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It is well known that competition among kin alters the rate and often the direction of evolution in subdivided populations. Yet

much remains unclear about the ecological and demographic causes of kin competition, or what role life cycle plays in promoting

or ameliorating its effects. Using the multilevel Price equation, I derive a general equation for evolution in structured populations

under an arbitrary intensity of kin competition. This equation partitions the effects of selection and demography, and recovers

numerous previous models as special cases. I quantify the degree of kin competition, α, which explicitly depends on life cycle. I

show how life cycle and demographic assumptions can be incorporated into kin selection models via α, revealing life cycles that

are more or less permissive of altruism. As an example, I give closed-form results for Hamilton’s rule in a three-stage life cycle.

Although results are sensitive to life cycle in general, I identify three demographic conditions that give life cycle invariant results.

Under the infinite island model, α is a function of the scale of density regulation and dispersal rate, effectively disentangling these

two phenomena. Population viscosity per se does not impede kin selection.
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The efficacy of kin selection depends in large part on the ex-

tent to which individuals associate with relatives (Hamilton 1963,

1964). Hamilton (1963, 1964) showed that a trait deleterious to

individual fitness but beneficial to others (e.g., cooperation or al-

truism) can increase in frequency as long as br − c > 0, where

b is the benefit to recipients of an act, c is the cost to the actor,

and r is the degree of relatedness between actor and recipients.

Hamilton (1964) suggested that population viscosity—low disper-

sal rate from natal groups—is one mechanism that will generate

high relatedness. However, when there is competition for limiting

resources at a local scale, the same kin-structure that causes coop-

eration to be preferentially directed toward relatives also causes

competition to occur disproportionately among relatives (Grafen

1984; Wade 1985; Kelly 1992, 1994a; Taylor 1992; Wilson et al.

1992; Queller 1994). Thus, the benefits of kin-cooperation can

potentially be negated by kin-competition.

The cooperation-negating threat of kin competition has

heightened the sense that true altruism in nature poses a seri-

ous conceptual dilemma. In particular, a number of models have

shown that increased kinship is exactly balanced by increased

kin competition, making it impossible for true altruism to evolve

(Charlesworth 1979; Taylor 1992; Wilson et al. 1992; Gardner and

West 2006). Yet true altruism does exist in nature, creating a poten-

tial contradiction between theory and observation. One solution to

this problem is to modify basic model assumptions, allowing for

overlapping generations (Taylor and Irwin 2000), “empty sites”

that relax local competition (Mitteldorf and Wilson 2000; Alizon

and Taylor 2008; Lion and Gandon 2009), or propagule dispersal

(Gardner and West 2006; Lehmann et al. 2006). This would seem

to constrain altruism to species exhibiting these unique properties.

However, a number of other models find no such constraints, but

require a crucial assumption that the factors causing competition

are independent from those determining relatedness. For instance,

Kelly (1992, 1994a) demonstrated that when the scales of den-

sity regulation, dispersal, and cooperation are allowed to vary

independently, no such balancing of relatedness and kin competi-

tion occurs. Similarly, Grafen (1984) and Queller (1994) allowed

relatedness of social partners and competitors to vary indepen-

dently, also eliminating the exact balancing of these effects. Still

other models (Boyd 1982; Frank 1998) introduce a parameter that
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modulates between local and global density regulation, so that kin

competition can simply be turned “off” while other model param-

eters are unaffected.

The use of different approaches and assumptions among

these models has prevented a rigorous conceptual unification of

results, obscuring the biological causes of kin competition and the

routes to its amelioration. In particular, it is not clear why so-called

“closed” models (Charlesworth 1979; Taylor 1992; Wilson et al.

1992; Gardner and West 2006) find that true altruism is impossi-

ble, while “open” models (Boyd 1982; Grafen 1984; Kelly 1992;

Queller 1992; Kelly 1994a; Frank 1998) do not. Open models,

which contain free parameters that are assumed to be indepen-

dent of other model parameters (Gardner and West 2006), have

been criticized on the grounds that the same forces determining

kin competition are those determining relatedness, so that the

ability of open models to solve the viscosity dilemma is largely

illusory, with the effect vanishing when transformed into closed

models (Gardner and West 2006). Indeed, a large body of em-

pirical and theoretical work has been motivated by the premise

that relatedness and the scale of competition are inexorably in-

tertwined, or as stated by Kummerli et al. 2009b, “relatedness

and the scale of competition . . . will not usually be independent”

(emphasis added).

The contradictory conclusions of open and closed models

require resolution, which is one of the aims of the present ar-

ticle. Two additional limitations of existing models (both open

and closed) is that (1) they only account for a single round of

density regulation (although see Gardner and West 2006), and

(2) that results apply only under specific demographic and life cy-

cle assumptions. The generality of conclusions and relationships

among models remain unclear. It would be especially useful if any

particular density regulation or life cycle assumption could be en-

capsulated by a single, tunable parameter (Frank 1998; Gardner

and West 2006). This would provide a tool that clarifies the con-

nections between existing models, greatly simplifies modeling,

and allows for the determination of how specific life cycles and

demographic conditions influence the evolution of altruism.

To investigate the role of demography and life cycle in shap-

ing the response to kin selection, I define a parameter, α, that

measures the intensity of kin competition. The degree of “kin

competition” as defined here is the correct demographic concept

for accurately and completely predicting evolutionary change for

any life cycle, whereas some definitions of “soft selection” or

“scale of competition” are often inadequate in this respect (see

below). I show that the intensity of kin competition is a function

of the scale of density regulation, dispersal rate, and life cycle.

These results provide a single, tunable parameter that disentan-

gles the ecological and demographic causes of kin competition

and reveals the role of life cycle in determining the interaction

between density regulation and dispersal.

Furthermore, I show that the multilevel Price equation (Price

1972; Hamilton 1975; Wade 1985) includes both selection and de-

mography, and then derive a version that cleanly partitions these

effects. The result is a general description of selection in a sub-

divided population with an arbitrary degree of kin competition.

This equation is of considerable theoretical and empirical util-

ity. I then demonstrate that a number of previous models (e.g.,

Boyd 1982; Grafen 1984; Wade 1985; Taylor 1992; Kelly 1994a;

Queller 1994; Frank 1998; and Gardner and West 2006) are spe-

cial cases of this single equation. To demonstrate the power and

utility of the model, I give closed-form results for Hamilton’s rule

for a three-stage life cycle. I find three demographic conditions

that produce life cycle invariant quantitative results, and show

that altruism is most favored in life cycles in which competition

occurs late in life. In addition, I find that population viscosity per

se does not impede kin selection.

