
Biophysics 101: Modeling Group

Modeling Software Documentation

Alex Lupsasca

December 2009

Introduction

The Modeling Group’s task, as part of the class project, was to produce software

that would take as input information about a person’s genotype, and that would

then output a prediction about the person’s phenotype.

This initial idea later evolved in several ways. Perhaps the most important one

is the form taken by the output, which is actually not a prediction, but rather

a model for making predictions. The major advantage of this approach is that

these models need only be generated once (when the data is first obtained), and

then other software such as Trait-o-Matic can call upon the models to make trait

predictions based on available genotypic information. The upshot of all this is

the high computational efficiency and modularity of the code.

1

Underlying Model

Pre-existing models in the literature

The Biology Group provided us with a paper1 which describes a procedure for

producing a model that predicts an individual’s eye color from their genotype,

more specifically from 6 SNP’s that were identified as relevant. This was suc-

cessfully tested on a sample of 6000+ people: a set of 3804 people were used to

establish the model, which was then tested on 2364 people. The overall accuracy

of the predictions was more than 90%.

This was done using the method of ordinal regression, which is often used when

the prediction to be made is categorical (i.e. “blue” or “intermediate” or “brown”)

and the outcomes are ordered, that is, each category is assigned a numerical

threshold on a continuous scale: for instance, eye color can be quantified by a

number in the interval [0, 1], with “blue” corresponding to the sub-interval [0, a],

“intermediate” to [a, b] and brown to [b, 1], where 0 < a < b < 1.

The paper in question used precisely such a model. They let eye color y be one of

three ordinal levels (“blue”, “intermediate” and “brown”) which are determined

by the genotype ~x of k SNPs, ~x = (x1, x2, . . . , xk). Then, letting π1, π2 and

π3 denote the proportion of the population (i.e. the probability) with “blue”,

“intermediate” and “brown”, respectively, the ordinal regression they used was

logit(Pr(y ≤ blue | ~x)) = ln

(
π1

1− π1

)
= α1 +

k∑
i=1

βixi;

logit(Pr(y ≤ inter | ~x)) = ln

(
π1 + π2

1− (π1 + π2)

)
= α2 +

k∑
i=1

βixi,

1Eye color and the prediction of complex phenotypes from genotypes, Current Biology Vol
19 No 5 R192

2

where α and β were infered from the model-building set. Note that the logit

function, defined by

logit : [0, 1]→ [−∞,∞]

logit : π 7−→ ln

(
π

1− π

)

takes a probability between 0 and 1 to a continuous real variable z, which can be

arbitrarily small or large.

Then the eye color of each individual in the model-verification set was predicted

based on their genotype and the derived α and β:

π1 =
exp

(
α1 +

∑k
i=1 βixi

)
1 + exp

(
α1 +

∑k
i=1 βixi

) ;

π2 =
exp

(
α2 +

∑k
i=1 βixi

)
1 + exp

(
α2 +

∑k
i=1 βixi

) − π1;

π3 = 1− (π1 + π2).

This type of “logit” regression, or logistic regression, is often used in the litera-

ture2 because of the following nice features: first it is linear (and therefore fast

to compute); next, it makes use of a variable

z = β0 + β1x1 + β2x2 + . . .+ βkxk,

whose origin is intuitively clear: each SNP (or environmental factor, or really any

factor whatsoever) xi is assigned a relative importance βi and the influences of

2For instance, in Logistic Regression Model of Binary Disease Trait for Case-Control Study
Considering Interactions between SNPs and Environments, http://www.jsbi.org/journal/
GIW04/GIW04P106.pdf.

3

all factors are summed over in a single variable. This variable can take any value

from negative to positive infinity, which allows for a large spread in the observed

data; this is where the inverse logit function comes in:

logit−1 : [−∞,∞]→ [0, 1]

logit−1 : z 7−→ ez

ez + 1
=

1

1 + e−z

Thus, the inverse logit function transforms the variable into a probability be-

tween 0 and 1. Moreover, in doing so, it exponentiates z, thereby introducing a

multiplicative effect:

ez = eβ0+β1x1+β2x2+...+βkxk = eβ0eβ1x1eβ2x2 · · · eβkxk

In conclusion, then, logistic regression is a fast, simple regression model

which incorporates additive and multiplicative effects, and which has

already been shown to predict with great accuracy eye color. As such,

we decided to base our own work on this model.

Our model

Based off existing work, we consider a number n of phenotypic traits y1 through

yn, where each yi can take on a discrete value in a pre-determined set. For

instance, when looking at eye color, we could work with a set Yi = {0, 1, 2},

where the number quantify the colors “blue”, “green” and “brown”, respectively.

