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Preface

Here are my online notes for my differential equations course that | teach here at Lamar
University. Despite the fact that these are my “class notes” they should be accessible to
anyone wanting to learn how to solve differential equations or needing a refresher on
differential equations.

I’ve tried to make these notes as self contained as possible and so all the information
needed to read through them is either from a Calculus or Algebra class or contained in
other sections of the notes.

A couple of warnings to my students who may be here to get a copy of what happened on
a day that you missed.

1. Because | wanted to make this a fairly complete set of notes for anyone wanting
to learn differential equations | have included some material that I do not usually
have time to cover in class and because this changes from semester to semester it
is not noted here. You will need to find one of your fellow class mates to see if
there is something in these notes that wasn’t covered in class.

2. Because | want these notes to provide some more examples for you to read
through, 1 don’t always work the same problems in class as those given in the
notes. Likewise, even if | do work some of the problems in here I may work
fewer problems in class than are presented here.

3. Sometimes questions in class will lead down paths that are not covered here. | try
to anticipate as many of the questions as possible in writing these up, but the
reality is that | can’t anticipate all the questions. Sometimes a very good question
gets asked in class that leads to insights that I’ve not included here. You should
always talk to someone who was in class on the day you missed and compare
these notes to their notes and see what the differences are.

4. This is somewhat related to the previous three items, but is important enough to
merit its own item. THESE NOTES ARE NOT A SUBSTITUTE FOR
ATTENDING CLASS!! Using these notes as a substitute for class is liable to get
you in trouble. As already noted not everything in these notes is covered in class
and often material or insights not in these notes is covered in class.
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Differential Equations

Systems of Differential Equations

Introduction

To this point we’ve only looked as solving single differential equations. However, many
“real life” situations are governed by a system of differential equations. Consider the
population problems that we looked at back in the modeling section of the first order
differential equations chapter. In these problems we looked only at a population of one
species, yet the problem also contained some information about predators of the species.
We assumed that any predation would be constant in these cases. However, in most
cases the level of predation would also be dependent upon the population of the predator.
So, to be more realistic we should also have a second differential equation that would
give the population of the predators. Also note that the population of the predator would
be, in some way, dependent upon the population of the prey as well. In other words, we
would need to know something about one population to find the other population. So to
find the population of either the prey or the predator we would need to solve a system of
at least two differential equations.

The next topic of discussion is then how to solve systems of differential equations.
However, before doing this we will first need to do a quick review of Linear Algebra.
Much of what we will be doing in this chapter will be dependent upon topics from linear
algebra. This review is not intended to completely teach you the subject of linear
algebra, as that is a topic for a complete class. The quick review is intended to get you
familiar enough with some of the basic topics that you will be able to do the work
required once we get around to solving systems of differential equations.

Here is a brief listing of the topics covered in this chapter.
Review : Systems of Equations — The traditional starting point for a linear

algebra class. We will use linear algebra techniques to solve a system of
equations.

Review : Matrices and Vectors — A brief introduction to matrices and vectors.
We will look at arithmetic involving matrices and vectors, inverse of a matrix,
determinant of a matrix, linearly independent vectors and systems of equations
revisited.

Review : Eigenvalues and Eigenvectors — Finding the eigenvalues and
eigenvectors of a matrix. This topic will be key to solving systems of differential
equations.

Systems of Differential Equations — Here we will look at some of the basics of
systems of differential equations.

Solutions to Systems — We will take a look at what is involved in solving a
system of differential equations.
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Phase Plane — A brief introduction to the phase plane and phase portraits.

Real Eigenvalues — Solving systems of differential equations with real
eigenvalues.

Complex Eigenvalues — Solving systems of differential equations with complex
eigenvalues.

Repeated Eigenvalues — Solving systems of differential equations with repeated
eigenvalues.

Nonhomogeneous Systems — Solving nonhomogeneous systems of differential
equations using undetermined coefficients and variation of parameters.

Laplace Transforms — A very brief look at how Laplace transforms can be used
to solve a system of differential equations.

Review : Systems of Equations
Because we are going to be working almost exclusively with systems of equations in
which the number of unknowns equals the number of equations we will restrict our
review to these kinds of systems.