THE SEMANTICS OF SOFT SELECTION

The evolutionary consequences of genotype-independent com-

petition have been investigated theoretically and empirically by

reference to the terms “hard/soft selection” in classical popula-

tion genetics and, more recently, “the scale of competition” in

the social evolution literature. Both of these conceptual frame-

works have suffered from a lack of consistency in usage. Hard-

and soft-selection are terms introduced by Wallace (1968, 1975)

for the purpose of exposing the ecological conditions that im-

pinge on genetic load calculations. According to Wallace (1975),

soft selection is both density- and frequency-dependent, whereas

hard selection is neither. Soft selection eliminates the correla-

tion between the size of a population and its genetic composi-

tion, with important implications for the expression of the genetic

load (Wallace 1968, 1975). This definition is closely allied with

that of Wade (1985, pers. comm.), Goodnight et al. (1992), and

Whitlock (2002), who also define hard/soft selection in terms

of the genetic correlation with group productivity. Christiansen

(1975) was the first to apply the terms hard and soft selection to a

metapopulation context, where he defined soft selection as local

density regulation before dispersal, and hard selection as the case

in which there is no density regulation before dispersal. Dempster

(1955), in an attempt to reveal the assumptions leading to Levene’s

(1953) condition for a protected polymorphism in a subdivided

population, distinguished between constant zygote number and

constant adult number assumptions. Although Dempster (1955)

did not use the terms hard and soft selection, his dichotomy was

later couched in these terms, with constant zygote number corre-

sponding with hard selection, and constant adult number with soft

selection.

The difference between these definitions can be highlighted

with an example. Take the model of Taylor (1992) who inves-

tigated selection in a group-structured population composed of
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inelastic patches. According to Taylor’s assumptions, there is no

density regulation before dispersal, there is a constant proportion

of adults per group at the time of reproduction, and the expression

of group productivity depends on the dispersal rate. Therefore,

this is a hard selection model sensu Christiansen (1975), a soft-

selection model sensu Dempster (1955), and a hybrid model sensu

Wade (1985), Goodnight et al (1992) and Whitlock (2002).

There is also inconsistency in the usage of the term “scale

of competition.” Frank (1998) defined it as, “the spatial scale

of density dependent competition,” which aligns precisely with

the connotation of the term. However, this term is often used to

mean competition among individuals that originate locally, rather

than competition that occurs locally. For example, Gardner and

West (2006) find that the “scale of competition” is a function of

dispersal. Although dispersal may affect the genetic composition

of a density-regulated neighborhood, it nonetheless does not affect

the size (spatial scale) of this neighborhood (Kelly 1992, 1994a).

Thus, the definitions of the scale of competition technically differ

between Frank (1998) and Gardner and West (2006). Throughout

this article, I will be explicit about the sense in which I use

each of these terms. I then show the quantitative relationships

between disparate definitions using the generalized degree of kin

competition parameter, α.

Apart from semantics, there has been general disagreement

in the literature about the relationship between soft selection and

group selection (reviewed in Okasha 2006). Using the Price ap-

proach, Wade (1985) found that soft-selection eliminates group

selection. On the other hand, Goodnight et al. (1992) employed

the method of contextual analysis (Heisler and Damuth 1987) and

concluded that soft-selection is actually a form of group selection.

The Price approach partitions the total selection differential into

among- and within-group components, so that group selection

occurs when there is heritable variation in fitness among groups

(Wade 1985). As soft-selection eliminates the variation in fitness

among groups, the Price approach concludes that soft-selection

eliminates group selection. Contextual analysis differs from this in

that the selection differential is partitioned into context-dependent

(i.e., social) and context-independent components using partial

linear regression (Heisler and Damuth 1987; Goodnight et al.

1992). Under soft-selection, the fitness of a phenotype depends on

its context. For example, individuals with intermediate phenotype

may have high fitness in a group of low phenotype individuals, but

low fitness in a group of high phenotype individuals. Thus, contex-

tual analysis finds that soft-selection constitutes a form of group

selection (Goodnight et al. 1992), contrary to the conclusion of

the Price approach. Below, I demonstrate that the Price approach,

when the population is subdivided into regulation groups, also

reveals that soft-selection includes a group-component of selec-

tion, independently supporting the conclusion of Goodnight et al.

(1992).

Results
LIFE CYCLE

I consider a generalized life cycle. Let L be the number of life cy-

cle stages that an individual undergoes. Selection and/or density

regulation can occur at any life stage, and stages are separated

by dispersal of individuals among groups. If there are multiple

bouts of selection or density regulation within a single stage, the

quantitative consequences of these events are aggregated into a

single value. Diagrammatically, we have: Life Stage 1 → Dis-

persal 1 → Life Stage 2 → Dispersal 2 . . . → Life Stage k →
Dispersal k → . . . → Life Stage L → Reproduction. The individ-

uals remaining in group i at the end of life stage L are the founders

of group i in the following generation.

THE MULTILEVEL PRICE EQUATION

WITH KIN COMPETITION

Consider a population subdivided into M local groups, where

“groups” are defined as discrete units wherein social interactions

occur at random with respect to genotype (there is no kin recog-

nition). “Group” is used as a generic term, and can mean habitat

patch, deme, trait group, family, etc. Individuals undergo an ar-

bitrarily complex life cycle composed of dispersal, selection, and

density regulation in no particular order, and generations are dis-

crete and nonoverlapping.

Let there be some trait of interest, z. The change in the mean

value of this trait in the population over a single generation, �z̄,

is given by the multilevel Price equation (Price 1972; Hamilton

1975; Wade 1980, 1985). Assuming unbiased transmission of

trait-values between parents and offspring (i.e., no meiotic drive,

etc.), this can be written,

�z̄ = cov(gi , zi ) + E[cov(wij, zij)], (1)

where zi is the mean phenotype of individuals in group i, zij is the

phenotype of individual j in group i, gi and wij are relative among-

and within-group fitness, respectively, E[X] is the expected value

(i.e., the mean) of X, and cov(X, Y) is the covariance between X

and Y . The first term in equation (1) accounts for evolutionary

change due to differential productivity of groups, whereas the

second term accounts for evolutionary change due to selection

among individuals within groups (Price 1972; Hamilton 1975;

Wade 1985; Frank 1998; Michod 1999; Rice 2004).

Among-group relative fitness, gi, is defined as the relative

contribution of group i to the total population in the next gener-

ation. This counts all individuals from group i, whether they are

still in group i at the end of the life cycle (individuals are rein-

dexed at the beginning of each generation). By definition, gi =
�Wij/��Wij, where �Wij is the total number of individuals con-

tributed by group i to the next generation, and ��Wij is the total

number of individuals contributed by the global population to the
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Figure 1. A representation of a population undergoing social selection followed by strict local density regulation. Altruists are designated

in light gray, and allele frequency change was computed with b = 0.8 and c = 0.2 (these large selection coefficients are for the sake of

illustration). Selection reduces the frequency of altruists within groups, but altruistic groups are more productive. The net result is an

increase in the frequency of altruists in the global population. Local density regulation, however, eliminates differential group productivity,

but maintains the postselection within-group frequency of altruists. Thus, density regulation reduces the frequency of altruists. This

demonstrates that despite the fact that density regulation is genotype-independent within the density-regulated neighborhood, density

regulation affects altruistic groups more than nonaltruistic groups, and so is genotype dependent at the group level.

next generation. Group fitness, gi, can be affected by both selec-

tion and demography (Fig. 1). Typically, the Price equation only

accounts for selection, where the relative contribution of a group

to the total population after selection is, wi = �Wij
(s)/��Wij

(s).

