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5.1 Introduction 

 

Recognising the response of stimulated neurons is essential for neurophysiological studies. 

Most neurons respond to external stimuli by firing action potentials which serve as a means of 

communication with other neurons. Several devices have been developed for the purpose of 

recording such activity. These include the stereotrode (McNaughton 1983), tetrode (Reece 1989), 

and the MEA, or multi-electrode array (Thomas 1972). 

Analysis of MEA recordings is a technically challenging process. Besides picking up 

background noise, electrodes also record spikes from more than one neuron. The goal of spike 

sorting is to assign detected spikes to specific neurons, and its reliability depends on the ability to 

detect and classify spikes. Many spike sorting approaches have been developed, but all algorithms 

are made up of three stages: (1) detecting spikes, (2) extracting spike features and (3) clustering of 

spikes features. 

In this chapter, we will discuss various spike sorting methods and present a MATLAB based 

Spike Sorting Toolbox. In particular, we have developed an algorithm which builds on the template 

matching approach (Zhang 2003, Segev 2004) by exploiting calibration capabilities of our system. 

Calibration can be done by stimulating each neuron in turn and capturing spike patterns across all 

electrodes. Since extracellular action potentials decay exponentially with distance (Segev 2004, 

Escola 2008) and because each neuron occupies a specific position, spike patterns are unique to 

calibrated neurons and can be used to classify detected spikes. 

One of the main challenges of template matching algorithms is the high computational load 

involved in comparing templates to detected spikes. We tackle this problem by extracting only the 

most prominent features of recorded spike patterns: the peak amplitude and relative phase lags. 

Using these two features, we reduce the dimensions of spike templates to an M2 matrix of 

eigenvectors which we term “eigenmatrix templates”. These templates are then used in an iterative 

template matching process which assigns detected spikes to calibrated neurons. The spatiotemporal 

information obtained from spike sorting can be used in various applications such as implementing a 

closed-loop stimulation feedback system (Potter 2006) and transferring an image onto a neural 

network. Finally, we characterise the Spike Sorting Toolbox using artificial data (Quiroga 2004) 

generated by an MEA based test platform. 
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5.2 Background 

 

5.2.1 The Basic Problems in Spike Sorting 

 The challenges of spike sorting are illustrated in the extracellular recording shown in Figure 

5.1. Upon observation, one will notice that the recording contains many different types of action 

potentials. To a neurophysiologist, he or she may be interested to find out how these spikes are 

related to different neurons, and how this relationship may be determined.  

 

 One of the basic questions asked in spike sorting is how can we identify and classify a spike? 

To answer this, we must first understand features of action potentials. One of the most prominent 

features is the peak amplitude. When the cell membrane of a neuron is depolarised past its 

threshold voltage, voltage-gated sodium channels open, resulting in an influx of sodium ions and a 

spike. During extracellular recordings, this spike is recorded as a negative peak, since the recording 

medium is negative with respect to the cell potential. Once the peak amplitude is reached, sodium 

channels close and potassium channels open, resulting in repolarisation. Repolarisation often occurs 

past the cell’s resting potential, and is seen as a positive peak in extracellular recordings. Figure 5.2 

illustrates spike features which allow us to recognise action potentials in the presence of background 

noise. In this section, we will look at various methods used to tackle the spike sorting problem. 

 

Figure 5.2: Measurement of spike 

features. Useful spike features 

which characterise a spike shape 

include positive and negative 

gradients, spike width, positive and 

negative peaks, and peak-to-peak 

amplitude. 

Negative 
Gradient 
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Gradient 

Positive 
Peak 

Negative 
Peak 

Figure 5.1: Single channel 

extracellular recordings 

obtained from Quiroga 

et. al. 2004. 
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5.2.2 Spike Detection 

 One of aims of spike detection is to identify data points which form an action potential. 

Current spike detection methods make use of prominent features such as the peak amplitude, to 

enable automatic detection of spikes.  

 

Voltage Threshold Detection 

 The voltage threshold method detects data points which lie between a minimum and 

maximum threshold value. Many spike sorting algorithms use this method for detecting spikes as it 

is easy to implement and discards background noise effectively (Lewicki 1998, Zhang 2003, Quiroga 

2004, Segev 2004). The minimum threshold detects high amplitude spikes, while the maximum 

threshold discards large amplitude artefacts (Figure 5.3).  

 

 In order to discard background noise and 

detect action potentials only, the voltage threshold 

must be large enough so as to avoid the detection of 

background noise. If the spiking neuron is located far 

away from the electrode, low amplitude spikes may 

not be detected by the voltage threshold method. 

One solution is to use multiple electrodes. Each time 

a neuron spikes, recorded waveforms are visualised 

across all channels of the MEA (Figure 5.4). This 

ensures that information is not lost even though 

spikes are not detected on some electrodes.  

Figure 5.3: Spike detection using the voltage threshold method. (a) Detected spike with amplitude 

exceeding minimum voltage threshold. (b) Spike amplitude is too small for detection 

(b) 

Minimum voltage threshold 

(a) 

Minimum voltage threshold 

Figure 5.4: A 4×4 MEA recording. The use of 

multiple electrodes increases spatial resolution 

of signals and prevents information loss from 

neurons located far away from electrodes. 

1 2 3 4 

 A 

B 

C 

D 

 



 

73 

 

 

5.2.3 Spike Feature Extraction 

 Neurons typically produce spikes with a characteristic shape (Lewicki 1998). If we assume 

that a neuron’s spike shape is time invariant, we can characterise its shape by extracting spike 

features. However, this assumption is invalid when spike shapes change during recording. 

Overlapping spikes may also be recorded when two or more action potentials reach an electrode at 

the same time. Various spike feature extraction methods deal with these problems and will be 

discussed in this section. 

