stochastic integrals. For a system of stochastic differential equations driven
by M Wiener processes, the It6-Taylor expansion will include M + 1 sin-
gle stochastic integrals, (M + 1)(M +2)/2 double stochastic integrals, and
so on, which includes the integrals containing dt. For example, the low-
est order term in the remainder R; will be the double stochastic integrals,
o J§ AWy j,dW, j, for ji,jo=1,...,M. In the next section, the evaluation
of these multiple stochastic integrals is briefly reviewed.

2.4.6 Numerical Generation of Stochastic Integrals

The stochastic integrals that appear in an [t6-Taylor expansion must be nu-
merically evaluated. The single stochastic integrals, the double stochastic
integrals containing a dt, and the double stochastic integrals over the same
Wiener process may all be represented in terms of the constituent Wiener
increments and time. Consequently, it is straightforward to evaluate these
integrals in terms of a Gaussian random variable and the time increment.
However, the double stochastic integrals over two different Wiener processes
may not be expressed in terms of their constituent Wiener processes and
time. Instead, they must be numerically approximated. Because the goal is
to develop strong, pathwise approximations to the solutions of a stochastic
differential equation, the approximation of these multiple stochastic integrals
must also be of the strong type.

Consider a stochastic differential equation driven by j =1,...,M Wiener
processes. On the time interval [0, Az] the Wiener increments are AW (A1)
and each Wiener process may participate in one or more stochastic inte-
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grals. The values of the M single 1td stochastic integrals are denoted by

At
Iy, ae= | dWj =AW (an (2.106)

and are evaluated as a Gaussian random number with zero mean and At
variance, AW; (x,) ~ N(0,At).
However, a double It6 stochastic integral on [0, A¢], or

I

At pAY
Jji,J2), At :/0 0 del dez (2.107)

may only be represented by its constituent Wiener processes in the case
j1 = j». Otherwise, it must be numerically approximated. In the j; = j»
case, the double It6 stochastic integral is evaluated as

1

2
I(j1,j1),At:§{( Wi (ar) —At} (2.108)

Otherwise, for j; # j», the M-dimensional Wiener processes must be
written as a componentwise Fourier expansion

t 1 > 2rmt . [ 2rmt
Wj,(t)_A_th,(At) :5611',()4-2 (aj,rcos< A7 >—|—bj,rsm( A7 ))

r=1

(2.109)
with Gaussian distributed coefficients
2 (At s 2rTs
ajr= E /0 (Wj, (s) — ijv(At)> COS ( At ) ds (2110)
and
2 At s - [(2rms
ajr=r /O (Wi - EWLW)) sin (= ) ds @.111)

for j=1,...,M and r =0,1,...,0. The Fourier series converges in the
mean square sense and with coefficients a; , and b; , ~ N(0,At/2n?r?).
Because of the 1 /r2 dependence, the series may be truncated with p
terms. By rearranging and using additional relationships between different
types of stochastic integrals (see Kloeden and Platen [113] for details), one
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may numerically evaluate a double It6 stochastic integral by using

1
I(j, jp).ar = At (fm% + /PP (1,85, —/sz,pﬁjl))

Ar L (2.112)
+ m ’; P <Cj1,r (\/Egjz +nj2,r> - Cjz,r (\/iah +nj1,r>)
where )
pp:%_zinz;% (2.113)

The Gaussian coefficients are sampled via u; », N, Cj ~N(0,1) for r =
1,..., p while é;j are related to the Wiener processes in the system via E_,j =
\/%AW]',(AI)' By increasing the number of retained terms in the expansion,
the numerical error in the approximation of the double stochastic integral is
reduced. A typical value of p = 10 ensures a reasonable approximation.
We use Egs. (2.106), (2.108), and (2.112) to numerically evaluate the
single and double It6 stochastic integrals in the following stochastic numeri-

cal integration schemes.