The superscript “(s)” denotes that the population is censused

after selection. But demography also affects fitness by setting

boundaries on the number of individuals produced by each group

(Fig. 1). This acts to decouple selection and group productivity,

such that �Wij is not necessarily equal to �Wij
(s). On the other

hand, genotype-independent local density regulation does not af-

fect within-group relative fitness (because demography-induced

mortality is genotype-independent by assumption), even though

it affects absolute within-group fitness (Fig. 1). This means that

demography only affects relative among-group fitness, gi, not rel-

ative within-group fitness, wij (see also Crow and Kimura 1970

Chapter 1). Thus, the correct fitness to use in the Price equation

is gi, which accounts for both selection and demography, and not

wi, which only accounts for selection.

Following Whitlock (2002), we can write a group fit-

ness function that simultaneously accounts for selection and

demography

gi = 1 − (1 − α)(1 − wi ). (2)

Whitlock (2002) defined a linear operator, b, as the degree of hard

selection. In the present notation, Whitlock’s b is replaced by (1 −
α). Thus, α is the degree of soft selection sensu Whitlock (and

Wallace (1968), Wade (1985) and Goodnight et al. (1992)). The

use of (1 − α) rather than b is for the sake of comparison with

other kin selection models (e.g., Frank 1998; Gardner and West

2006). When α = 1 (strict soft selection), gi = 1, which means that

all groups contribute equally to the next generation. When α = 0

(strict hard selection), gi = wi, meaning that groups contribute to

the next generation in proportion to their fitness. To avoid confu-

sion with other definitions of soft selection, I will refer to α as the

“degree of kin competition,” although α is equivalent to some def-

initions of soft-selection and local competition (see Discussion).

Substituting equation (2) into equation (1) we find,

�z̄ = cov(wi , zi ) − αcov(wi , zi ) + E[cov(wij, zij)]

= (1 − α)cov(wi , zi ) + E[cov(wij, zij)]. (3)

This simple modification of the Price equation completely ac-

counts for the effects of kin competition on evolution in structured
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populations. The additional term, −αcov(wi, zi), accounts for de-

mographic selection. The decoupling of group fitness and geno-

type by density regulation noted above is demonstrated in equa-

tion (3) by the fact that the covariance of wi with zi shrinks to

zero with increasing kin competition. When α = 1 and α = 0, we

retrieve Wade’s (1985) results for the hierarchical Price equation

under soft and hard selection, respectively.

To understand how a “genotype-independent” process can

affect the response to selection, it must be pointed out that

“genotype-independent” local regulation is genotype-dependent

at the group level. This is because groups composed of high fit-

ness genotypes suffer a greater reduction in absolute and relative

fitness than a group composed of low fitness individuals (Fig. 1).

This creates a nonzero covariance between genotype and group

fitness that allows density-regulation to contribute to an evolu-

tionary response.

Because we have made no assumptions about life cycle, dis-

persal, or density regulation, both α and equation (3) are general

with respect to these processes. In addition, because of the gener-

ality of the Price equation, equation (3) can be used to model the

effects of kin competition using population genetic, quantitative

genetic, or ESS approaches (Rice 2004).

HAMILTON’S RULE WITH KIN COMPETITION

Most kin selection studies of kin competition provide their cen-

tral result as a modified form of Hamilton’s rule. Therefore, to

compare equation (3) to these results, it is necessary to begin by

deriving Hamilton’s rule. In Appendix A, I provide a derivation

of Hamilton’s rule from equation (3) by first deriving a recur-

sion for allele frequency change under Hamilton’s linear fitness

function, and then solving for the conditions for allele frequency

increase (�p > 0). For both haploids and diploids, the conditions

for increase in allele frequency under these assumptions is

(1 − α)rb

1 − αr
− c > 0. (4)

Equation (4) was first derived by Boyd (1982), who em-

ployed a very different approach (eq. 4 is retrieved from eq. 19 in

Boyd (1982) by setting r̄ = r in his equation, which corresponds

to indiscriminant sociality, as assumed here). Boyd defined a pa-

rameter h (in place of α in the present model) as a linear measure of

the intensity of density regulation. Frank (1998), using his direct

fitness approach, derived Hamilton’s rule with kin-competition

as: r[b − a(b − c)] − c > 0. Rearrangement shows that Frank’s

result and equation (4) are equivalent, with α replaced by a in his

notation. Frank defined a as the spatial scale of density regulation

(Frank 1998). Both Boyd and Frank explicitly model only the

effects of density regulation. However, I show below that α mea-

sures more than just density regulation, and that the only case in

which α is exclusively determined by density regulation is when

(1) density regulation occurs at only a single life stage, and (2)

when this is the same life stage in which selection acts. Thus, Boyd

and Frank’s results are special cases of the more general solution

of equation (4), which in turn is a special case of equation (3).

THE DEGREE OF KIN COMPETITION

To understand the factors that control the degree of kin competi-

tion, and to connect disparate models, I derive a value of α in terms

of independent causal parameters. To begin, note that the average

change in relative group density due to selection is proportional to

the among-group selection gradient, βwi ,zi . To maintain a constant

global population density, an increase in the relative size of a group

by a factor βwi ,zi must be matched by an equivalent decrease in

relative density within the density-regulated neighborhood. Only

a fraction, r, of those receiving the benefit of cooperation (i.e.,

increased group density) are related, whereas a fraction, rd,k, of

those experiencing the decrement in fitness (i.e., reduction in

group density) due to density regulation are related. Here, rd,k

is the relatedness of altruists in a density regulated area at life

stage k, which is equivalent to Grafen’s (1984) rxe. From equa-

tion (A2) (see Appendix A), this leads to a version of Hamilton’s

inequality that reads, r (βwi ,zi − βwij,zij ) + βwij,zij − rd,kβwi ,zi > 0.

Rearranging we find

(r − rd,k)βwi ,zi + (1 − r )βwij,zij > 0. (5)

Equation (5) is a multilevel selection formulation of Hamilton’s

rule with kin competition. Under the additive linear model (Ap-

pendix A) this retrieves Grafen’s (1984) result. Unlike Grafen’s

(1984) result, equation (5) applies for arbitrary fitness functions,

when there is dominance or inbreeding, and when traits are contin-

uous characters. Goodnight (pers. comm.) has obtained a similar

result using contextual analysis.

Using Grafen’s (1985) formulation of relatedness and fol-

lowing Queller (1994), we can write r = �(py − p)/�(px − p)

and rd,k = �(pd − p)/�(px − p), where p is the mean frequency

of the altruism allele in the total population; py is the frequency in

recipients of altruism; px is the frequency in donors of altruism;

and pd is the frequency of altruist alleles in a density-regulated

area. From this we have, (r − rd,k) = �(py − pd)/�(px − p). It

is possible to define a scaling parameter that makes pd equal p

with no kin competition, and equal py with strict kin competition.

This parameter is equivalent to the degree of kin competition pa-

rameter, αk. Thus, we can write, pd = py − (1 − αk)(py − p).

Substituting and rearranging gives

(r − rd,k) = (1 − αk)r.

Solving for αk we find

αk = rd,k

r
. (6)
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Figure 2. The hierarchical partitioning of a structured population.