All of what we will be doing here can be easily extended to systems with more unknowns
than equations or more equations than unknowns if need be.

Let’s start with the following system of n equations with the n unknowns, X1, Xa,..., Xn.
8y X +8X, o+ 8, X, =hy
A, X +8,X, +-+8,, X, =h,

2n"'n

1)

anl)(:L +an2x2 +“'+annxn = bn

Note that in the subscripts on the coefficients in this system, a;;, the i corresponds to the
equation that the coefficient is in and the j corresponds to the unknown that is multiplied
by the coefficient.

To use linear algebra to solve this system we will first write down the augmented matrix
for this system. An augmented matrix is really just the all the coefficients of the system
and the numbers for the right side of the system written in matrix form. Here is the
augmented matrix for this system.
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a; &, - Q, b1
Ay 3, v Ay, bz

u Ay o ay,
To solve this system we will use elementary row operations (which we’ll define these in
a bit) to rewrite the augmented matrix in triangular form. The matrix will be in triangular
form if all the entries below the main diagonal (the diagonal containing a1, az, ...,ann)
are zeroes.

Once this is done we can recall that each row in the augmented matrix corresponds to an
equation. We will then convert our new augmented matrix back to equations and at this
point solving the system will become very easy.

Before working an example let’s first define the elementary row operations. There are
three of them.
1. Interchange two rows. This is exactly what it says. We will interchange row i
with row j. The notation that we’ll use to denote this operation is : R; <> R,

2. Multiply row i by a constant, c. This means that every entry in row i will get
multiplied by the constant c. The notation for this operation is : cR,

3. Add a multiply of row i to row j. In our heads we will multiply row i by an
appropriate constant and then add the results to row j and put the new row back
into row j leaving row i in the matrix unchanged. The notation for this operation
is: CR, +R,

It’s always a little easier to understand these operations if we see them in action. So, let’s
solve a couple of systems.

Example 1 Solve the following system of equations.

—2X + X, —X; =4
X, +2X, +3%;, =13
3X + X =-1

Solution
The first step is to write down the augmented matrix for this system. Don’t forget that
coefficients of terms that aren’t present are zero.

-2 1 -1 4
1 2 3 13
3 01 -1

Now, we want the entries below the main diagonal to be zero. The main diagonal has
been colored red so we can keep track of it during this first example. For reasons that
will be apparent eventually we would prefer to get the main diagonal entries to all be
ones as well.
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We can get a one in the upper most spot by noticing that if we interchange the first and
second row we will get a one in the uppermost spot for free. So let’s do that.

201 -1 4 1 2 3 13
R <R,

1 2 3 13 201 -1 4

301 -1/ ~ |3 0 1 4

Now we need to get the last two entries (the -2 and 3) in the first column to be zero. We
can do this using the third row operation. Note that if we take 2 times the first row and
add it to the second row we will get a zero in the second entry in the first column and if
we take -3 times the first row to the third row we will get the 3 to be a zero. We can do
both of these operations at the same time so let’s do that.

1 2 3 13)2R+R, (1 2 3 13

-2 1 -1 4 |-3R+R,;/0 5 5 30

3 01 -1) > |0 -6 -8 -40
Before proceeding with the next step, let’s make sure that you followed what we just did.
Let’s take a look at the first operation that we performed. This operation says to multiply
an entry in row 1 by 2 and add this to the corresponding entry in row 2 then replace the

old entry in row 2 with this new entry. The following are the four individual operations
that we performed to do this.

2(1)+(~2)=0
2(2)+1=5
2(3)+(-1)=5

2(13)+4=30

Okay, the next step optional, but again is convenient to do. Technically, the 5 in the
second column is okay to leave. However, it will make our life easier down the road if it
isal. We can use the second row operation to take care of this. We can divide the
whole row by 5. Doing this gives,

1 2 3 13),_(1 2 3 13
0 5 5 30/°%0 1 1 6

0 -6 -8 -40) |0 -6 -8 -40

The next step is to then use the third row operation to make the -6 in the second column
into a zero.