2.4.7 I1t6-Taylor Explicit Numerical Schemes

By truncating an It6-Taylor expansion at a convienant remainder, it is possi-
ble to create a “one step” explicit numerical scheme for calculating X; . a;
in terms of X; and the coefficients and stochastic integrals evaluated at
X;. The lowest order term in the remainder will determine the accuracy
of the numerical scheme. These |t6-Taylor numerical schemes include the
Euler-Maruyama, Milstein, Platen, and higher order methods. The Euler-
Maruyama method is perhaps the most common one because it does not
require the evaluation of double stochastic integrals. However, as we will
see, the limitations of the Euler-Maruyama method can make higher-order
methods more appealing. Each stochastic numerical method approximates
the solution of a stochastic differential equation with different degrees of ac-
curacy. In addition, numerical stability of the scheme is also an important
topic. In the next part, we review the definitions of numerical accuracy and
stability in the context of a stochastic numerical method.
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Numerical Accuracy and Stability

There are two definitions of numerical accuracy in the context of a stochastic
numerical integrator: weak and strong accuracy. Weak accuracy measures
the generated numerical error with respect to the probability distribution of
the solution while strong accuracy measures the numerical error with respect
to the trajectory of the solution.

A stochastic numerical integrator is said to have strong accuracy of order
vy if the pathwise strong convergence of a numerically generated trajectory,
Y (¢;), towards the exact trajectory, X (¢;), follows

Estrong = ’Y(ti) _X(ti)’ = KAtY (2.114)

where At is the time step of the stochastic numerical integrator and for some
K > 0. A stochastic numerical integrator is said to have weak accuracy of
order B if the expectation of some function of the approximation solution,
E[f(Y(t;),1)], towards the expectation of some function of the exact solu-
tion, E [f(X(#;))], follows

eveak = | E[f(Y ()] —E[f(X(1:))] | = KALP (2.115)

for some K > 0.

To measure the strong accuracy of a stochastic numerical method, it is
helpful to numerically solve a stochastic differential equation that has an an-
alytical solution. We measure the strong accuracy of a stochastic numerical
method by first fixing the Wiener processes in the system over a time interval
[0, T'] with constant time increments, At =t;, | —t; fori=1,... ,n. For a sin-
gle Wiener process, the path is W(t) = {W(t;),W(t2),W(t3),...,W(t,)}.
The exact trajectory of the solution of the SDE is then evaluated on [0, T']
as X; = {X(©),X(2),X(13),...,X(t,)}. The numerical approximation of
the solution is then calculated using a numerical scheme so that Y (¢) =
{Y(11),Y(t2),Y (t3),...,Y(t,) }. The numerical scheme will use the time step,
At, and the Wiener increments, AW (t;+1) = W (t;11) — W(t;), in the calcu-
lations. The strong definition of the error, €y,ong, may then be measured in
absolute terms via Eq. (2.114). However, because the error is only evaluated
over as single path of the Wiener processes, €1 is a random variable; the
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exact value will fluctuate according to a Gaussian distribution. By repeating
the above procedure over many paths of the Wiener processes, the mean
of the Gaussian distribution, < &g,,,e >, may be calculated. This mean will
then satisfy Eq. (2.114) with respect to the utilized time step At for some
Y. The variance of the Gaussian distribution weakly converges to zero in the
limit of an infinite number of evaluated trajectories.

We can also measure the weak accuracy of a numerical scheme by taking
the expectation of the exact solution of a stochastic differential equation and
comparing it, using Eq. (2.115), to the expectation of the approximate nu-
merical solution, E [Y (¢;)] = ]%]Zﬁvzl Y (t;), evaluated over N different Wiener
paths as described above.

The numerical stability of a stochastic numerical integrator is also im-
portant. If the numerical scheme is unstable, the propagation of initial and
roundoff errors will cause the numerical error in the solution to blow up. This
is especially important when solving stiff stochastic differential equations
where there is a large time-scale separation. The following N-dimensional
linear SDE driven by M Wiener processes

M
dX; = AX; dt+ ) BX; dW, (2.116)

j=1

is considered stiff if the minimum and maximum Lyapunov exponents of
the drift and diffusion matrices, A and B, are largely separated such that
AN << A1 where A is the top Lyapunov exponent. Unlike ordinary differential
equations, stiffness can arise due to a time-scale separation in either the
drift or diffusion terms. To measure asymptoptic stochastic stability, one may
substitute a “test equation” with A = A, and B = A, into the numerical
scheme and compare the generated error in the (n+ 1)”’ iteration versus
the n'" iteration. Asymptoptic stochastic stability is ensured if the error in the
(n)"" iterate of the solution does not grow with n such that