 

Feature Analysis 

 A simple method of analysing spike shapes is through the direct measurement of spike 

features such as the peak-to-peak voltage amplitude, spike width, and spike gradient (Figure 5.5).  

 

 

 Spike features can be used to discriminate 

between spikes from different neurons. This 

method may be used on a single electrode or 

across multiple electrodes. Figure 5.6 shows a 

scatter plot of peak amplitudes recorded on 2 

neighbouring electrodes. There is a clear clustering 

of three different spike shapes indicating that the 

detected spikes originated from three different 

neurons.  

Figure 5.5: Measurement of 

spike features. Useful spike 

features which characterise a 

spike shape include positive 

and negative gradients, spike 

width, positive and negative 

peaks, and peak-to-peak 

amplitude. 
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Figure 5.6: Feature analysis applied to 

two electrodes. 3 clusters are observed, 

corresponding to 3 different neurons. 
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Spike Template Construction 

 Since neurons produce action potentials with a characteristic shape (Lewicki 1998), a way of 

quantifying spike features is through the use of spike templates. Spike templates are unique action 

potentials generated by a neuron (Wheeler 1982). Figure 5.7 illustrates 5 unique waveforms (data 

from Quiroga 2004) which differ in spike features described previously. 

 

 Spike templates can be extended to MEA recordings. Each template is a set of recordings 

across all channels when a neuron is stimulated (Figure 5.8). Similarly, each template is unique since 

neurons occupy a specific location, and because 

action potentials decay exponentially with distance 

(Segev 2004, Escola 2008). A challenge of spike 

template construction is that it requires the 

stimulation of single neurons. This is possible with 

our system as each LED is able to target single 

neurons (Nikolic 2007, Poher 2008). Another 

challenge is that the transmission of action potentials 

via neuronal processes may result in recorded spikes 

from other neurons when a particular neuron is 

stimulated. One way to isolate clean waveforms is to 

stimulate each neuron multiple times and discard 

waveforms which differ from the average by a 

threshold (Segev 2004). 

 One assumption of spike template construction is that spike shapes are time invariant. This 

assumption does not always hold, as burst-firing neurons may generate spikes which vary in shape, 

and electrode drift will result in a gradual change in spike shapes (Lewicki 1998). This problem may 

be solved by constructing templates for a limited recording period. However, the process requires a 

higher level of supervision to maintain the accuracy of the template database. 

Figure 5.7: Five unique spike template waveforms, each generated by a different neuron. 

Figure 5.8: An MEA spike template. The 

spiking neuron is located closest to 

electrode B2 which shows the greatest 

spike amplitude relative those observed on 

other channels. 
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Principle Components Analysis 

Principle Components Analysis (PCA) is commonly used to automatically extract spike 

features for spike classification (Lewicki 1998, Zhang 2003). The aim of PCA is to compute an ordered 

set of orthogonal basis vectors which can be linearly combined to describe each detected spike. This 

method assumes that the largest variation in a set of data contains the dynamics of interest (Lewicki 

1998, Shlens 2005). A brief mathematical description of PCA is found in Appendix N. Spike features 

are captured in the score for each principle component: 

   i i

t

s c t x t  (5.1) 

where  x t is the detected spike, and  ic t is the ith principle component. In practice, scores of the 

first three components are used to identify clusters as they account for approximately 76% of the 

variations in the data. Subsequent components may represent variability in the data due to 

background noise (Lewicki 1998). The results of PCA applied to artificial data (Quiroga 2004) are 

illustrated in Figure 5.9. 

 

 One challenge of PCA is that it does not resolve overlapping spikes as these spike shapes 

appear as outliers during the clustering process. PCA also fails to recognise varying spike shapes 

where waveforms are not stationary. When applied to MEA recordings, spikes from the same 

neuron which are recorded by multiple electrodes may exhibit different spike amplitudes. Using PCA 

on such data may result in the formation of two or more clusters, generating false positives. Hence, 

PCA alone remains only useful for spike sorting on a single channel.  

 

(b) 

Figure 5.9: Results of PCA applied on detected spikes. (a) The first three principle 

components. (b) A scatter plot of the scores from the first three components. 

(a) 
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Independent Components Analysis 

 Independent Components Analysis (ICA) is a method which is used to deal with multiple 

electrode signal recordings (Brown 2001, Takahashi 2003, Mamlouk 2005). ICA assumes that signal 

mixtures are a linear combination of source signals. ICA is similar to blind source separation: it 

recovers n independent signals that have been mixed into n channels by an unknown mixing process. 

ICA may be implemented via maximum likelihood estimation or entropy maximisation (Mitianoudis 

2004). An efficient and widely used ICA algorithm is the FastICA which utilises non-Gaussianity 

maximisation (Hyvärinen 2000). The ICA concept is illustrated in Figure 5.10 and a brief 

mathematical description of ICA is found in Appendix O. 

 

  ICA solves the problem of overlapping spikes as it assumes that observations are linear 

mixtures of source signals. However, the number of neurons must be less than or equal to the 

number of electrodes. Although methods which deal with over-complete problems have been 

developed (Takahashi 2003, Mitanoudis 2004), few of them have been verified to be capable of 

accurately recovering original signals fully. Another assumption which ICA makes is the 

instantaneous mixture of source signals. This does not hold as depolarisation waves take time to 

propagate through the recording medium. Although powerful, ICA makes many assumptions which 

must be fully understood when applied to spike sorting.  