The largest oval represents the global population, which is then

structured into regulation groups (intermediate ovals) and social

groups (smallest ovals). Variance components and identity coef-

ficients can be defined with respect to hierarchical groups. Vb is

the variance among social groups with respect to the global pop-

ulation; Vd is the variance among regulation groups with respect

to the global population; and Vr is variance among social groups

within a single regulation group.

This is an intuitive and empirically tractable measure of the

degree of kin competition. Substituting equation (6) into equa-

tion (4) and rearranging retrieves the same form of Hamilton’s

rule as that found by Grafen (1984) and Queller (1994). As equa-

tion (6) only applies for a single life stage, this assumption is

implicit in both Grafen’s and Queller’s derivations.

THE STRENGTH OF DEMOGRAPHIC SELECTION

Density-regulation contributes an additional level of popula-

tion substructuring: the density-regulated neighborhood (Fig. 2),

which I will sometimes call the “regulation group” (Kelly 1994a).

By analogy to Wright’s F-statistics, we can define a set of identity

coefficients with respect to the regulation group: fdt = Vd/p(1 −
p), and fsd = Vr/pr(1 − pr), where p is the mean allele frequency

in the population, pr is the mean allele frequency among social

groups within a regulation group, Vd is the variance among regu-

lation groups, and Vr is the variance among social groups within

a regulation group (Fig. 2). All measures are taken within a single

life stage, although I omit the subscript “k” on identity coeffi-

cients, variances, and allele frequencies in this section to make

the notation easier to read. By definition, rd,k = Vd/Vt, where Vt

is the total genic variance. In haploids, rd,k = fdt. Substituting

equation (11) and the variance definition of rd,k into the partial

regression form of equation (3) (see eq. A1), we find that

�z̄ = βwi ,zi Vb − βwi ,zi Vd + E[βwij,zij Vzij ]. (7)

Equation (7) was implicit in the analysis of Kelly (1994a). The

second term on the right-hand side of equation (7) is the strength

of demographic selection, which is always opposite in sign to the

group selection component (the first term on the right-hand side)

with a magnitude proportional to Vd, the variance among density-

regulated neighborhoods. This term demonstrates that there is

always an implicit third level of selection in group-structured

populations, that among regulation groups (Fig. 2). With global

density regulation, Vd = 0, while with local density regulation,

Vd = Vb. Thus, the Price partitioning, like contextual analysis

(Goodnight et al. 1992), also finds that soft-selection contains a

group-selection component.

It follows immediately from definitions that Vr = Vb − Vd

(also see Fig. 2). Substituting into equation (7) gives

�z̄ = βwi ,zi Vr + E[βwij,zij Vzij ]. (8)

Kelly (1994a) first derived equation (8) via a very different route,

demonstrating that kin competition is accounted for by measur-

ing among-group variance with respect to the density-regulated

neighborhood. The derivation provided here shows that this is

equivalent to modifying relatedness with respect competitors, as

Queller (1994) did. These results are not general, however, be-

cause they only account for the effects of density regulation in a

single life stage. Equation (3) generalizes this result to any life cy-

cle, and, like equation (7), has the advantage that it makes explicit

all three levels of selection.

DENSITY DEPENDENCE, DISPERSAL, LIFE CYCLE,

AND KIN COMPETITION

A value for α in terms of explicit model parameters can be ob-

tained by applying the appropriate identity coefficients to equa-

tion (6). With the assumption of island model population struc-

ture (Wright 1931), this obtains a relationship between dispersal

and the scale of density regulation. The following results are

presented for asexual haploids for simplicity, but extensions are

readily made to any genetic system. I make the standard assump-

tion of weak selection, which ensures that genotypic distributions

are approximately independent of selection, and that group size is

approximately invariant among groups and between generations.

Equation (6) applies more generally and requires none of these

assumptions.

Assuming infinite island population structure and weak se-

lection, the following result can be derived for relatedness at life

stage k in a haploid population with L life stages and with groups

of effective size N (Appendix B),
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Figure 3. A life-cycle diagram for a structured population with

discrete, nonoverlapping generations. Groups are founded by N

adults who reproduce to form the next generation. Social interac-

tions and competition among offspring can occur either before or

after offspring disperse away from their natal group. The related-

ness (shown in boxes) of offspring in a social group depends on

the stage in the life cycle when it is measured.

rk =

k−1∏
j=0

(1 − m j )
2

N − (N − 1)
L−1∏
i=0

(1 − mi )
2

, (9)

where mj and mi are the effective rates of dispersal among groups

at the end of life stage j and i, respectively, and where m0 = 0 by

definition. Throughout, the subscript “e” (e.g., Ne and me) will be

dropped from N and m to simplify the notation. Figure 3 diagrams

a life cycle with L = 2 and presents r1 and r2 for this case.

Define dk as the “scale of density regulation” at life stage

k. In a group structured population, the spatial scale of density

regulation will be determined by the number of social groups in a

density-regulated neighborhood, Md, so that dk = 1/Md (Fig. 4).

If all competitors in a density-regulated neighborhood belong to

the same social group, the Md = 1, giving dk = 1 (“local density

regulation”). With “global density regulation,” dk = 0. The value

of dk is assumed to be genotype independent, so that it is deter-

mined by factors extrinsic to the population, such as resource

availability, limited space for nesting/pupation/breeding sites,

density-dependent predation, etc. (Wallace 1975; Roughgarden

1979).

Within a density-regulated neighborhood, a proportion, dk,

of individuals has a relatedness of rk (the within social-group re-

latedness at life stage k), whereas the remaining fraction, (1 −
dk), has a relatedness of ro. It can be shown that ro ∼ 0 in the

island model. First, the separation of time scales assumed in cal-

culations of identity coefficients (Rousset 2004 and references

therein) is preserved within the regulation group under the island

model because the regulation group is composed of a random

sample of social groups from the population. Thus, we are jus-

tified in treating only those alleles that originate from a focal

group in that generation as having alleles ibd (identical by de-

scent). If density regulation occurs before dispersal, then ro = 0

(individuals outside the social group cannot share alleles ibd from

the parental generation). If density regulation occurs after disper-

sal, then some competitors from outside the social group may be

related. Under the island model, all Nm dispersers are evenly dis-

tributed about the population with a density of Nm/NT , of which,

a fraction r shares alleles ibd with the focal individual. So, ro =
rNm/NT , which is negligible because NT is very large relative to N.

Thus, the relatedness in a density-regulated neighborhood at life

stage k is

rd,k = dkrk . (10)

Equation (10) will not necessarily hold for other population struc-

tures, such as stepping stone dispersal, because competitors out-

side of the group may be a nonrandom sample of the total popula-

tion when d < 1 and the assumption of separation of time scales

between neighboring groups may break down.

Combining equations (6) and (10) gives

αk = dk
rk

r
(11)

Further substituting equation (9) into equation (11) gives

αk = dk

k−1∏
j=0

(1 − m j )
2, (12)

where mj is the effective dispersal rate at the end of life stage j,

and where m0 = 0 by definition. In most models, selection occurs

in the first life stage, so that we have α1 = d1. By definition, this

is the degree of soft selection sensu Christiansen (1975).