1 2 3 13 6 1 2 3 13
+
0 1 1 6 RZF\)SO 1 1 6

_)
0 6 -8 -40 0 0 -2 4

Now, officially we are done, but again it’s somewhat convenient to get all ones on the
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main diagonal so we’ll do one last step.

12 3 13 1 2 3 13
01 1 623011 6
0 0 -2 -4 0 01 2
We can now convert back to equations.
1 2 3 13 X, +2X, +3%, =13
0116 = X, +X;, =6
0 01 2 X, =2

At this point the solving is quite easy. We get x; for free and once we get that we can
plug this into the second equation and get x,. We can then use the first equation to get x;.
Note as well that having 1’s along the main diagonal helped somewhat with this process.

The solution to this system of equation is
X, =-1 X, =4 X; =2

The process used in this example is called Gaussian Elimination. Let’s take a look at
another example.

Example 2 Solve the following system of equations.
X, —2X, +3X, =2

—X +X,—2%; =3
2X, =X, +3%;, =1
Solution
First write down the augmented matrix.
1 -2 3 =2
-1 1 -2 3
2 -1 3 1

We won’t put down as many words in working this example. Here’s the work for this
augmented matrix.

1 -2 3 -2} R+R, (1 -2 3 -2
-1 1 -2 3|-2R+R/|0 -1 1 1
2 -1 3 1) > o 3 =3 5
1 -2 3 -2 1 -2 3 -2
“R, 3R, +R,
01 -1 -1 0 1 -1 -1

- -
0 3 -3 5 0O 0 0O 8

We won’t go any farther in this example. Let’s go back to equations to see why.
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1 -2 3 2 X, —2X, +3X; =2
o1 -1 -1|= X, =X, =-1
0 0 0 8 0=8

The last equation should cause some concern. There’s one of three options here. First,
we’ve somehow managed to prove that 0 equals 8 and we know that’s not possible.
Second, we’ve made a mistake, but after going back over our work it doesn’t appear that
we have made a mistake.

This leaves the third option. When we get something like the third equation that simply
doesn’t make sense we immediately know that there is no solution. In other words, there
is no set of three numbers that will make all three of the equations true at the same time.

Let’s work another example. We are going to get the system for this new example by
making a very small change to the system from the previous example.

Example 3 Solve the following system of equations.
X, —2X, +3X, =2
—X +X,—2%; =3
2X =X, + 3%, =7
Solution

So, the only difference between this system and the system from the second example is
we changed the 1 on the right side of the equal sign in the third equation to a -7.

Now write down the augmented matrix for this system.

1 -2 3 -2
-1 1 -2 3
2 -1 3 -7

The steps for this problem are identical to the steps for the second problem so we won’t
write them all down. Upon performing the same steps we arrive at the following matrix.

1 -2 3 -2
01 -1 -1
0 0 0 O

This time the last equation reduces to
0=0
and unlike the second example this is not a problem. Zero does in fact equal zero!

We could stop here and go back to equations to get a solution and there is a solution in
this case. However, if we go one more step and get a zero above the one in the second
column as well as below it our life will be a little simpler. Doing this gives,
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1 -2 3 -2 1 0 1 -4
2R, +R,
0O 1 -1 -1 01 -1 1
=
0O 0 0 O 00 0 O

If we now go back to equation we get the following two equations.

10 1 -4 X, +X; =—4
01 -1 -1 = X, =X =-1
00 0 O

We have two equations and three unknowns. This means that we can solve for two of the
variables in terms of the remaining variable. Since x3 is in both equations we will solve
in terms of that.

X =—X;—4

X, =X -1

What this solution means is that we can pick the value of x3 to be anything that we’d like
and then find values of x; and x,. In these cases we typically write the solution as
follows,

X, =t-1 t = any real number
X, =t

In this way we get an infinite number of solutions, one for each and every value of t.

These three examples lead us to a nice fact about systems of equations.

Fact

Given a system of equations, (1), we will have one of the three possibilities for the
number of solutions.