1 

2 

n 

Unknown 
Sources 

Unknown 
Mixing Process 

Recorded 
Mixtures 

Unmixing 
Process Inferred Sources  

Figure 5.10: A model of Independent Components Analysis (adopted from Lewicki 1998). n 
unknown sources or spiking neurons are mixed linearly by an unknown mixing process and are 
recorded on n electrodes. The unmixing process is found through ICA which transforms recorded 
mixtures into independent signals. 
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5.2.4 Spike Feature Clustering 

 By plotting spike features, we are able to visually identify clusters which correspond to spikes 

from a particular neuron. However, to manually assign each spike to its cluster is a very time 

consuming process. In this section, we discuss algorithms which perform this task automatically with 

varying amounts of supervision. 

 

K-means Clustering 

 K-means clustering classifies data into k number of clusters, based on features of the data set. 

Spike features include principle component scores and peak-to-peak amplitude ratio. After the user 

has specified the number of clusters, the algorithm uses an iterative process which groups features 

based on the minimum Euclidean distance from each data element to cluster centroids. The aim is to 

minimise the total variance within each cluster. K-means clustering applied to PCA (artificial data 

from Quiroga 2004) is illustrated in Figure 5.11. 

 

 Since k-means clustering requires the user to specify the number of clusters, a poor choice will 

result in inaccuracies. By using the minimum Euclidean distance as the criteria for clustering, the 

distribution of data within the cluster is ignored. Hence, clusters whose shapes differ from a 

spherical distribution are not recognised (Lewicki 1998). In addition, omission of outliers has to be 

carried out manually as k-means clustering assumes that all data points belong to a cluster. Despite 

these drawbacks, this algorithm is easy to implement and is computationally efficient. 

 

Figure 5.11: PCA and k-means clustering. (a) Scores of the first 3 principle components. K-means  

clustering was applied to obtain three clusters. (b) Clustered and aligned spikes from spike detection.  

(a) (b) 
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Template Matching 

 Spike template matching algorithms assume a pre-existing database of templates. The aim is 

to assign best fit templates to detected spikes, hence clustering spike features based on prior 

knowledge obtained from constructing spike templates. One way to match templates is through an 

iterative matching process (Segev 2004). Each template is aligned and subtracted from the recorded 

waveform. The resulting mean squared error (MSE) is used to measure the quality of fit, such that 

the template which produces the minimum mean squared error is assigned to the detected spike. 

The MSE is given by: 

 
 


n

i

m

j

ijij YX
n

MSE
1 1

21
    (5.2) 

where Xij and Yij represents jth sample of the detected spike and spike template recorded on the ith 

electrode respectively. To resolve overlapping spikes, templates are iteratively subtracted from the 

resulting residual until the best matched template is a blank template. The iterative template 

matching process applied to MEA recordings in illustrated in Figure 5.12 (Segev 2004).  

 

 One pitfall of template matching is that it is limited to generated templates. If spike 

templates are not constructed for a class of neurons, then inaccuracies may be introduced during 

template matching. In addition, spike shapes may not be stationary, and may evolve with time. 

Solutions which compensate for time varying spikes require user supervision, which is an obstacle in 

implementing real time spike sorting. Spike template matching also has a high computational load 

when analysing MEA data. Users of the template matching approach have developed ways to limit 

the order of complexity by reducing the possible search space of templates (Lewicki 1998, Segev 

2004). Despite these drawbacks, spike template matching is reliable if the user has prior knowledge 

of spiking patterns of each neuron. Since our system allows for neuron calibration, this serves as the 

main motivation for our choice in employing the template matching approach in spike sorting. 

Figure 5.12: Iterative template 

matching carried out on a 

hexagonal MEA. After each match 

(labelled 1 to 4), the template is 

subtracted from the residue until 

the best match is a blank template 

(Segev 2004).  
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5.3 Methods 

 We present a modular Spike Sorting Toolbox based on the voltage threshold detection and a 

novel spike template matching approach. The user may use each module to perform a different 

stage in spike sorting, or the entire toolbox as a single module to automate the spike sorting process. 

We have also developed a test platform to simulate MEA based recordings, so as to validate the 

toolbox. 

  

5.3.1 Spike Sorting Toolbox 

 The Spike Sorting Toolbox consists of 4 modules: Signal Filter, Spike Detector, Template 

Generator, Event Matrix Generator and Template Matcher which are illustrated in Figure 5.13. 

 

Figure 5.13: Data flow chart of the Spike Sorting Toolbox. Each module (blue box) performs a 

separate stage in the spike sorting process, based on user defined input parameters (red box). 

Modules are designed such that the output (orange box) of one module is used as an input for 

another.  
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Signal Filter 

 A digital IIR filter module was implemented in MATLAB for the purpose of filtering 

microelectrode recordings. This module is fully configurable by the user to implement the following 

bandpass IIR filters: Butterworth filter, Chebyshev Type II filter and Elliptic filter. The default digital 

filter was set as a 2nd order Elliptic filter, due to its steep transition band. Filter specifications were 

set to a passband ripple of 0.1dB, and a stopband attenuation of -40dB.  

 The filter module receives an input of MEA signal recordings and performs digital filtering 

channel wise, producing an output of filtered recordings. Filter taps are computed using the MATLAB 

Filter Design Toolbox functions butter, cheby2 and ellip, while zero-phase filtering is 

performed using the Signal Processing Toolbox function filtfilt. The user manual and MATLAB 

code for the signal filter module can be found in Appendix P1. Figure 5.14 illustrates the effects of 

bandpass filtering a single channel recording for which the passband is specified to be in the range 

300 Hz to 3 kHz. 

 

Figure 5.14: Effect of bandpass filtering (300 Hz to 3 kHz) a single channel signal 

recording. The 2nd order Elliptic filter effectively attenuates high frequency noise and 

preserves low frequency action potentials (data from Quiroga 2004). 
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Spike Detector 

 The spike detection module uses a voltage threshold to detect spikes. The threshold voltage is 

set by the user as a multiple of n, the estimate of the standard deviation of background noise 

(Quiroga 2004). This estimate is robust to signals containing high frequency spikes, which may cause 

high threshold values if we simply consider the standard deviation of the signal (Quiroga 2004). To 

prevent multiple detection of the same spike, the user may specify a time window for which no spike 

may be detected after a threshold crossing occurs. We term this as the “detector dead time”. 