Equation (12) demonstrates the relationship between kin

competition, density regulation, and dispersal. In particular, it

shows that density regulation, the ultimate cause of kin competi-

tion, is independent of dispersal. With global density regulation

(dk ∼ 0), kin competition is not influenced by dispersal. Al-

ternatively, with high dispersal, m ∼ 1, kin competition is not

influenced by density regulation. Thus, both nonlocal density

regulation (dk < 1) and dispersal (m > 0) provide escapes from

kin competition. Thus, viscosity per se does not increase kin

competition.

GENERALIZING THE DEGREE OF KIN COMPETITION

PARAMETER

So far, the analysis has only considered the degree of kin competi-

tion at individual life stages, αk. To adequately describe evolution,

we need to know the degree of kin competition over the entire life

cycle, α. The derivation of α is simple: Because density regu-

lation at one life stage can only act on the residual product of

density regulation from the previous stage, the total degree of kin

competition over a single generation equals
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Figure 4. Individuals compete in a density-regulated neighborhood wherein the total number of individuals is kept at a constant value,

K. In this case, each regulation group is composed of two social groups. The fitness effects in the figure are b = 0.8 and c = 0.2, and

altruists are designated in light gray. After selection, K individuals are chosen at random to form the next generation such that each

neighborhood contributes the same proportion of individuals. After density regulation, groups retain their same post-selection relative

sizes within each neighborhood, but their absolute size is constrained by K. Altruism evolution is impeded by the inability of altruist-rich

regulation groups to contribute more than altruist-poor neighborhoods to the next generation, although this constraint is weakened by

larger spatial scales of regulation. For comparison, final frequency of altruists in the figure would be p = 0.31 under strict local density

regulation.

α = α1 + (1 − α1)α2 + (1 − α1)(1 − α2)α3

+ · · · + (1 − α1)(1 − α2) . . . (1 − αL−1)αL

=
L∑

k=1

αk

k−1∏
j=0

(1 − α j ), (13)

where α0 = 0 by definition. These results apply to arbitrarily

complex life cycles. One implication of equation (13) is that kin

competition in early life has a more drastic effect on total kin

competition than kin competition at later life stages (Fig. 5 and

the next section). By substituting equation (13) into equation (4),

we can retrieve results for Hamilton’s rule for arbitrary life cycles

and patterns of density regulation.

Gardner and West (2006) modeled altruism evolution in a

population composed of inelastic groups, with a single dispersal

stage and an arbitrary degree of density-regulation before disper-

sal. They equated their resulting version of Hamilton’s rule with

Frank’s (1998) result to solve for Frank’s scale of competition

Regulation in Stage 3 only

Regulation in Stage 2 only

Regulation in Stage 1 only
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Figure 5. Density regulation during early life stages has a larger

effect on kin competition than density regulation in later stages.

The curves are given by equation (14) with parameter values are

b = 0.1, c = 0.01, N = 4, and m = 0.1. For the bottom curve, d1 =
dk , d2 = 0, d3 = 0; for the middle curve d1 = 0, d2 = dk , and d3 =
0; and for the top curve d1 = 0, d2 = 0, and d3 = dk .
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parameter, a. They found that a = s + (1 − s)(1 − m)2, where

s is the degree of soft selection sensu Christiansen (1975). From

equation (13) with L = 2, it is found that α = d1 + (1 − d1)d2(1 −
m1)2. Noting that α1 = d1 = s in their notation, and that they

assumed d2 = 1, we immediately retrieve their result as a special

case of equation (13). Applying this value of α to equation (4),

we retrieve their result for Hamilton’s rule with kin competition

as a special case.

Taylor (1992) assumed a two-stage life cycle (L = 2) with

no density regulation before dispersal (d1 = 0), but strict density

regulation after dispersal (d2 = 1). Substituting into equation (13)

gives α = (1 − m)2. Substituting this value into equation (4) re-

trieves Taylor’s result, b/N − c > 0, which shows that increased

relatedness is exactly balanced by increased kin competition due

to their mutual dependence on dispersal rate. Equation (13) quan-

tifies why this relationship exists. Importantly, either assuming

elastic populations (d2 = 0), or a life cycle in which competition

and cooperation both occurred before dispersal, leads to α = d1

and the conclusion that dispersal (population viscosity) has no

effect on the intensity of kin competition. The assumptions of

inelastic populations and competition after dispersal creates the

exclusive dependence of kin competition on dispersal, leading to

the conclusion that viscosity is an impediment to the evolution

of altruism (Taylor 1992; Wilson et al. 1992; Gardner and West

2006). Indeed, in a subsequent paper, Gardner and West state that,

“relatedness and the scale of competition . . . will not usually be

independent” (Kummerli et al. 2009a). Equations (12) and (13)

suggest that this conclusion is reliant on the dual assumptions of

population inelasticity and the life cycle considered.

CLOSED-FORM SOLUTIONS FOR HAMILTON’S RULE

IN A THREE-STAGE LIFE CYCLE

Here, I give closed-form results for Hamilton’s rule with L = 3

(Table 1 and eq. 14 below). A life cycle with three stages is a plau-

sible natural scenario. Consider a holometablous insect species:

social interactions occur among larvae, as is commonly observed

(Costa 2006), who also may compete for limited resources before

dispersal; after larval dispersal, individuals compete for limited

pupation sites; finally, emerging adults disperse and then compete

among other adults for limited nesting or breeding sites before

reproduction. This life cycle involves three rounds of density reg-

ulation and two rounds of dispersal. Combining equations (4),

(9), (12), and (13), setting L = 3, and assuming haploidy and

whole-group altruism (see Appendix A), we obtain Hamilton’s

rule under the island model for three life stages

(1 − d1)
(
1 − d2(1 − m1)2

)(
1 − d3(1 − m1)2(1 − m2)2

)
N − d1 − (1 − m1)2

[
d2 − d1d2 + (1 − m2)2

(
N − 1 + (1 − d2)d3(1 − d2(1 − m2)2

)]b − c > 0. (14)

Equation (14) is difficult to interpret, so a series of special cases are

given in Table 1. One insight easily obtained from equation (14)

Table 1. Closed-form results for Hamilton’s rule with three life

stages. d1, d2, and d3 are the scales of density regulation for

life stages one, two, and three, respectively. α is the degree of

kin competition. For clarity, both dispersal rates are set equal,

m1=m2=m, and selection is assumed to occur in the first life stage.

The rows are organized from most permissive to the spread of

altruism at the top, to most restrictive at the bottom. When d1=1,

the values of d2 and d3 are irrelevant. Fitness effects are scaled

for “whole-group” altruism (see Appendix A).

d1 d2 d3 α Hamilton’s rule

0 0 0 0
b

N−(N−1)(1−m)4
−c>0

0 0 1 (1−m)4 b

N
−c>0

0 1 0 (1−m)2 b

N+(N−1)(1−m)2
−c>0

0 1 1 (1−m)2+ b(1−(1−m)2)

N−(1−m)2
−c>0

(1−m)4−
(1−m)6

1 n/a n/a 1 −c>0

is that strict density regulation in the first life stage, d1 = 1,

completely eliminates the benefit term, whereas this is not true

for strict density regulation at later life stages.