1. No solution.

2. Exactly one solution.

3. Infinitely many solutions.

Before moving on to the next section we need to take a look at one more situation. The
system of equations in (1) is called a nonhomogeneous system if at least one of the b;’s is
not zero. If however all of the b;’s are zero we call the system homogeneous and the
system will be,

X + 8%+ +a,X, =0

Ay X +a,X, +-+a, X, =0 @

ay X +a X, +--+a X =0
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Now, notice that in the homogeneous case we are guaranteed to have the following
solution.
X1:X2 :---:Xn :0

This solution is often called the trivial solution.
For homogeneous systems the fact above can be modified to the following.

Fact

Given a homogeneous system of equations, (2), we will have one of the two possibilities
for the number of solutions.

1. Exactly one solution, the trivial solution

2. Infinitely many non-zero solutions in addition to the trivial solution.

In the second possibility we can say non-zero solution because if there are going to be
infinitely many solutions and we know that one of them is the trivial solution then all the
rest must have at least one of the x;’s be non-zero and hence we get a non-zero solution.

Review : Matrices and Vectors

This section is intended to be a catch all for many of the basic concepts that are used
occasionally in working with systems of differential equations. There will not be a lot of
details in this section, nor will we be working large numbers of examples. Also, in many
cases we will not be looking at the general case since we won’t need the general cases in
our differential equations work.

Let’s start with some of the basic notation for matrices. An n x m (this is often called the
size or dimension of the matrix) matrix is a matrix with n rows and m columns and the
entry in the i™ row and ™ column is denoted by aij. A short hand method of writing a
general n x m matrix is the following.

8, &, - a,

8y 8y Gy, :(a__)
. : U/nxm

M _/nxm

A=

an1 a'n2

The size or dimension of a matrix is subscripted as shown if required. If it’s not required
or clear from the problem the subscripted size is often dropped from the matrix.

Special Matrices

There are a few “special” matrices out there that we may use on occasion. The first
special matrix is the square matrix. A square matrix is any matrix whose size (or
dimension) is n x n. In other words it has the same number of rows as columns. In a
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square matrix the diagonal that starts in the upper left and ends in the lower right is often
called the main diagonal.

The next two special matrices that we want to look at are the zero matrix and the identity
matrix. The zero matrix, denoted 0, xm , is @ matrix all of whose entries are zeroes. The
identity matrix is a square n x n matrix, denoted I,, whose main diagonals are all 1’s and
all the other elements are zero. Here are the general zero and identity matrices.

oo . 01 .0
O ym=|: : : L=/. . . .
nxm O O e 1

nxn

In matrix arithmetic these two matrices will act in matrix work like zero and one act in
the real number system.

The last two special matrices that we’ll look at here are the column matrix and the row
matrix. These are matrices that consist of a single column or a single row. In general
they are,

x=| y=(% Y2 " Yn)iem
Xn nx1
We will often refer to these as vectors.

Arithmetic

We next need to take a look at arithmetic involving matrices. We’ll start with addition
and subtraction of two matrices. So, suppose that we have two n x m matrices, A and B.
The sum (or difference) of these two matrices is then,

xm ianm :(aij )nxm i(bij )nxm :(aij ibij )nxm

The sum or difference of two matrices of the same size is a new matrix of identical size
whose entries are the sum or difference of the corresponding entries from the original two
matrices. Note that we can’t add or subtract entries with different sizes.

Next, let’s look at scalar multiplication. In scalar multiplication we are going to
multiply a matrix A by a constant (sometimes called a scalar) «. In this case we get a
new matrix whose entries have all been multiplied by the constant, c.

ah :a(aij)nxm =(aaij)

nxm

| Example 1 Given the following two matrices,
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compute A-5B.

Solution
There isn’t much to do here other than the work.

3 -2 -4 1
A-5B = -5
520 )
(3 -2y (-20 5
9 1 0 -25
(23 -7
-9 26

We first multiplied all the entries of B by 5 then subtracted corresponding entries to get
the entries in the new matrix.

The final matrix operation that we’ll take a look at is matrix multiplication. Here we
will start with two matrices, Anxp and Bpxm . Note that A must have the same number of
columns as B has rows. If this isn’t true then we can’t perform the multiplication. If it is
true then we can perform the following multiplication.

A1xpoxm :(Cij )nxm
The new matrix will have size n x m and the entry in the i"" row and " column, c;;, is
found by multiplying row i of matrix A by column j of matrix B. This doesn’t always
make sense in words so let’s look at an example.