‘Ym) 0

S ‘g(}\'dra }\'duaA[) ‘n

y© —X(O)‘ 2.117)

for initial conditions ¥ (?) and X(©). The function g depends on the numerical
scheme and test equation. For all It6-Taylor explicit numerical schemes,
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Figure 2.9: Using the Euler-Maruyama scheme, the numerical solution of the simple linear stochas-
tic differential equation in Eq. (2.119) is calculated using a time step of (red) At =2~ or (yellow)
At =277 and compared to the (blue) exact solution.

asymptoptic stochastic stability is ensured if, at least, the real part of the top
Lyapunov exponent satisfies Re(A;)At < 1.

The Euler-Maruyama Method

The Euler-Maruyama method is an explicit stochastic numerical method re-
sulting from the truncation of the first It6-Taylor expansion of the solution X;
around X; . The lowest order term in the Euler-Maruyama method is a single
stochastic integral of strong order O (\/A_t) and weak order O(At). There-
fore, the strong order of accuracy is Y= 0.5 while the weak order of accuracy
isp=1.0.

For a generalized N-dimensional stochastic differential equation driven by
M Wiener process, the Euler-Maruyama scheme for the n'" iterate of the k"
componentof Y is

M
r" =y pa A+ Y by AW, (2.118)
j=1
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fork=1,...,N and where AW; ~ N(0,At) for j =1,...,M. The a; is the
drift term for the k*" component while the by ; term is the diffusion term for
the effect of the j[h Wiener process on the k' component. Both terms are
evaluated using the current state of the system, ¥ ().
For an example, the numerical solution of the linear stochastic differential
equation
dX; = aX; dt + b dW, (2.119)

with a = —0.5, b1 = 1, and initial condition X; = Xo is compared to its exact
solution

1
X; = X, exp <<a+ 5b%> t—l—b1W(t)) (2.120)

using a fixed time step Ar. In Figure 2.9, we compare the exact and nu-
merical solutions of Eqg. (2.119) with time steps of At =277 and Ar =277,
each evaluated over the same Wiener path. By using the same Wiener path,
we may then calculate the strong pathwise accuracy of the Euler-Maruyama
scheme. In Figure 2.10, we calculate the strong order of accuracy, v, by
repeating the evaluation of the numerical and exact solutions over 500 differ-
ent Wiener paths, plotting the average 1og, € ong vs. log, Az, determining
the slope of the linear line. The Euler-Maruyama scheme’s strong order of
accuracy Y= 0.5 is verified.

The Milstein Method

The Milstein scheme is an explicit stochastic numerical method resulting
from the truncation of the second It6-Taylor expansion [133]. The lowest or-
der term in the Milstein scheme is a double stochastic integral of both strong
and weak order O (At). Consequently, both the strong and weak order of
accuracy isy=p = 1.

For a general N-dimensional stochastic differential equation driven by M
Wiener processes, the Milstein scheme for the n'" iterate is

db
y{Y = Y()+akAt—|—Zbk]AWJ—i— Z me aikﬂlﬁ 5y @.121)
J=1 J1,ja=1i=1

fork=1,...,N. The double stochastic integrals in Eq. (2.121) are evaluated
using Egs. (2.108) and (2.112).
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Figure 2.10: The strong order of accuracy of the Euler-Maruyama scheme is determined by calcu-
lating the slope of a linear fit of a log-log graph of the average absolute error between the numerical
and exact solutions, < €g,ng >, versus the time step of the Euler-Maruyama scheme, Az. The strong

order of accuracy y= 0.5 is verified. The average is taken over 500 different sample paths of the
Wiener process.

