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Transcription Factors Control Gene Expression by Binding to
Regulatory DNA Sequences Upstream of Genes
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Activators increase gene expression.

Repressors decrease gene expression.
Transcription factors are themselves proteins that
are encoded by genes.

A gene regulatory network (GRN) consists of a set of
transcription factors that regulate the level of
expression of a set of target genes, which can
include other transcription factors.

The dynamics of a GRN is how the expression of
genes in the network change over time.

Yeast Respond to the Environmental Stress of Cold Shock by Changing

Little is known about which transcription factors regulate this
response.

The Dahlquist Lab studies the global transcriptional response
to cold shock using DNA microarrays, which measure the
level of mMRNA expression for all 6000 yeast genes.

We have collected expression data from the wild type strain
and five transcription factor deletion strains (Acin5, Agin3,
Ahmo1, Azap1, Ahap4 ) before cold shock at 30°C and after 15,
30, and 60 minutes of cold shock at 13°C.

The Dahlquist Lab has shown that yeast deleted for the Hap4
transcription factor, a heme activator protein, show impaired
growth at cold temperatures, implying that it is important for
regulating the response to cold shock.

We use mathematical modeling to determine the relative
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Microarray at 60 minutes after cold shock

influence of each transcription factor in the GRN that controls
the cold shock response.

The Ahap4 Strain Microarray Data Was Used to Derive a Family of
Related GRNs from the YEASTRACT Database

An ANOVA test of the Ahap4 strain DNA microarray data showed that 1794 genes (29%) had a log,
fold change significantly different than zero at any of the time points, with a Benjamini & Hochberg
corrected p value < 0.05.
These genes were submitted to the YEASTRACT database, which returned a list of candidate
regulatory transcription factors that potentially regulate those target genes, in order of significance.
The transcription factors for which we had deletion strain microarray data were added to the list of
the 29 most significant regulators to generate the largest GRN we modeled with a total of 34 genes
and 102 edges. Transcription factors and edges were removed from the GRN in a stepwise fashion
in order of least to most significant until the network was pared down to 15 genes and 28 edges.
The purpose of comparing a family of related networks is to determine which sized network models
the experimental data best, accounting for indirect effects of other regulatory transcription factors

upon cold shock gene expression.

For Each Gene in the Network, a Nonlinear Differential Equation

Determines the Rate at Which the Gene is Expressed

« The model, called GRNmap (Gene Regulatory Network modeling and parameter estimation) was

implemented in MATLAB (Dahlquist et al. 2015).

« The MATLAB code and executable are available under an open source license at https://github.com/
kdahlquist/GRNmap/.

* E represents the error between estimated values and microarray data values.
« 0 is the penalty term, which is the combined w, P, and b parameter values.

LSE

Each gene has a differential equation that models
the change in expression over time as

production — degradation

Degradation rates for each gene were taken from
protein half life data from Belle et al. (2006)
We use a sigmoidal production function where:

* P, is mRNA production rate for gene i
d. is the mRNA degradation rate for gene i
w is weight term, determining the level of
activation or repression of j on i
b is a unique threshold for each gene

d, (1) _ P
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\ b determines

the position of
the threshold

The production rate (P, ), weight (w ), and threshold — x

(p) values were estimated from DNA microarray
data using a penalized least squares approach.
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L-curve Analysis of the Smallest GRN Suggests a
Good alpha Value to be 0.002
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Penalty Term

The alpha value (a) controls the flexibility of
the model fit to the data.

Choosing the best alpha value is best done
through iteration.

The estimation was run iteratively for a series
of different alpha values ranging from 0.8
down to 0.0005 where the parameters output
from one run was used as the initial guesses
for the next run.

For each alpha value ranging from 0.0005 to
0.8, the Least Squares Error (LSE) was plotted
against the penalty term.

The best alpha is one that minimizes both the
LSE and the penalty term, and therefore lies
near the “elbow” of the L-curve.

Visualization via GRNsight Reveals Changes in Activation/Repression Relationships as Nodes and Edges Are Removed from the Network

30 genes, 90 edges

34 genes, 102 edges

Ceom T

25 genes, 68 edges

GRNsight automatically generates weighted network graphs from the output spreadsheets produced by GRNmap.
 The absolute value of the weight parameters are divided by the largest value, which distributes them between 0 and 1. The

thickness of the lines is on a linear scale with thin lines for values near 0 and thick lines for values near 1.

GRNmap Reveals YHP1 is Modeled Well in All Five Networks, ASH1 and CINS are Modeled Best by the Smaller Networks, and HAP4 is Not Modeled Well in Any Network
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Expression (log2 fold change)
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 Positive weights are colored magenta to indicate activation, negative weights are colored cyan to indicate repression.
Weights within x0.05 of zero are colored grey to denote negligible influence on the target gene.
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* Individual plots of each gene's expression compare experimental data for each strain (circles) to simulated

data based on solving the differential equation with the estimated parameters (lines).