 σ
0 6745n

xmedian
.

     (5.3) 

 Spike detection may be performed on a set of original signal recordings or filtered signals from 

the signal filter module. The noise level of each channel is computed, and threshold voltages are 

determined based on user defined multiples applied to the noise level.  

 For each detected spike, the spike time and a snapshot of signal recordings across all 

electrodes is stored (Figure 5.15). However, the module does not recognise simultaneous detection 

of spikes across multiple electrodes. As a result, the output may contain multiple snapshots and 

spike times which correspond to a single spike event. The identification of unique spike events is 

performed by the spike event generator module, which is discussed in later sections. The user 

manual and MATLAB code for the spike detection module can be found in Appendix P2. 

 

Figure 5.15: Recorded signals on all 

electrodes. The spike detection 

module takes a snapshot of activity 

recorded across all electrodes of 

the MEA whenever a spike is 

detected on any electrode. 
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Template Generator 

 The main function of the template generation module is to calibrate neurons of the system. 

This is done by storing typical spike patterns and generating eigenmatrix templates which are unique 

to each calibrated neuron. During system calibration, each neuron is stimulated in turn, producing 

sets of MEA signal recordings. Each MEA recording is filtered and spikes are detected using the signal 

filter module and spike detection module respectively. The module isolates a clean spike pattern by 

only considering electrodes which detect spikes in more than a certain percentage of the calibration 

input stimulus. This eliminates the possible detection of high amplitude noise and spikes from other 

neurons which were not stimulated.  

 To generate a set of eigenmatrix templates, the template generator first computes the mean 

spike recordings for electrodes which satisfy the above criteria. The peak amplitude and phase lags 

relative to the spike with the greatest peak amplitude are extracted and ordered within the template 

to preserve spatial information. Electrodes which do not detect a spike are set to have zero 

amplitude and phase. The database of eigenmatrix templates can then be used for template 

matching. Figure 5.16 illustrates this process of reducing template dimensions by extracting 

prominent features of spike patterns. The user manual and MATLAB code for the template generator 

module can be found in Appendix P3. 

 

Figure 5.16: Reducing spike template dimensions through feature extraction. (a) A snapshot of 

spike patterns from a single spiking neuron.  (b) An intensity plot of extraction of peak 

amplitudes. Spatial resolution is preserved by ordering values according to electrode layout. 

(a) (b) 
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Event Matrix Generator 

 The main function of the event matrix generator is to identify and generate a list of unique 

spike events. To illustrate this, consider a spike which is recorded on electrode F3 in Figure 5.17. 

Observe that neighbouring electrodes such as F2 and F4 also record the same spike event. Our aim is 

to identify the group of electrodes which record spikes of common origin in time. 

 During an action potential, depolarisation waves take time to propagate through the 

recording medium. This results in a phase lag between multiple electrode recordings of the same 

spike. To find out which electrodes detect a common spike, the user specifies a time window within 

which a spike must be detected in order for electrodes to be grouped under one event. Spike times 

falling outside this window are classified as a separate event. Figure 5.17 illustrates spikes appearing 

on a single snapshot, but corresponding to different events. 

 

 Another function of the event matrix generator is to generate a set of event matrices. Each 

event matrix captures the peak amplitude and relative phase lags with respect to the highest peak, 

for electrodes which were grouped under a single spike event. Electrodes which did not detect a 

spike are set to have zero amplitude and phase. The event matrices are then iteratively matched to 

templates as described in the next section. The user manual and MATLAB code for the event matrix 

generator can be found in Appendix P4. 

Figure 5.17: Spike event generation 

for a snapshot window of 3.0ms and a 

spike event window of 0.5ms. An 

action potential recorded on 

electrodes F3, F2, F4, E3 and G3 

(circled in red) correspond to a single 

spike event. Electrodes E7 and F7 

(circled in black) record a spike whose 

peak falls outside the spike event 

window are grouped separately under 

a different spike event. 
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Template Matcher 

 The template matching module fits detected spikes with a linear combination of eigenmatrix 

templates generated from the calibration process. Each eigenmatrix template is subtracted from the 

event matrix and the mean squared error (Equation 5.2) is used to assess the quality of fit. The 

minimum mean squared error resulting from this matching process indicates the successful 

matching of a template to the detected spike.  

 Since each spike event can be made up of 2 or more simultaneously recorded spikes, the 

matching process is done iteratively on the residual until the best matched template is a blank 

template. This form of template matching also resolves overlapping spikes which are detected as a 

single spike event. The result of this iterative matching process is a set of matched templates which 

are assigned to each spike event. Figure 5.18 illustrates the results of matching two eigenmatrix 

templates to a spike event which contains two simultaneously recorded spikes. The user manual and 

MATLAB code for the template matcher can be found in Appendix P5. 

 

The template matching module, supported by other modules described in previous sections 

assigns detected spikes to calibrated neurons of our system. The results of spike sorting are then 

summarised as a raster plot of sorted spikes, a spiking intensity map which allows the user to 

visualise areas of spiking activity, a spiking frequency histogram and an inter-spike interval histogram 

plot for each template and its corresponding neuron (Figure 5.29). 