In Figure 2.11, we show the increased accuracy of the Milstein scheme
by comparing the numerical solution of the test linear SDE in Eq. (2.119)
using a time step of Ar =277 and Ar = 2~ with its exact solution, shown
in Eq. (2.120). Even at the higher time step, the Milstein scheme is capable
of accurately approximating the exact solution, while the Euler-Maruyama
scheme begins to show significant deviations. In Figure 2.12, we calculate
the strong order of accuracy, v, of the Milstein scheme using the previously
described method. Again, the Milstein scheme’s strong order of accuracy
Y= 1is verified.

By truncating It6-Taylor expansions of the solution, it is possible to cre-
ate even higher order methods, including the Platen method with y = 1.5.
However, these stochastic numerical methods require the evaluation of triple
stochastic integrals. For multi-dimensional SDEs, these triple stochastic in-
tegrals must be numerically approximated and, consequently, the computa-
tional cost of generating these integrals typically offsets the advantage of a
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Figure 2.11: Using the Milstein scheme, the numerical solution of the simple linear stochastic
differential equation in Eq. (2.119) is calculated using a time step of (red) At = 277 or (yellow)
At =273 and compared to the (blue) exact solution.
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Figure 2.12: The strong order of accuracy of the Milstein scheme is determined using the same
method as in Figure 2.10. The strong order of accuracy Y= 1 is verified.
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larger time step.

Stochastic Runge-Kutta Methods

A stochastic Runge-Kutta method is a derivative-free numerical scheme for
solving a stochastic differential equation. Analogous to their deterministic
counterparts, one may substitute a finite difference approximation for each
derivative in a stochastic numerical scheme to obtain a stochastic Runge-
Kutta method of the same order of accuracy. For example, by substituting
the forward finite difference

bk,jagl;j _ \/1A_t{bk’j (Yk(”)+akAt+bk,j\/E) — by (Yk(n)>}

(2.122)
into the Milstein scheme, the resulting stochastic numerical method
(1) _ () d 1 ¢ (n)
Yo =Y fadrt Zbk,jAWjJr\/—A—t )3 {bk,jz (le > —bk,jz}lul,jz)
.]:1 j17j2:1
(2.123)
is a Runge-Kutta method with a vector of supporting values,
TV =¥" yaAr+b; VA (2.124)

The Yl@ is a one step deterministic approximation of the future value of the
solution. The Runge-Kutta version of the Milstein scheme has a strong and
weak order of accuracy Y= = 1.

2.4.8 Implicit Stochastic Numerical Schemes

A stochastic numerical method is implicit if the calculation of Y 1) involves
the evaluation of the drift or diffusion coefficients at values of ¥ "1 or Intl-
It is called semi-implicit if only the drift coefficients are evaluated at y (n+1)
or t,+1. Semi-implicit methods are advantageous because they are always
asymptotically stable using any time step. Consequently, for stiff stochastic
differential equations, semi-implicit stochastic methods are often used.
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For example, for a generalized N-dimensional SDE with M Wiener pro-
cesses, the 0-family for the semi-implicit Euler-Maruyama scheme is

M

" =y ¢ {Gak(Yk(nH),th) +(1- e)ak(yk(n)’[”>} At Zl b, AW
=

(2.125)

for k =1,...,N and where 8 € [0, 1]. If 6 = 0 the scheme simplifies to
the explicit Euler-Maruyama scheme. If 6 = 1 the scheme is the fully semi-
implicit Euler-Maruyama scheme. If 6 = 0.5 the scheme is a trapezoidal-
style scheme for stochastic differential equations.

Similar semi-implicit schemes exist for the Milstein and higher order meth-
ods. All of these schemes are implicit in terms of only the drift coefficients.
Fully implicit schemes are implicit in terms of both the drift and diffusion
terms, but often result in expressions containing terms like ALW],. These terms
are almost surely unbounded in the limit of decreasing time step and do not
converge to the correct solution. However, recent research has developed a
family of balanced implicit methods where the solution is implicit in terms of
both the drift and diffusion coefficients while avoiding the presence of Wiener
increments in the denominator [134].