LIFE CYCLE INVARIANT RESULTS

A number of generalities are demonstrated by the cases in Ta-

ble 1. It can be proven by induction that there are three de-

mographic conditions that give the same quantitative result for

life cycles of any length L: (1) With global density regulation at

all life stages (dk = 0 for all k ≤ L), we recover the standard

form of Hamilton’s rule, unattenuated by kin competition: br –

c > 0 (Table 1, first row). Unlike the next two cases, this re-

sult is not strictly invariant because r will always depend on L

(eq. 9). (2) With the assumption of strict density regulation at

the final life stage and global regulation in all previous stages

(dL = 1 and dk = 0 for all k < L), a commonly assumed life

cycle (Taylor 1992; Gardner and West 2006), the benefits of al-

truism are exactly balanced by demographic counterselection,

so that evolution is entirely independent of dispersal. The result

in this case will always be: b/N − c > 0 (Row 2 in Table 1;

Taylor 1992). (3) With strict density regulation in the first life

stage (d1 = 1), only the within-group component of selection

remains, giving, −c > 0. Density regulation in subsequent life

stages does not affect evolution.
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In addition to these three life-cycle invariant results, another

general property is that density regulation early in life is more

restrictive to the spread of altruism than regulation in later life

(Table 1, Fig. 5).

Discussion
Competition among kin impedes the evolution of cooperation by

eliminating the correlation between genotype and relative group

productivity. The ultimate cause of reduced variance in group

productivity is density-dependent regulation at a local scale. Life

cycle and the spatial scale of density regulation jointly determine

the relatedness of individuals within a regulation group at the

time of density regulation. Because individuals are less related

after dispersal than before, kin competition is reduced in later life

stages. When density regulation is global at all life stages there is

no kin competition.

The degree of kin competition at life stage k is quantified ex-

actly by the ratio of the genetic variance among regulation groups

to the variance among social groups, αk = Vd/Vb. Assuming weak

selection, this is equivalent to, αk = rd,k/r (eq. 6), which can be esti-

mated from neutral markers (Queller and Goodnight 1989; Lynch

and Ritland 1999) if the regulation group can be accurately iden-

tified. This result is robust to variations in population structure,

including extinction/recolonization (Wade and McCauley 1988;

J. D. Van Dyken, unpubl. ms.), age-structured populations, and

populations with nonrandom composition of regulation groups,

such as in truly viscous populations in which dispersal range is

limited (Kimura and Weis 1964) or where multiple broods are

laid by a single female in neighboring patches or on a single host

plant.

Under the infinite island model, rd,k = dkrk and we find that

the degree of kin competition at life stage k is αk = dk�(1 − mi)2

(eq. 12). This shows that density regulation, the ultimate cause

of kin competition, and viscosity are independent in the island

model. Kin competition is determined by the interaction between

the intensity (or spatial scale) of density regulation, dispersal, and

life cycle. The general expression for α (eq. 13) provides a simple

means of introducing any arbitrary life cycle or demographic as-

sumption into kin selection models to readily compare the effects

of these assumptions on model outcomes.

Previously, kin competition has been accounted for by mea-

suring relatedness with respect to competitors (Queller 1994),

measuring variance among social groups with respect to the

density-regulated neighborhood (Kelly 1994a), or by discounting

the benefits of cooperation by the decrement in fitness experienced

by kin (Grafen 1984; Frank 1998). The multilevel Price partition-

ing of equation (3) cleanly separates the effects of kin competition

from both variance (relatedness) and group benefit, demonstrating

that kin competition neither strictly affects relatedness nor group

benefit. Rather, the Price partitioning reveals the existence of

a demographic counterselection term, −αcov(wi , zi ) = βwi ,zi Vd ,

which quantifies the response to density-dependent selection. De-

mographic selection is always opposite in sign to group selection,

with a strength proportional to the degree of kin competition

multiplied by variance among social groups, or, equivalently, the

variance among regulation groups (αVb = Vd). This demonstrates

that kin competition is an independent causal component of the

total evolutionary response.

The Price equation intrinsically incorporates population elas-

ticity, making it a simple alternative to more complicated models

of elasticity (van Baalan and Rand 1998; Mittledorf and Wilson

2000; Alizon and Taylor 2008; Lion and Gandon 2009), although

there are numerous reasons to prefer these other methods, includ-

ing the fact that they make models spatially explicit (Wade et al.

2010). Although the result αk = rd,k/r is also robust to elasticity,

the result αk = dk(1 – mk)2 requires the assumption of weak selec-

tion so that identity coefficients developed under neutrality could

be used, and that changes in group size would be small enough

that island model assumptions hold to a first approximation. An

explicit accounting of the effect of group elasticity on identity

coefficients will need to be conducted to test the robustness of

this approximate result to large fluctuations in group size.

Previous work has applied models of kin competition to

explain a number of disparate phenomena, including genetic

conflict (Hurst 1991; Wade and Beemen 1994; Gardner and

West 2004), parasite virulence (Lively 2009), communal forag-

ing (Kelly 1994b), harming behavior (Gardner and West 2004;

Gardner et al. 2004), sex-limited dispersal (Gardner 2010), worker

policing in eusocial hymenoptera (Gardner and West 2004), and

the benefits of propagule mode dispersal for the evolution of al-

truism (Gardner and West 2006; Lehmann et al. 2006). Although

none of these phenomena are explicitly considered here, applying

the present approach to these problems is the subject of ongoing

work.

KIN SELECTION, SOFT SELECTION, MULTILEVEL

SELECTION

Using the method of contextual analysis, Goodnight et al. (1992)

found that soft selection, despite eliminating the among-group

component of selection (Wade 1985), actually constitutes a form

of group selection itself. The Price partitioning of equation (3)

independently justifies this view, showing that soft selection oc-

curs when the strength of demographic selection acting among

regulation groups is equal in magnitude, and opposite in sign, to

selection among social groups. In addition, from equations (4) and

(A4) it can be seen that high relatedness is not sufficient to gen-

erate a response to kin selection. This is because the intensity of

kin competition controls the magnitude of group selection, which

is required for kin selection to act. When strict kin competition
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turns off group selection, cooperation cannot evolve, regardless

of the degree of relatedness, providing independent support for

the theoretical result of Bijma and Wade (2008), who found that

kin selection requires both relatedness and group selection.

It is possible to quantify the disparate definitions of “soft

selection” and “local competition” in terms of the kin competition

parameter α. The degree of soft selection sensu Wade (1985)

and Whitlock (2002) and the scale of competition sensu Gardner

and West (2006) are both equivalent to the total degree of kin

competition, α. The degree of soft selection sensu Christiansen

(1975) is the scale of density dependence in the first life stage,

which happens to equal the degree of kin competition in the first

life stage, α1 = d1. Strict soft selection sensu Dempster (1955)

occurs when either α = 1, d1 = 1, or dL = 1, where dL is density

regulation at the final life stage. In all three cases, the number of

adults will remain constant between generations. Because Boyd

(1982) and Frank (1998) did not specify a life-cycle, the scale

of competition sensu Boyd (1982) and Frank (1998) is equal to

dk, the scale of density regulation at any given life stage. These

definitions are all equivalent under strict local density regulation in

the first life stage (α1 = d1 = 1), but are not equivalent otherwise.