This easily extends to other discrete traits. In the continuous case, on the other

hand, this necessitates setting a resolution for discrete quantization: in the case

4

of height, for instance, we could have a set

Yi = {[160, 170], [170, 180], [180, 190], [190, 200]}

in which each element actually encompasses a range of heights. In this example,

the resolution is quite low (10 centimeters), but the level of granularity could

be increased by reducing the interval size of the discrete quantization (say, to 5

centimeters). Note that this would result in the addition of new elements to the

set (here, this would double the size from 4 to 8 possibilities) and this would incur

a computational cost when the regression is run. Moreover, increased resolution

always translates into lower accuracy, and so finding the balance requires human

judgement.

In any case, this results in a vector

~y = (y1, y2, . . . , yn)

which fully encodes the phenotypic information. In our work so far, we have only

conidered one trait at a type, and so our vector has actually been a single variable

~y = y. There is no particular reason why we should restrict ourselves to this,

other than practicality in running tests. Increasing the number of traits to n >

is exactly equivalent to running n separate one-trait regressions, and so nothing

is lost.

In our model, we view an individual’s genotypic information as a vector

~x = (x1, x2, . . . , xk)

where each xi is a binary piece of information which stands for either “SNP i is

present” (xi = 1) or “SNP i is absent” (xi = 0). Note that this is still absolutely

5

general, and in no way limits the power of the model: if a SNP were to have more

than one possible type (say AA, or AG, etc.) then it could be assigned more

than one xi. More precisely, a factor (be it a SNP, or an environmental factor)

which can take on m values will be assigned n of the binary xi, where n is the

least power of 2 which exceeds m:

n = min{j | 2j ≥ m}.

In fact, the same can be done with the phenotype, in which case the yi also

represent binary information.

Next, for every individual in a model-building set, we take in their genome vector

~x and associate to it an observational data vector

~d = (~x, ~y) = (x1, x2, . . . , xk, y1, y2, . . . , yn).

The observed data of all the individuals is then gathered into the following array:

x1 x2 · · · xk

y1 N1,1 N1,2 · · · N1,k

y2 N2,1 N2,2 · · · N2,k

...
...

yk Nk,1 Nk,2 · · · Nk,k

Here, each Ni,j counts the number of individuals who have SNP j and exhibit

trait i, that is for which yixj = 1. This can be put in matrix form: the data

6

matrix D is

Dij =


N1,1 · · · N1,k

...
. . .

...

Nk,1 · · · Nk,k


Dividing through by the total number T of people in the model-building set, this

results in a probability matrix P :

Pij =
Dij

T
=


Pr(1, 1) · · · Pr(1, k)

...
. . .

...

Pr(k, 1) · · · Pr(k, k)


The (i, j)th entry is Pr(i, j) =

Ni,j

T
. It corresponds to the conditional probability of

someone exhibiting trait i given that they have SNP j; note that by construction,

for all i and j, 0 ≤ Pri,j ≤ 1, as desired.

Question: why not stop here?

Indeed, suppose that for some i and j, Pr(i, j) = 1. Then given someone with

xj = 1, that is, with the SNP j, we can infer with great probability that they

will exhibit trait j. Or, suppose that we are given a genotype vecx which is the

exactly the same as a very large number (say, 100) of genotypes in our model-

building set. Then in that case, we can directly predict the probability of that

person having trait j simply by looking at the proportion of individuals with the

same genotype ~x who exhibit trait j.

But then we have accomplished nothing special: taking this to the extreme, we

could just look at the entire sample population in our model-building set and say

that
∑

i Pr(i, j) is the general probability for someone in the wider population

(of which we assume our model-building set to be a representative sample) to

7

exhibit trait j. This is not very useful, especially since we can do much better...

Indeed, the reason we do not want to stop here is that so far, no “learning”

has occurred. All we have done is look at data and use it to produce banal

probabilities; however, we do not know how these probabilities interact...

Moreover, if someone comes along with a genotype ~x which is different from

all the genotypes we have seen before, we do not have a good basis for making

predictions about their phenotype. However, this could be remedied, if only we

could infer from our data how the SNPs interact.

This is where logistic regression comes in...

We now proceed with the simplified case n = 1 of one trait, noting again that

this does not in any way reduce the power of generality of the model (it simply

makes it necessary to run the model n times to make predictions on each of the

n traits in ~y). In this case, the matrix Pij is just a row vector

~P =
(

Pr 1,Pr 2, . . . ,Pr k
)

=
(

Pr(y | x1),Pr(y | x2), . . . ,Pr(y | xk)
)
.

We then apply the logit function to obtain continuous variables with a much

larger spread, which will make the regression much more effective:

logit ~P =
(
logit(Pr 1), logit(Pr 2), . . . , logit(Pr k)

)
.