« ASHA1, CINS, and YHP1 were chosen for further examination because they exhibited interesting, significant
dynamics (log, fold change) across all five networks. HAP4 was chosen because the networks modeled

were based on data from its deletion strain.

« YHP1 is modeled well in all five networks. For each strain’s data points, the color coded model output easily

follows the trend of the data points.

« ASH1 and CINS are more realistically modeled by smaller networks. In larger networks, the simulations
exhibit extreme dynamics that are likely not biologically relevant. This may be due to using an alpha value

that is too small for the larger networks. This warrants further investigation.

 While ASH1, CIN5, HAP4, and YHP1 occur in all five networks, their connectivity to other genes changes as

the network is pared down. This may affect their performance in the model.
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Mean Square Errors are Smaller for Larger Networks

As part of the GRNmap output, mean squared errors (MSE) were
reported for each gene and each deletion dataset (color coded in the
expression plots above).
For the genes ASH1, CIN5, HAP4, and YHP1, the MSE’s were summed
for all datasets and reported along with their B&H corrected p values.
The sum MSE’s for ASH1, CIN5, and HAP4 decrease as the network

size increases, but at the cost of unrealistic flexibility in gene

dynamics revealed in the individual gene plots of the larger

networks.

The sum MSE’s for HAP4 are consistently higher than other genes

for all five networks. This, however, is due to uncertainty in the data
rather than model shortcomings.

ASH1 0.0686 3.7168 3.7225 3.8400
CINS 0.0100 4.2400 4.2634 4.3219
HAP4 0.4090 7.1153 7.1152 7.4471
YHP1 0.0074 3.3188 3.2880 3.2791
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Comparing Output Estimated Parameters Reveals Networks are Modeled Differently Based on Size

Optimized Network Weights for 28 Edges that Appear in All Five Networks
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« Drastic changes in sign, signifying a switch from

activation to repression or vice versa, occurs with four

edges across the five networks.
 The change in sign for some connections may have
resulted from a deletion in edges or nodes between

networks.

« Both MSN2 and SWIS5 exhibit frequent, extreme sign

changes as both regulators and targets. This warrants

further investigation.

LSE Reveals the Model Performs Consistently For a Range of Network Sizes

Least squares error (LSE) represents the total error between the model outputs and data points
for all five networks. The larger the LSE, the more difficult it was to fit the model to the data.

The minimum LSE would be the best theoretical model fit for each network based on the average
of the data.

The ratio is the LSE divided by the minimum theoretical LSE and shows how close the LSE is to
the ideal minimum LSE.

As the ratios were relatively similar for all five networks, this indicates the model performs
consistently for a range of network sizes.

Parameters 170
LSE 0.7932
Minimum 0.5467
theoretical LSE

Ratio 1.4510

150 118
0.7524 0.7048
0.5331 0.4898
1.4113 1.4388

86 58
0.6876 0.7056
0.4776 0.4850
1.4397 1.4549

Comparison to 10 Random 15-gene 28-edge Networks Reveals Database-Derived Network is Modeled Well

Least Squares Error of 10 Random 15-gene 28-edge Networks
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Mean Square Errors of 10 Random 15-gene 28-edge Networks
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« Random networks to compare to the smallest YEASTRACT-derived network were created from the same 15 genes, but with 28 random connections.
« Random networks allow for a control against which to compare the performance of the YEASTRACT-derived network.
 The ratios of Least Squares Error to the minimum Least Squares Error were generally higher for the random networks than the database-derived network.
» For the four genes in the network analyzed above, the sum Mean Square Errors were larger for most random networks.
« Both trends indicate that the database-derived network is modeled better by GRNmap than the random networks, although further analysis is needed.

Conclusions and Future Directions

« Expression plots of ASH1, CIN5, HAP4, and YHP1 showed how, in general, the model fit the smaller
networks better than the larger ones. This is in direct contrast to the MSE’s, which are smaller for the
larger networks. Expression plots and MSE’s reveal that this inconsistency is likely due to an
improper choice in alpha for the larger networks. In the future, a larger alpha should be chosen for
the larger networks to dampen the flexibility (seen in ASH1 and CINS plots for the larger networks)

that is likely biologically irrelevant.

« The LSE and the ratio of output LSE to theoretical minimum LSE for each networks demonstrated

that the model works consistently for this range of network sizes.

« Estimated parameter comparisons showed how the parameters can change with node/edge deletion
between networks. Extreme fluctuation in estimated parameter outputs was especially frequent with
genes shown in the individual gene plots to be modeled poorly, namely ASH1 and CIN5.

 The 15-gene 28-edge network derived from the YEASTRACT database was compared to 10 random
networks of the same genes and same number of edges connected randomly. Comparison of output
LSE and MSE for four genes revealed that, in general, the database-derived network was modeled

better than the random networks.

* In addition to the above, future directions include comparisons of this family of networks to more
randomly generated networks with the same nodes and same number of edges. These will provide a

control that will allow us to be more confident in the model interpretation and validity of our

hypothesis networks.
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