Importantly, only α accurately predicts evolutionary dynam-

ics under all life cycles. Although the terms “hard” and “soft

selection” were used by Christiansen (1975) to dichotomize the

conditions favoring a protected polymorphism in a subdivided

population, these conditions do not dichotomize cleanly under

his definition. With some models (e.g., Christiansen 1975; Taylor

1992) the predictions of soft and hard selection become equivalent

when dispersal probability equals zero or one. This compromises

the utility of this conceptual dichotomy as a general principle.

Likewise, Dempster (1955)’s definition fails because constant

adult number does not always guarantee strict kin competition,

specifically in cases in which there is dispersal before reproduc-

tion. On the other hand, the degree of kin competition achieves a

clean dichotomy that is general under all model assumptions. This

makes “kin competition” the most cromulent concept in terms of

accurately depicting evolutionary dynamics.

WHICH TRAITS WILL BE AFFECTED BY KIN

COMPETITION?

For a trait to experience kin competition, density-regulation

must occur locally and be independent of the trait itself. A

number of factors regulate density, including finite space, lim-

ited resources, predation, herbivory, parasitism, and weather

(Roughgarden 1979). There are numerous social traits that inter-

act with these factors (Gardner and West 2006 give the example

of alarm-calling, for instance), generating a correlation between

local density and genotype that prohibits strict kin competition

on these traits. For example, predation-induced mortality can be

reduced by alarm calling, aggregation, group defense, parental

care, or nest building (Seyfarth et al. 1980; Dangerfield et al.

1998; Queller and Strassman 1998); parasites can be reduced

by social grooming (Hart 1992); nest building or collective ther-

moregulation can prevent mortality due to extreme temperatures

(Kronenberg and Heller 1982; Arnold 1988). Social traits involved

in niche construction (Odling-Smee et al. 1996) should likewise

promote elasticity and thus ameliorate kin competition. Resource

limitation is a common source of density regulation that can poten-

tially impose kin competition (Kelly 1994b). Resource limitation

will fail to cause kin competition when there are genotypes that

differ in the consumption or production of public goods. Public

goods games hold a special place in the theory of social evolu-

tion. Consumption of public goods is described by the tragedy

of the commons (TOCs) (Hardin 1968; Frank 1992, 1998, 2010),

which is a public goods game in which overconsumption of a

shared resource reduces local carrying capacity, whereas prudent

resource use by “cooperators” increases local carrying capacity.

This scenario will occur whenever there are diminishing returns

of resource consumption on fitness, or a trade-off between growth

rate and yield (Pfeiffer et al. 2001; Novak et al. 2006). In a TOC

scenario, where regulation is imposed only by resource limitation,

local density will necessarily correlate with genotype, prohibiting

strict kin competition.

Furthermore, kin competition via resource limitation will be

diminished when public goods production by “cooperators” leads

to increased local carrying capacity (Platt and Bever 2009). Pub-

lic goods production can increase carrying capacity by making

available previously inaccessible resources, such as with iron-

scavenging siderophores (Buckling et al. 2007) or manufactured

metabolites (Platt and Bever 2009) in bacteria, or as with agricul-

ture in ants, termites, ambrosia beetles, and humans (Mueller et al.

2005); or by fostering cross-feeding whereby metabolic byprod-

ucts are used in alternative metabolic pathways that increase local

yield (Pfeiffer and Bonhoeffer 2004). In these cases, the very

nature of sociality is inexorably tied to the ability to increase lo-

cal density in the face of limited resources, thus mitigating kin

competition.

On the other hand, Brockhurst et al. (2008) showed that pub-

lic goods production may decrease under nutrient stress. This

provides an interesting route by which kin competition can act:

nutrient availability may limit the expression of sociality, rather

than directly regulate local density, thus prohibiting the expres-

sion of differential group productivity. Another potential com-

plexity of kin competition is that genotype independence may

exist in a species until a novel genotype (or environment) arises

that promotes group elasticity. This means that the degree of kin

competition is often a transient, evolvable character.

Where should we look for kin competition? In general, kin

competition will be most intense on traits that do not directly in-

teract with factors regulating local density. In a population under
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regulation by multiple factors, a trait that overcomes one fac-

tor may be impeded by another, such as when group defense

against predation increases resource pressure. In this case, group

defense may not experience kin competition via predation, but

it may via resource limitation. Inversely, gains in local yield by

prudent resource consumption (i.e., the TOC) may be offset by

increased local predation or parasite pressure, for example, pre-

venting the evolution of cooperative self-restraint. Interactions

between density-regulating factors may be an important ecologi-

cal constraint on social evolution.

Additionally, there may be segments of the population that do

not contribute to group productivity, restricting kin competition

to traits expressed by these individuals. For example, sex-limited

dispersal can eliminate the correlation between group produc-

tivity and many traits of the nondispersing sex. This has been

observed in male fig wasps (West et al. 2001; see also Gardner

2010 for an explicit model). In fig wasps, individuals mate locally

within a fruit followed by dispersal of a single sex, typically fe-

males (Hamilton 1967). Because males do not contribute to group

productivity (Colwell 1981; Wilson and Colwell 1981), group se-

lection is blind to the social traits of males, unless these traits

correlate with low fertility or reduce the number of the dispersing

sex (females). West et al. (2001) found that there was no corre-

lation between relatedness (i.e., the strength of group selection)

and male–male aggression in fig wasps. The absence of group

selection on male aggression indicates, by definition, the action

of kin competition.

Finally, dispersal itself is trait subject to kin selection. Most

models of dispersal evolution assume inelastic populations, with

selection before dispersal and strict local density regulation after

dispersal (Hamilton and May 1977; Frank 1986, 1998; Gandon

and Michalakis 2001), although see Parvinen et al. 2003. The

present results show that the evolution of dispersal rates will be

quite different under different life cycle or ecological assump-

tions. When density regulation is global at all stages, there will

be no selection for increased dispersal by social evolution. Like-

wise, there will never be social selection for increased dispersal

if social interactions occur at the same life cycle stage as density

regulation.

EXPERIMENTAL DATA

Experiments using the siderophore-producing bacterium Pseu-

domonas auerugenosa have shown that kin competition can

control the correlation between genotype and differential group

productivity (Griffin et al. 2004; Kummerli et al. 2009a).

Siderophore-production aids in iron uptake necessary for growth,

and is individually costly but group beneficial. Experiments on

these bacteria modulated the intensity of local competition to

determine the effect of selection for cooperative genotypes in

mixed culture. Although couched in terms of inclusive fitness, the

design of Griffen et al.’s (2004) and Kummerli et al.’s (2009a)

experiments are nearly identical to the classic group selection

experiments of Wade (1976, 1977, 1982). The local competi-

tion treatment is analogous to the nongroup selection controls

of Wade, while the global competition treatment mirrors Wade’s

group selection protocol. As predicted, when group selection is

turned off, cooperation cannot evolve. These experiments, along

with the present theoretical analysis, support the theoretical con-

clusion of Bijma and Wade (2008) that kin selection requires both

relatedness and group selection.