Figure 5.18: Spike Templates (blue) 

overlaid with detected spikes of a single 

spike event (red). Iterative eigenmatrix 

template matching identifies the 

presence of two simultaneously 

recorded spikes and assigns two 

different templates to this spike event. 
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5.3.2 MEA-Based Test Platform 

Current neural network simulators (Wilson 1989, Escolá 2008) are capable of reproducing 

realistic MEA-based recordings, but lack the calibration capabilities which our system offers. To 

assess the robustness and accuracy of the Spike Sorting Toolbox, we developed a simple MEA-based 

Test Platform in MATLAB to simulate both MEA recordings and the calibration process of generating 

eigenmatrix templates. The MEA-Based Test Platform comprises of 3 components: System Model 

Generator, MEA Recording Simulator and Calibration Simulator. These components mimic the actual 

experiment by laying out neurons on the MEA, calibrating neurons by generating eigenmatrix 

templates, and stimulating neurons while recording multiple electrode signals.  

 

System Model Generator 

Before data simulation can be carried out, the user has to initialise the electrode and neuron 

layout (Figure 5.19a). The user also has to include a database of spike shapes (Figure 5.19b) which 

allows the test platform to randomly assign spike shapes to each neuron on the MEA. Currently the 

database consists of 8 unique spike shapes extracted from test data by Quiroga, 2004. We model the 

spike amplitude such that it decreases exponentially with increasing electrode-neuron distance 

(Segev 2004), while the recording phase lag is a linearly dependent on this distance: 












 ij

iij

r
VV exp0    (5.4) 

ijij r      (5.5)  

where Vi and V0i are the recorded and normalised spike amplitudes of neuron i respectively, ij is the 

recording phase lag, rij is the distance between the i
th neuron and j

th electrode and α and β are 

constants. The system generator computes scaling factors and phase lags for each pair of electrodes 

and neurons, which can be used to simulate MEA recordings or the calibration process. The user 

manual and MATLAB code for the system model generator is found in Appendix Q1. 

 

Figure 5.19: System model 

for the test platform. (a) 

Typical MEA and neuron 

layout. (b) Database of 

normalised spike models 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Escol%C3%A1%20R%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
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MEA Recording Simulator 

Based on the model described in Equations 5.3 and 5.4, the MEA Recording Simulator 

generates artificial spike recordings on each electrode of the MEA. The signal recorded on each 

electrode is a summation of the spiking activity of all neurons in the network and Gaussian 

distributed background noise, as shown in Equation 5.5: 

   
noise

N

i ij
ijij V

r
tVtE 







 
1

exp
   (5.5)

 

where Ej is the signal recorded on the jth electrode, Vi is the spike amplitude of the ith neuron, ij and 

rij are the phase lags and distances between neuron i and electrode j respectively,  is a constant, 

and Vnoise is the amplitude of Gaussian distributed background noise. 

The simulation mimics the process of recording neuronal spikes in response to an external 

stimulus, such as optical illumination of ChR2 transfected neurons. Using the assigned spike shapes, 

scaling factors and phase lags, the MEA Recording Generator scales spikes and places them at user 

specified time points within the test data. The user manual and MATLAB code for the MEA recording 

simulator is found in Appendix Q2. 

 

Calibration Simulator 

 The calibration simulator mimics the process of calibrating neurons by first generating sets 

of MEA recordings from the controlled stimulation of each neuron, and then generating eigenmatrix 

templates using the template generator module of the Spike Sorting Toolbox. Although the 

calibration simulator is effectively a combination of the MEA recording simulator and template 

generator, we have developed it as a individual module so as to automate the calibration process. 

Figure 5.20 illustrates the intensity maps of generated eigenmatrix templates. The user manual and 

MATLAB code for the calibration simulator is found in Appendix Q3. 

 

Figure 5.20: Calibration of each neuron results in the generation of a database of 

eigenmatrix templates. Each template contains spike amplitudes and relative phase lags 

on electrodes which detect spikes in more than 10% of the stimulus frequency. Intensity 

maps of each template show that spatial information is preserved. 
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5.4 Results  

In this section, we present results from the characterisation of the Spike Sorting Toolbox 

using simulated data generated from the MEA-based Test Platform. In all simulations, signals were 

constructed at a sampling frequency of 10 kHz by superimposing Gaussian noise and spike trains of 

neurons as described in Equation 5.5. α was set to 500, while β was set to 0.5 × 10-6, such that the 

velocity of the depolarisation wave was 2 × 106 m/s (Equations 5.3 and 5.4). MEA recordings were 

pre-processed by using a 2nd order Elliptic bandpass filter (300 Hz to 3 kHz) to attenuate background 

noise. Various neuron layouts were used to test the capabilities of each module. The noise level was 

determined as the standard deviation of background noise, and was set to vary between 0.05 to 0.25. 

 

Spike Detection 

The spike detection module was characterised against varying noise levels. We placed the 

neurons far apart (Figure 5.21) so as to avoid overlapping spikes which will be detected as a single 

spike. Overlapping spikes are resolved by the template matching module, and will be described in 

later sections. Two sets of spike models (Figure 5.22) were used by the test platform to simulate 

MEA recordings, for the following noise levels at 0.05, 0.10, 0.15, 0.20 and 0.25.  

 

Figure 5.22: Two sets of 

spike models were used for 

assessing the performance 

of the spike detection 

module which uses the 

voltage threshold detection 

method. 

(a) (b) 

Figure 5.21: A simple MEA and 

neuron layout used in assessing the 

performance of the spike detection 

module. 3 neurons (red stars) were 

laid out on an 8  8 electrode MEA 

(blue circles). 
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Spike detection was then performed using a minimum and maximum threshold value of 5 

and 50 multiplied to the background noise level respectively. To prevent multiple detection of the 

same spike, we set the detector dead time to be 1.5ms such that we only consider threshold 

crossings of 1.5ms apart. The spike detection module calculates the threshold values as a factor of 

the background noise level of each channel. The performance of the spike detection module in 

detecting spikes for all noise levels is summarised in Table 5.1. 