Example 2 Given

1 0 -1 2
2 -1 0
-3 6 1), .
0 3 0 -2/,
compute AB.
Solution

The new matrix will have size 2 x 4. The entry in row 1 and column 1 of the new matrix
will be found by multiplying row 1 of A by column 1 of B. This means that we multiply
corresponding entries from the row of A and the column of B and then add the results up.
Here are a couple of the entries computed all the way out.

¢y =(2)(2)+(-1)(-4)+(0)(0) =6
¢, =(2)(=1)+(-1)(1)+(0)(0) = -3
(-3)(2)+(6)(0)+(1)(-2)=-8

CZ4
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Here’s the complete solution.

6 -3 -3 4
C=
-27 21 9 -8

In this last example notice that we could not have done the product BA since the number
of columns of B does not match the number of row of A. It is important to note that just
because we can compute AB doesn’t mean that we can compute BA. Likewise, even if
we can compute both AB and BA they may or may not be the same matrix.

Determinant

The next topic that we need to take a look at is the determinant of a matrix. The
determinant is actually a function that takes a square matrix and converts it into a
number. The actual formula for the function is somewhat complex and definitely beyond
the scope of this review.

The main method for computing determinants of any square matrix is called the method
of cofactors. Since we are going to be dealing almost exclusively with 2 x 2 matrices and
the occasional 3 x 3 matrix we won’t go into the method here. We can give simple
formulas for each of these cases. The standard notation for the determinant of the matrix
Alis.

det(A)=|A
Here are the formulas for the determinant of 2 x 2 and 3 X 3 matrices.
a ¢
=ad —cb
b d
a; a, g
' ? : _ a‘22 a23 a21 a23 a‘21 a‘22
a21 a22 a23 _an as a _a12 as as +a13 a3 as
3.31 332 a33 2 33 1 3 1 2
Example 3 Find the determinant of each of the following matrices.
2 3 1
-9 -18
2 4
4 5 -1

Solution
For the 2 x 2 there isn’t much to do other than to plug it into the formula.

da(n)-[; 7o~ (19)2)-0

For the 3 x 3 we could plug it into the formula, however unlike the 2 x 2 case this is not
an easy formula to remember. There is an easier way to get the same result. A quicker
way of getting the same result is to do the following. First write down the matrix and
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tack a copy of the first two columns onto the end as follows.
2 3 1| 2 3

det(B)=|-1 -6 7| -1 -6
4 5 -1 4 5

Now, notice that there are three diagonals that run from left to right and three diagonals
that run from right to left. What we do is multiply the entries on each diagonal up and the
if the diagonal runs from left to right we add them up and if the diagonal runs from right
to left we subtract them.

Here is the work for this matrix.
2 3 1| 2 3

det(B)=|-1 -6 7| -1 -6
4 5 -1 4 5

You can either use the formula or the short cut to get the determinant of a 3 x 3.

If the determinant of a matrix is zero we call that matrix singular and if the determinant
of a matrix isn’t zero we call the matrix nonsingular. The 2 x 2 matrix in the above
example was singular while the 3 x 3 matrix is nonsingular.

Matrix Inverse
Next we need to take a look at the inverse of a matrix. Given a square matrix, A, of size
nxn if we can find another matrix of the same size, B such that,
AB=BA=1,
then we call B the inverse of A and denote it by B=A™.

Computing the inverse of a matrix, A, is fairly simple. First we form a new matrix,

(A1)

and then use the row operations from the previous section and try to convert this matrix
into the form,
(1, B)

If we can then B is the inverse of A. If we can’t then there is no inverse of the matrix A.

Example 4 Find the inverse of the following matrix, if it exists.

2 1 1
A=|-5 -3 0
1 1 -1
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Solution

We first form the new matrix by tacking on the 3 x 3 identity matrix to this matrix. This
IS

2 1 1 100
-5 -3 0 01O
1 1 1001

We will now use row operations to try and convert the first three columns to the 3 x 3
identity. In other words we want a 1 on the diagonal that starts at the upper left corner
and zeroes in all the other entries in the first three columns.