2.4.9 Adaptive Time Step Schemes

All of the previous stochastic numerical methods have utilized a constant
time step, but it is possible and frequently advantageous to vary the time step
in response to changes in the stiffness of the stochastic differential equa-
tion. Modern deterministic numerical integrators commonly use a heuristic
measurement to calculate an a priori “optimal” time step before applying the
numerical scheme. For stochastic differential equations, this is often imprac-
tical because any such heuristic measurement will be a random variable and
may not reflect the true error of the next iteration of the numerical scheme.
Instead, it is possible to determine a posteriori whether the previous iteration
generated too much numerical error. If it did generate too much error, it is
possible to go back and reapply the numerical scheme using a reduced time
step. However, when a strong solution to the SDE is desired, the reapplica-
tion of the numerical scheme must reuse the previously generated Wiener
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paths, but at intermediate time points. In order to generate an intermediate
time point on the same sample paths, a Brownian bridge must be used.

Research in developing adaptive time stepping schemes for stochastic
differential equations is still in its early phases. In 1997, one of the first works
uses a binary Brownian bridge to develop an adaptive time stepping scheme
for the Milstein scheme [135]. The same work proves, via a counter example,
that an adaptive time step scheme is only gauranteed to strongly converge to
the exact solution if it utilizes a stochastic numerical integrator with a strong
order of accuracy Y > 1. More recent work has focused on developing new
heuristic measurements of numerical error [136]. Finally, it is also possible
to use a non-binary Brownian bridge to create an adaptive time step scheme
[137], but it is more difficult to implement for a multi-dimensional stochastic
differential equation.

Brownian Bridges

Because the Wiener process is a fractal, it is possible to repeatedly “zoom”
in on the sample path and always observe a continuous path with a rescaled
version of the original process. A Brownian bridge is a mathematical proce-
dure for generating sample paths with smaller and smaller time increments
that are each fixed at their original end points. In this way, it is possible to
determine the Wiener increments at intermediate values while reusing the
same sample path.

A binary Brownian bridge is one that repeatedly halves the time incre-
ment of the sample path, generating a Brownian tree. The Brownian tree
has r =0,1,...,R rows with 2" elements in the ™" vow. In the beginning,
the Brownian tree has a single row, called the top row. The top row of the
tree contains the largest Wiener increment, AW = W (¢7) — W (z,) with an
initial time step, Ar =ty —1,. The second row contains two smaller Wiener
increments, AW?2 = W (t7) — W (t, + 3At) and AWS = W (t, + 3At) — W (1,),
where the time step has been halved.

In general, there will be 2" Wiener increments, each with a time step
of %At in the ' row. To generate the additional Wiener increments, the
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relationships

1
AWt = AW+t (2.126)
and |
AWQ";1 = EAWIZ —y, ! (2.127)

are respectively used to create the even and odd Wiener increments of the
(r+1)™ row in terms of the " row with

vyt~ N(0,27 ) (2.128)

forr=1,...,Rrowsand p=1,2,...,2" elements. Using the Brownian tree,
one may generate the Wiener increments for a Wiener sample path for any
decreasing time step so long as that time step is repeatedly halved.

A Typical Adaptive Time Step Scheme

A typical adaptive time stepping scheme that uses a Brownian tree consists
of the following steps:

1. The approximate solution, Y"1 is calculated using a stochastic nu-
merical scheme with a strong order of accuracy, Y > 1 and a time step
At.

2. Using Y"1 the measurement of the numerical error is calculated via
a heuristic expression.

3. If the numerical error is greater than some tolerance, the time step is
halved At — At /2. If the corresponding row of the Brownian tree has
not already been generated, then Egs. (2.126) and (2.127) are used to
generate it.

4. The Wiener increments from the Brownian tree are then fed into the
stochastic numerical integrator with the reduced time step to produce a
more accurate solution Y ("+1),

5. The time step selection loop repeats by going to step 2 until the gener-
ated numerical error is less than some tolerance value.



CHAPTER 2. STOCHASTIC NUMERICAL METHODS 107

6. The procedure is repeated until a specified end time is reached: n —
n+1

The choice of the heuristic measurement of numerical error is arbitrary. It
may be any function that measures the stiffness of the stochastic differential
equation. Typically, there is a separate error measurement for the drift and
diffusion terms of the SDE. Commonly, the drift or the diffusion term is, by
itself, responsible for the stiffness.
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