Data Set Noise level Generated Spikes Detected Spikes Misses 
False 

Positives 

1 

0.05 100 133 0 33 

0.10 100 109 0 9 

0.15 100 100 0 0 

0.20 100 82 18 0 

0.25 100 34 66 0 

2 

0.05 100 101 0 1 

0.10 100 100 0 0 

0.15 100 100 0 0 

0.20 100 92 8 0 

0.25 100 62 48 0 

Table 5.1: Performance of the Spike Detection Module 

As compared to the spike models of set 2, a large number of false positives were generated 

for set 1 at low noise levels. Since the noise level is low, the minimum threshold is also low. This 

results in the detection of the re-polarisation wave of the class 2 spike (Figure 5.22a). False positives 

may be avoided by increasing the detector dead time, such that the re-polarisation wave is not 

detected as a threshold crossing. We may also increase the threshold voltage in cases of low 

background noise levels so as to ensure that only peak amplitudes are detected. However, these 

solutions may result in detection misses and loss of information. 

For both sets of spike models, there is an increase in the number of misses for the highest 

noise levels of 0.20 and 0.25. A high noise level leads to a high threshold value, resulting in a large 

number of un-detected spikes. A way to solve this problem is to lower the threshold value in order 

to detect more spikes, but this may lead to the detection of high amplitude noise, generating false 

positives.  

 



 

89 

 

System Calibration 
The template generator module was characterised using the calibration simulator of the test 

platform. Calibration was carried out by stimulating each neuron in turn at a rate of 10 Hz, and 

spikes were detected using detection parameters described in the previous section. To test the 

robustness of the template generator, the module only considered electrodes which detected spikes 

in more than 0%, 5% and 10% of the total calibration stimulus. Figure 5.23 summarises the results 

through intensity maps of eigenmatrix templates generated for the above threshold values at noise 

levels of 0.10 and 0.15. 

The results show that eigenmatrix template generation is prone to inaccuracies caused by 

false positives as shown in Figure 5.23a and 5.23d. By comparing Figure 5.23a to 5.23c and Figure 

5.23d to 5.23f, we also see that the spatial resolution of each eigenmatrix template decreases with 

increasing threshold values. Accurate templates of high spatial resolution were found to be 

generated by considering electrodes which detected spikes in more than 5% of the total calibration 

stimulus.  

 

 

(a) 

(d) 

(b) 

(e) 

(c) 

(f) 

Figure 5.23: Intensity maps of eigenmatrix templates generated by considering electrodes 

which detect spikes in more than 0%, 5% and 10% of the total calibration stimulus. False 

positives (circled in red) cause unreliable eigenmatrix templates to be generated. By 

setting higher thresholds, we sacrifice spatial information for accuracy.  
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Event Matrix Generation 

The event matrix generator module was characterised with respect to the user defined spike 

event window. Spikes detected were grouped into unique spike events by setting the spike event 

window at 0.1ms, 0.5ms, 1.0ms and 1.5ms. The results are illutrated through an intensity plot 

(Figure 5.24) of the relative phase lags for a spike event whose corresponding snapshot is shown in 

Figure 5.17. The snapshot records two spike events which do not occur simultaneously. Depending 

on the window, these recorded spikes may be classified as one or two separate spike events. Figure 

5.25 shows how the ratio of spike events to generated spikes varies with the spike event window.  

 

 

Figure 5.25: A plot of the ratio of spike events to detected spikes, against the spike 

event window. Decreasing the spike event window exponentially increases the 

number of spike events. 

Figure 5.24: Intensity map of 

relative phase lags. As we 

increase the spike event 

window, the temporal 

resolution of event matrices 

drops. For the 1.0ms and 

1.5ms spike event windows, 

a second spike is recorded 

(circled in red) and grouped 

under the same event as the 

main spike. 
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As seen from Figure 5.24 and 5.25, a smaller spike event window gives greater temporal 

resolution, but the ratio of spike events to generated spikes increases exponentially. A larger 

window generates fewer events, but introduces errors due to recording of two separate spike peaks 

which occur within the spike event window. 

 

Template Matching 

To test the reliability of eigenmatrix template matching at resolving overlapping spikes, we 

used a system layout as shown in Figure 5.26. Each pair of neurons was placed close to each other so 

that neighbouring electrodes would record spikes from both neurons simultaneously.  

 

Spikes were detected using the detection parameters described in previous sections, and the 

system was calibrated using a 10% detection threshold, producing eigenmatrix templates as shown 

in Figure 5.27. Due to the spatial proximity of each pair of neurons, the location of peak amplitudes 

are close, but differ in intensity.  

 

 

Figure 5.27: Eigenmatrix templates 

for 4 neurons laid out as shown in 

Fig 4.7. The close spatial proximity of 

each pair of neurons (neurons 1 & 2 

and neurons 3 & 4) is reflected in 

the intensity plot of each 

eigenmatrix template.  

Figure 5.26: MEA and neuron layout 

used to characterise the template 

matching module. Two pairs of 

neurons (neurons 1 & 2 and neurons 

3 & 4) were placed fairly close to 

each other so that neighbouring 

electrodes would record overlapping 

spiking activity from each pair. 
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MEA recordings were first simulated such that neurons 1 and 2 spiked simultaneously, while 

neurons 3 and 4 spiked 0.2ms apart. This was then repeated with all neurons 3 and 4 spiking 

simultaneously but spikes from neuron 1 and 2 were 0.2ms apart. Event matrices were generated 

with a 0.5ms spike event window so as to capture multiple spikes as a single spike event. Figure 5.28 

shows an example of event matrices generated from overlapping of spikes. Templates were matched 

to event matrices by the template matching module and the results are summarised in Figure 5.29 

and 5.30.  