If you think about it, this process is very similar to the process we used in the last section
to solve systems, it just goes a little farther. Here is the work for this problem.

2 1 1 100 1 1 -1 0 0 1\R,+5R
R < R,
5 -3 0 010 5 3 0 01 0|R-2R
=
1 1 -100 1 2 1 1 100 =
11—1001111—1001RR
+
0 2 501 5{22%0 1 £ 04+ 5|° 2
=
0 -1 310 -=2)"1l0-13 10 -2
11 -1001 11 -1 0 0 1\R,+3R,
= ;§2R3 = 1 5
01 £ 013 01 £ 0 1 5|R+R,
=
00 1 111 001 211 =
110212 R100—3—2—3
010535R12010535
=
001211 001 2 1 1

So, we were able to convert the first three columns into the 3 x 3 identity matrix therefore
the inverse exists and it is,

-3 -2 -3
A'=|5 3 5
2 1 1

So, there was an example in which the inverse did exist. Let’s take a look at an example
in which the inverse doesn’t exist.

Example 5 Find the inverse of the following matrix, provided it exists.

1 -3
B =
% 3)
Solution

In this case we will tack on the 2 x 2 identity to get the new matrix and then try to convert
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the first two columns to the 2 x 2 identity matrix.

1 -3 1 0Y2R+R, (1 -3 1 0

-2 6 01 = 0 0 21
And we don’t need to go any farther. In order for the 2 x 2 identity to be in the first two
columns we must have a 1 in the second entry of the second column and a 0 in the second
entry of the first column. However, there is no way to get a 1 in the second entry of the
second column that will keep a 0 in the second entry in the first column. Therefore, we

can’t get the 2 x 2 identity in the first two columns and hence the inverse of B doesn’t
exist.

We will leave off this discussion of inverses with the following fact.

Fact

Given a matrix A.
1. If Ais nonsingular then A™ will exist.
2. If Ais singular then A NOT will exist.

I’ll leave it to you to verify this fact for the previous two examples.

Systems of Equations Revisited
We need to do a quick revisit of systems of equations. Let’s start with a general system
of equations.

311X1+312X2+"'+aln n =b1

8y X, + 38X, +.’ Ay X, = bz )
A Xy F 8%, +o 8, X, = bn
Now, covert each side into a vector to get,
8 % +apX, +oor 8y, X, by
Ay Xy H8yuX o+ Ay, X, _ bz
an1X1+an2X2 +'“+annxn bn
The left side of this equation can be thought of as a matrix multiplication.
& Ap oAy [ X by
Ay 8p o Ay || X _ bz
an1 an2 e ann Xn bn
Simplifying up the notation a little gives,
AX =b (2)
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where, X is a vector whose components are the unknowns in the original system of
equations. We call (2) the matrix form of the system of equations (1) and solving (2) is
equivalent to solving (1). The solving process is identical. The augmented matrix for (2)

IS

(D)
Once we have the augmented matrix we proceed as we did with a system that hasn’t been
wrote in matrix form.

We also have the following fact about solutions to (2).

Fact

Given the system of equation (2) we have one of the following three possibilities for
solutions.

1. There will be no solutions.

2. There will be exactly one solution.

3. There will be infinitely many solutions.

In fact we can go a little farther now. Since we are assuming that we’ve got the same
number of equations as unknowns the matrix A in (2) is a square matrix and so we can
compute its determinant. This gives the following fact.

Fact

Given the system of equations in (2) we have the following.
1. If Aiis nonsingular then there will be exactly one solution to the system.
2. If Ais singular then there will either be no solution or infinitely many
solutions to the system.

The matrix form of a homogeneous system is
AX =0 (3)
where 0 is the vector of all zeroes. In the homogeneous system we are guaranteed to

have a solution, X =0. The fact above for homogeneous systems is then,

Fact

Given the homogeneous system (3) we have the following.

1. If Aiis nonsingular then the only solution will be X =0.
2. If Ais singular then there will be infinitely many nonzero solutions to the
system.

Linear Independence/Linear Dependence

This is not the first time that we’ve seen this topic. We also saw linear independence and
linear dependence back when we were looking at second order differential equations. In

that section we were dealing with functions, but the concept is essentially the same here.