Two recent experiments, one with Pseudomonas auregonasa

(Kummerli et al. 2009b) and the other with the colocin (toxin)

producing bacteria Escherichia coli (Le Gac and Doebli 2010)

indicate that viscosity and local competition are distinct. Unlike

Griffin et al. (2004) and Kummerli et al. (2009a), these experi-

ments create the viscous and nonviscous environments (by varying

the density of agar media) that subsequently generate selection.

This is arguably more realistic than using experimenter-imposed

selection. In both cases, cooperation evolved under highly viscous

media, demonstrating empirically that viscosity per se does not

impede kin selection.

Clearly, estimates of the strength of kin competition in na-

ture are needed. Kelly (1997) applied a regression-based approach

to quantify the degree of soft selection in a natural plant meta-

population. Future studies could apply equations (6) and (13) to

estimate the intensity of kin competition in natural populations,

although this method will be limited by the ability to accurately

identify the density-regulated neighborhood. Until empirical mea-

sures are conducted on a wider range of species, the prevalence

and efficacy of kin competition in nature remains in question.
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Appendix A
DERIVATION OF HAMILTON’S RULE FROM THE

MULTILEVEL PRICE EQUATION

Equation (3) can be used to derive Hamilton’s rule by using the

standard n-ploid population genetic model with Hamilton’s linear

fitness function. Let there be a diploid population with alleles A

and a segregating at a single biallelic locus controlling altruism.

Homozygous AA individuals are altruists, whereas aa homozy-

gotes are nonaltruists who nonetheless receive the benefit of al-

truism from social partners. Heterozygous Aa individuals behave

altruistically with probability h, the degree of dominance of the al-

truistic allele. Assume that social interactions are indiscriminant,

such that they occur within the group at random with respect to

genotype. Define pij as the frequency of allele A in individual j in

group i which takes on the values (0, 1/2, 1). Then pi is the mean

frequency of allele A in group i, and p is the mean frequency of A

in the global population. Expressing the altruistic trait decreases

the fitness of the altruist j by an amount cj, but increases the

fitness of a recipient k by an average amount bk. Assuming that

Hardy–Weinberg proportions obtain, on average, within groups

(Falconer and Mackay 1996), the mean and genotypic fitnesses

in group i are, respectively,

W̄i = p2
i WAA,i + 2pi (1 − pi )WAa,i + (1 − pi )

2Waa,i (A1a)

WAA,i = 1 − c j + bk(Nalt,i − 1) (A1b)

WAa,i = 1 − hc j + bk(Nalt,i − h) (A1c)

Waa,i = 1 + bk Nalt,i , (A1d)

where Nalt,i = Ni(pi
2 + 2pi(1 − pi)h) is the number of altruists

in group i (Wilson 1975; Wade 1978, 1979, 1980). Note that in

this form, individual altruists do not receive the benefits of their

own altruism (this corresponds to ‘others-only’ altruism [Pepper
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2000]). When altruism feedback onto the altruist (“whole-group”

altruism [Pepper 2000]), each benefit term in equation (A1b–d)

is simply replaced by bkNalt,i.

Rewriting equation (3) in its regression coefficient form

(Wade 1985) and assuming additivity (h = 1/2), gives,

W̄�p = (1 − α)βwi ,pi Vb + βwij,pij Vw, (A2)

where βwi ,pi and βwij,pij are the partial regression coefficients of

group and individual allele frequency on group and individual

fitness, respectively (Wade 1985; Frank 1998; Rice 2004). Vb

is the variance in allele frequency among all groups, and Vw is

the average within-group variance in individual allele frequency

(i.e., Vw = E[varw(pij)]. Values for these variance components

are given for neutral alleles by Wright (1951, 1965). The among-

group partial regression coefficient, βwi ,pi , can be found by taking

the derivative of equation (A1a) with respect to pi. The within-

group partial regression coefficient βwij,pij is the “average excess”

divided by (1 − p) (Falconer and Mackay 1996), which is equal

to the difference in the marginal within-group fitness of each

allele (Rice 2004). This can be written as, βwij,pij = (WA,i
∗ −

Wa,i
∗), where WA,i

∗ = piWAA,i + (1 − pi)WAa,i and Wa,i
∗ = (1 −

pi)Waa,i + piWAa,i are the marginal fitness of the A and a alleles,

respectively, within group i.

Invoking a change of variables allows us to describe both

“others-only” and “whole-group” altruism by the same equations.

For others-only altruism, we define b = bk(Ni − 1) as the total

benefit dispensed by an altruist, and −c = −cj − bk as the net cost

incurred by an altruist. With whole-group altruism, b = bkNi and

−c = −cj. In both cases, using the fitness model above (eq. A1),

with no dominance or inbreeding (as assumed by Hamilton [1963,

1964]) we find that, βwi ,pi = (b − c), and βwij,pij = −c. Applying

this to equation (A2) gives

W̄�p = (1 − α)(b − c)Vb − cVw. (A3)

Equation (A3) applies even for loci under strong selection. Making

the standard assumption of weak selection, the variance in allele

frequency among- and within-groups is Vb = pqf st and Vw =
pq(1 − f st)/2, respectively (Wright 1951; Wright 1965), where f st

is Wright’s measure of population subdivision. Substituting into

equation (A3) gives

�p = p(1 − p)

2W̄
[2 fst(1 − α)(b − c) − (1 − fst)c]. (A4)

The quantity in square brackets is the inclusive fitness effect for

the current model, which determines the direction of evolution.

Setting equation (A4) equal to zero and noting that r = Vb/(Vb +
Vw) = 2f st/(1 + f st) is the kin selection coefficient of relatedness

(Hamilton 1975; Michod and Hamilton 1980; Frank 1992, 1998;

Queller 1992), after some algebra we obtain equation (4) in the

main text.

Appendix B
RELATEDNESS AT LIFE STAGE K

Assuming neutrality, a recursion can be obtained for relatedness

based on the probability of identity by descent. For simplicity,

assume haploidy, where r = f st. Let N be the number of individ-

uals founding a group. Relatedness of individuals within a group

before dispersal, rBD, is given by the probability that two genes

chosen at random from within the group descended from the same

gene copy in the previous generation (1/N) plus the probability

that the two genes descended from different gene copies in the

previous generation (1 − 1/N) times the probability that these two

gene copies were related in the previous generation (rt−1) and that

neither dispersed ((1 − m)2)

rt = 1

N
+ N − 1

N
rt−1(1 − m)2. (B1)

At equilibrium, rt = rt−1 = r. Substituting into equation (B1) and

solving gives

rBD = 1

N − (N − 1)(1 − m)2
. (B2)

Alternatively, relatedness can be measured after dispersal. In

this case, relatedness is given by the probability that two alle-

les chosen at random are identical by descent from the previous

generation and that neither copy migrated in that generation. The

recursion and equilibrium relatedness in this case ar,

rt = (1 − m)2

[
1

N
+ N − 1

N
rt−1

]
(B3)

rAD = (1 − m)2

N − (N − 1)(1 − m)2
. (B4)

This reasoning can be extending to allow multiple bouts of

dispersal, leading to equation (9) in the main text.
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