 

 

 

Figure 5.29: Results of resolving 

overlapping spikes for 

simultaneous spiking of 

neurons 1 & 2, and spiking of 

neurons 3 & 4, 0.2ms apart. 

Overlapping spikes were 

resolved effectively as seen 

from the raster plots of 

generated and sorted spikes. 

Figure 5.28: Event matrices for each pair of neurons. Due to the close spatial and temporal 

proximity of spikes, spikes from each pair of neurons overlap and are detected as one event. 
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From Figure 5.29 and 5.30, we see that the template matching module gives varying results 

when resolving overlapping spikes. This is due to the spike event window being set at 0.5ms.  Hence, 

we cannot temporally resolve spikes which occur less than 0.5ms of each other. This introduces 

errors which results in the assignment of spikes to neuron 2 but not neuron 1. A way to solve this is 

to use a smaller spike event window. When the window was reduced to 0.2ms, more spikes were 

assigned to neuron 1 as seen from Figure 5.31. However, this creates more spike events and requires 

more computational time for template matching.  

 

Figure 5.31: Results of resolving 

overlapping spikes for 

simultaneous spiking of all 

neurons, with spikes from 

neurons 1 & 2 spaced 0.2ms 

apart. Reducing the spike event 

window from to 0.2ms 

improves the temporal 

resolution, resulting in more 

effective assignment of spikes 

to neurons. 

 

Figure 5.30: Results of 

resolving overlapping spikes for 

simultaneous spiking of all 

neurons, with spikes from 

neurons 1 & 2 spaced 0.2ms 

apart. Iterative eigenmatrix 

template matching does not 

fully resolve overlapping spikes 

for neurons 1 & 2 as seen from 

the raster plots (circled in red).   
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A System Application: Image Transfer 

To demonstrate the capabilities of the Spike Sorting Toolbox, we simulate an application of 

transferring an image onto a neural network. The entire toolbox was used as a single module to 

reconstruct an optical stimulus pattern from the set of simulated MEA recordings. Data was 

generated using the MEA and neuron layout as shown in Figure 5.32. 

 

Simulated system calibration was carried out over a 3 second period for each neuron, with a 

10 Hz stimulus. The detection threshold was set to 10% and 8 distinct eigenmatrix templates were 

generated, each corresponding to one of the system’s neurons. To assess the computational 

efficiency, 5 sets of MEA recordings were generated for the following durations of 3s, 5s, 7s, 9s, and 

11s. The background noise level was set to 0.10 and spike trains were modelled with a Poisson 

distribution of inter-spike intervals with an average spiking frequency of 10 Hz. The algorithm was 

run on a CPU with a 2.33GHz, Intel Core 2 Duo processor and 3.48GB RAM. Computational time 

required to perform spike sorting was estimated using the MATLAB tic and toc functions. 

Spikes were detected by the spike detection module using a detector dead time of 1.5ms 

and a minimum and maximum threshold value of 5 and 50 multiplied to the background noise level. 

The detected spike snapshots and spike times were then used as an input to the spike event matrix 

generator. A list of spike events and corresponding event matrices were generated using a spike 

event window of 0.5ms. Lastly, eigenmatrix templates were matched with each event matrix to 

assign spikes to neurons. The results of using the Spike Sorting Toolbox to reconstruct an image from 

a 7s long MEA recording are shown in Figure 5.33. Figure 5.34 summarises the computational time 

required for spike sorting to be carried out for each set of MEA recordings generated. 

 Figure 5.33 shows that iterative eigenmatrix template matching performs well at recovering 

the input stimulus. Scaling each eigenmatrix template by the corresponding spike frequencies 

reconstructs the initial pattern used to optically stimulate the neural network.  

Figure 5.32: Layout of neurons (red stars) on an  

8  8 MEA with 4 ground pins at each corner (blue 

circles). The layout resembles a “smiley-face” so as 

to demonstrate the possible application of image 

transfer. The micro-LED array optically stimulates 

the neural network with a “smiley-face” pattern 

which is to be reconstructed by spike sorting on 

MEA signal recordings. 
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  From Figure 5.34, we see that computational time required for event matrix generation and 

template matching is much smaller than signal filtering. Hence, bottlenecks are unlikely to appear in 

the template matching process. The total amount of time required for spike sorting is approximately 

one-third of the length of signal recordings. Ignoring signal filtering, the amount of time required for 

spike detection, event matrix generation and template matching is reduced further by another half. 

Computational time also increases linearly with the length of simulated data. These results show 

that iterative eigenmatrix template matching is capable of accurately assigning detected spikes to 

neurons, at high computational efficiency.  

 

 

Figure 5.34: Computational time required for the modules of the Spike Sorting Toolbox to 

perform each stage in the spike sorting process. Computational time increases linearly with 

simulation time.  

Figure 5.33: Results of performing 

spike sorting on artificial MEA 

recordings obtained from simulating 

the process of optically stimulating a 

neural network with a “smiley-face” 

pattern. Spikes were accurately 

assigned to neurons as seen from the 

raster plots of sorted and generated 

spikes. By scaling each eigenmatrix 

template by the corresponding spike 

frequency and then summing them, 

we are able to reconstruct the image 

from the set of MEA recordings as 

seen from the intensity plot. 
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5.5 Evaluating the Spike Sorting Toolbox 

 In this chapter, we presented a modular toolbox for detecting and sorting neuronal activity 

recorded by multiple electrodes. Exploiting the calibration capabilities of our system, we developed 

a novel method of matching eigenmatrix templates to spike event matrices. To reduce the 

computational complexity of spike template matching, we extracted the most prominent features of 

each spike pattern to generate eigenmatrix templates. The method is fully automatic, unsupervised 

and is computationally fast, making it suitable for use in real time spike sorting.  