If we start with n vectors,

X, Koy oeey X,
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If we can find constants, c3,C,...,C, With at least two nonzero such that

X +C,%, +...4+CX =0 (4)
then we call the vectors linearly dependent. If the only constants that work in (4) are
€1=0, ¢,=0, ..., c,=0 then we call the vectors linearly independent.

If we further make the assumption that each of the n vectors has n components, i.e. each
of the vectors look like,

X

X

we can get a very simple test for linear independence and linear dependence. Note that
this does not have to be the case, but in all of our work we will be working with n vectors
each of which has n components.

Fact
Given the n vectors each with n components,

X0 Koy oees X,

form the matrix,
X=(X X%, - X)
So, the matrix X is a matrix whose i" column is the i"" vector, % . Then,

1. If Xis nonsingular (i.e. det(X) is not zero) then the n vectors are linearly
independent, and
2. if Xissingular (i.e. det(X) = 0) then the n vectors are linearly dependent and the
constants that make (4) true can be found by solving the system
X¢=0
where C is a vector containing the constants in (4).

Example 6 Determine if the following set of vectors are linearly independent or linearly
dependent. If they are linearly dependent find the relationship between them.

1 -2 6
3@ -3, @ =] 1 ’ V) -2
5 1
Solution
So, the first thing to do is to form X and compute its determinant.
1 -2 6
X=[-3 1 -2 = det(X)=-79
5 4 1

This matrix is non singular and so the vectors are linearly independent.

| Example 7 Determine if the following set of vectors are linearly independent or linearly |
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dependent. If they are linearly dependent find the relationship between them.

1 -4 2
xV=|-1|, x®=| 1] x®=-1
3 —6 4
Solution
As with the last example first form X and compute its determinant.
1 -4 2
X=-1 1 -1 = det(X)=0
3 -6 4

So, these vectors are linearly dependent. We now need to find the relationship between
the vectors. This means that we need to find constants that will make (4) true.

So we need to solve the system

X¢=0
Here is the augmented matrix and the solution work for this system.

1 -4 2 O0\R+R (1 -4 2 0 1 420

R, +2R, IR,
-1 1 -1 0|R,-3R|0 -3 1 O 0 310¢

=

3 6 40 = (06 20 0 0 00
1 -4 20, o 102 0 C,+2¢,=0 c =-2c
01 1o 1: 01 1 0| = ¢-36=0 = c=4c
0o 0 00 00000 0=0

Now, we would like actual values for the constants so, if use c, =3 we get the following
solutionc, =-2,¢, =1, and ¢, =3. The relationship is then.

o O o

-me+i@+3¢$=(

Calculus with Matrices
There really isn’t a whole lot to this other than to just make sure that we can deal with
calculus with matrices.

First, to this point we’ve only looked at matrices with numbers as entries, but the entries
in a matrix can be functions as well. So we can look at matrices in the following form,

au(t) a12(t) ain(t)
A(t)= azlz(t) azz.(t) aZH:(t)
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Now we can talk about differentiating and integrating a matrix of this form. To
differentiate or integrate a matrix of this form all we do is differentiate or integrate the
individual entries.

So when we run across this kind of thing don’t get excited about it. Just differentiate or
integrate as we normally would.

In this section we saw a very condensed set of topics from linear algebra. When we get
back to differential equations many of these topics will show up occasionally and you
will at least need to know what the words mean.

The main topic from linear algebra that you must know however if you are going to be
able to solve systems of differential equations is the topic of the next section.

Review : Eigenvalues and Eigenvectors

If you get nothing out of this quick review of linear algebra you must get this section.
Without this section you will not be able to do any of the differential equations work that
is in this chapter.

So let’s start with the following. If we multiply an n x n matrix by an n x 1 vector we
will get a new n x 1 vector back. In other words,

A=Yy

What we want to know is if it is possible for the following to happen. Instead of just
getting a brand new vector out of the multiplication is it possible instead to get the
following,

An = A1 (1)

In other words is it possible, at least for certain A and7 , to have matrix multiplication be
the same as must multiplying the vector by a constant? Of course, we probably wouldn’t
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be talking about this if the answer was no. So, it is possible for this to happen, however,
it won’t happen for just any value of A or7 . If we do happen to have a A and7 for which

this works (and they will always come in pairs) then we call A an eigenvalue of A and 7
an eigenvector of A.