This allows us to run a linear regression to find the relative importance of each

xi in the determination of trait y. That is, the regression yields the “relative

importance” factors βi in

z = β0 + β1x1 + β2x2 + . . .+ βkxk.

8

where z is a continuous variable. This regression process is well-known and quite

standard; for this reason, it is not described here but can easily be found online

or in textbooks. Basically, it amounts to plotting the points xi and trying to fit

a line through then...

As such, taking the inverse logit of the constants β, we obtain a list of inferred

probabilities which tell us how likely it is to exhibit trait y given any genotyp ~x.

Note that these probabilities have been learned. They take the form of a vector

~I =
(
π1, π2, . . . , πk

)
,

where for each i, πi = logit−1(βi) = 1
1+exp(−βi)

. Finally, the likelihood of exhibiting

trait y given genotype ~x is just the dot product

~x · ~I = π1x1 + π2x2 + . . .+ πkxk.

Software Implementation

Overview

Our software implementation model fulfils, at least partially, the initial goal we

had set for ourselves: given a model-building set of individuals, it generates

the vector ~I = (π1, π2, . . . , πk) of learned probabilities and outputs a model in

a form which is understood by Trait-o-Matic (as per the Infrastructure Group’s

specifications). In turn, that model takes in an arbitrary genotype ~x and predicts

the likelihood ~x · ~I of that individual expressing phenotype y.

9

Description of the code

Our implementation was done in Python, which is a very flexible and powerful

high-level language. It was chosen for its ease of use and modularity – indeed,

we tried to make our code highly readable (by including plenty of comments)

and easily modifiable (by implementing different aspects of the model in different

modules).

As such, our program consists of three parts: logregoutput.py, dataread.py

and ols.py. The function of each of these parts will now be described; as to the

code itself, it shall not be examined in this documentation (we reiterate that is

heavily commented and should be easy to read, and understand).

The observed data (i.e. the set of all vectors ~d corresponding to the individuals in

the model-building set) is written into a simple .csv file. This stands for “comma-

separated values” and is the simplest format for storing arrays of information such

as the one from the preceding section. It is also recognized by Microsoft Excel,

which makes it easy to share and modify. A sample data set testdata.csv would

thus take the following form:

snp1,snp2,snp3,phenotype

1,1,1,1

1,1,0,1

1,1,0,1

1,1,1,1

1,1,1,1

...

where snp1 is the name of SNP 1 and represents the binary value of x1, and so

on. Similarly, phenotype is the name of the binary trait y under consideration.

10

Now, the main routine is logregoutput.py. It can be called at the command

line with a data file such as the above as argument: for instance, provided that

a file testdata.csv of the above type is located in the same directory as the

program, one would run the software with the command

python logregoutput.py testdata.csv

The program will then call the routine dataread.py to read in the data and

produce the previously described array, together with the associated probabil-

ity vector ~P . logregoutput.py will then proceed to compute the logit of the

probabilities logit ~P , and then will call on ols.py to actually perform the linear

regression. Note that this file was not written by us; it is a standard library that

is made freely available online.

Finally, logregoutput.py will print to screen the following output:

rsid:snp1

rsid:snp2

rsid:snp3

This is an automatically generated model file created by logistic

regression on the SNPs listed above.

from numpy import *

from sys import argv

genotypes = argv[1:]

genotype_list = [1] + [int(genotype) for genotype in genotypes]

11

genotype_array = array(genotype_list)

PVALS GO HERE

pvals = array([0.00589634, 0.00456349, 0.27948336, 0.0756931])

val = -1*inner(genotype_array, pvals)

risk = 1/(1+exp(val))

print risk

Output and interface with Trait-o-Matic

An output of the type seen above is itself a model. Its format obeys the spec-

ifications passed on to us by the Infrastructure Group, and is understandable

by Trait-o-Matic. Note that the name of SNP 1, snp1 becomes an rsid tag for

Trait-o-Matic; this allows for the automation of the genomic information retrieval

process.

Another advantadge is that this type of output can also be easily generated by

humans. Furthermore, should a human wish to modify the output of our model

(in the case that our automated output suffers from an unforeseen problem, for

instance), then they could easily do so in a text editor.

Finally, the model can be run either in Trait-o-Matic, or directly at the command

line. Assuming that the above output model was stored in a file model.py, we

could compute the likelihood of an individual expressing phenotypic trait y as

follows: supposing that they have genotype ~x = (1, 0, 1) (that is, they have SNPs

1 and 3, but not SNP 2), we would call

python model.py 1 0 1

12

This would output something of the form

0.521524920396

which indicates a probability of 52% of expressing the trait.

Further Developments

Please refer to the Biophysics 101 Wiki’s documention page, where Zach compiled

the discussions of the Modeling Group.

13