 Spike feature extraction was performed by calibrating each neuron and generating 

eignematrix templates. We reduced the dimensions of each unique spike pattern by extracting the 

peak amplitude and relative phase lags. By varying the detection criteria during system calibration, 

we can sacrifice spatial resolution for more reliable eigenmatrix templates which do not include low 

probability threshold crossings. This is important as templates which accurately capture the spike 

patterns of a neuron are required for the template matching process. 

 Spike detection was carried out using an amplitude threshold on bandpass filtered data. The 

threshold value was calculated automatically based on the estimate of the background noise level. 

Spike detection performed well in terms of the number of misses and false positives for moderate 

noise levels ranging from 0.10 to 0.20. Although this method did not work well for low and high 

noise levels, we can vary detection parameters so as to optimise the performance of spike detection. 

Since multiple electrodes are able to detect spikes from a single neuron, we identified each 

unique spike event using a spike event window. By varying the window, we effectively change the 

temporal resolution of each event matrix. A smaller window gives us greater temporal resolution, 

but computational complexity is increased as uncessesary spike events are created through double 

counting. A larger window reduces computational complexity, but may introduce errors due to its 

low temporal resolution. In cases where confuency is low, the use of a larger window is more 

efficient, since the occurrence of overlapping spikes is low. On the other hand, the use of a smaller 

window is more efficient when dealing with highly confluent neuron cultures. 

Of all user defined parameters we found that iterative eigenmatrix template matching is 

most sensitive to changes in the spike event window. Reducing the spike event window not only 

increases temporal resolution, but also increases the reliability of iterative eigenmatrix template 

matching. In cases where overlapping spikes occur frequently, reducing the spike event window 

optimises the accuracy of iterative template matching in resolving overlapping spikes. Finally, we 

showed that the order of complexity is linear, and is thus suitable for real time implementation. 

Fig 4.5: A spike event (1.5ms long)  
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5.6 Comparison to Previous Methods 

 Several methods have been developed for the purpose of spike sorting. Of all the methods 

presented, ICA appeared to address our problem very well: through ICA, we are able to recover the 

original spiking patterns of individual neurons from a mixture of signals observed on multiple 

recording electrodes on the MEA. However, ICA makes several assumptions which are easily violated. 

On careful examination, our system does not require a blind source separation technique like ICA to 

sort spikes. This is because our system can be calibrated by targeting and stimulating single neurons. 

This simplifies the spike sorting problem, turning it into that of partial blind source separation. Hence, 

we decided to employ the template matching approach which fully utilises the calibration 

capabilities of our system. 

Our method of using iterative eigenmatrix template matching eliminates the need for 

clustering to be performed on spike features extracted through PCA or feature analysis methods. 

The clustering process is one of the main obstacles in realising real time spike sorting, as current 

clustering algorithms like k-means clustering required a high level of supervision. Although 

automatic clustering algorithms are available (Cheeseman 1996), they have a high computational 

load (Erman 2006) and are unsuitable for use in real time spike sorting. 

The use of iterative spike template matching for sorting multi-channel recordings was 

demonstrated by Segev, 2004. Segev’s approach involved identifying spike patterns from individual 

neurons, and creating multiple shifted spike patterns to achieve a 0.1ms temporal resolution. The 

expanded database of original and shifted spike templates was then used to match detected spikes 

and resolve overlapping spikes. In our algorithm, we take a different approach by identifying unique 

spike events with a spike event window. This is faster and reduces computational complexity, since 

the size of the template database is limited by the number of calibrated neurons. By reducing the 

spike event window, we are also able to achieve a similar temporal resolution.  

As compared to Segev’s approach, our method also offers higher computational efficiency in 

matching templates. We reduced the M×N dimensional spike templates used by Segev to M×2 

dimensional eigenmatrix templates which capture the most important features of each spike pattern. 

Although information is lost when dimensions are reduced, we have shown that iterative 

eigenmatrix template matching remains reliable and accurate in assigning detected spikes to 

calibrated neurons, and in resolving overlapping spikes. Among all spike template matching 

algorithms, iterative eigenmatrix template matching would be the best suited for use in real time 

spike sorting due to its low computational load. 
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5.7 Future Work 

 A lot of effort has been put into developing and testing the basic capabilities of iterative 

eigenmatrix template matching. Currently, the MATLAB based algorithm is used via a command line 

interface. We hope to improve user experience by developing a Graphical User Interface (GUI) for 

the Spike Sorting Toolbox. This will serve as a user friendly tool for neurophysiologists to analyse 

multiple electrode recordings. 

 Although simple tests have been carried out to assess the performance of our algorithm in 

resolving simultaneously recorded overlapping spikes, we recommend that the algorithm be put 

through more rigorous testing to assess its full range of capabilities. These tests may include evolving 

spike shapes and burst firing neurons, where system re-calibration has to be carried out to maintain 

the accuracy of the eigenmatrix template database. We also recommend the use of realistic neural 

network simulators (Wilson 1989, Escola 2008) to generate MEA-based recordings, so as to include 

the possibility of action potentials which propagate from one neuron to another in a neural network. 

Besides this, we hope to characterise the performance of the Spike Sorting Toolbox with respect to 

the number of simultaneously spiking neurons. This will enable us to make recommendations for the 

optimal level of confluency required to give best spike sorting results with iterative eigenmatrix 

template matching. 

 Finally, we hope to make full use of the high computational efficiency of our algorithm by 

implementing it in real time. This will enable our system to deal with a possible real time, closed-

loop optical stimulation feedback system and real time image recognition for use in a retinal 

prosthesis. In the long run, we aim to develop a powerful toolbox which is fully capable in achieving 

real time response recognition of stimulated neurons to stimuli of our system. 

 