So, how do we go about find the eigenvalues and eigenvectors for a matrix? Well first
notice that that if 7 =0 then (1) is going to be true for any value of 4 and so we are going

to make the assumption that 77 = 0. With that out of the way let’s rewrite (1) a little.

ij—Aij =0
Aj - 21,77 =0
(A=21,)7=0

Notice that before we factored out the7; we added in the appropriately sized identity

matrix. This is equivalent to multiplying things by a one and so doesn’t change the value
of anything. We needed to do this because with out it we would have had the difference
of a matrix, A, and a constant, 4, and this can’t be done. We now have the difference of
two matrices of the same size which can be done.

So, with this rewrite we see that

(A-Al,)ii=0 )
is equivalent to (1). In order to find the eigenvectors for a matrix we will need to solve a
homogeneous system. Recall the fact from the previous section that we know that we
will either have exactly one solution (77 = 0) or we will have infinitely many nonzero

solutions. Since we’ve already said that don’t want 7 =0 this means that we want the
second case.

Knowing this will allow us to find the eigenvalues for a matrix. Recall from this fact that
we will get the second case only if the matrix in the system is singular. Therefore we will
need to determine the values of A for which we get,

det(A-21)=0

Once we have the eigenvalues we can then go back and determine the eigenvectors for
each eigenvalue. Let’s take a look at a couple of quick facts about eigenvalues and
eigenvectors.

Fact

If A'is an n x n matrix then det(A—M ) =0 is an n" degree polynomial. This polynomial
is called the characteristic polynomial.
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To find eigenvalues of a matrix all we need to do is solve a polynomial. That’s generally
not too bad provided we keep n small. Likewise this fact also tells us that forann x n
matrix, A, we will have n eigenvalues if we include all repeated eigenvalues.

Fact

If A;, A2, ..., Anis the complete list of eigenvalues for A (including all repeated
eigenvalues) then,

1. If A occurs only once in the list then we call A simple.

2. If Aoccurs k>1 times in the list then we say that A has multiplicity k.

3. If A, A ..., & (k <£n) are the simple eigenvalues in the list with
corresponding eigenvectors 7, 7%, ..., 7% then the eigenvectors are all
linearly independent.

4. If Ais an eigenvalue of k > 1 then A will have anywhere from 1 to k linearly
independent eigenvalues.

The usefulness of these facts will become apparent when we get back into differential
equations since in that work we will want linearly independent solutions.

Let’s work a couple of examples now to see how we actually go about finding
eigenvalues and eigenvectors.

Example 1 Find the eigenvalues and eigenvectors of the following matrix.

2 7
A=
-1 -6
Solution

The first thing that we need to do is find the eigenvalues. That means we need the

following matrix,
2 7 10 2—-1 7
A=Al = -1 =
(—1 —6} (0 1) [—1 —6—/1]

In particular we need to determine where the determinant of this matrix is zero.
det(A—A1)=(2-1)(-6-1)+7=4°+44-5=(1+5)(1-1)

So, it looks like we will have two simple eigenvalues for this matrix, A, =-5and A,= 1.
We will now need to find the eigenvectors for each of these. Also note that according to
the fact above, the two eigenvectors should be linearly independent.

To find the eigenvectors we simply plug in each eigenvalue into (2) and solve. So, let’s
do that.

/11 =-5:
In this case we need to solve the following system.
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7 7). (0
Gl
Recall that officially to solve this system we use the following augmented matrix.
7 7 0VIR+R,(7 7 0
AN I e
Upon reducing down we see that we get a single equation
I +7n,=0 = ==,
that will yield an infinite number of solutions. This is expected behavior. Recall that we

picked the eigenvalues so that the matrix would be singular and so we would get
infinitely many solutions.

Notice as well that we could have identified this from the original system. This won’t
always be the case, but in the 2 x 2 case we can see from the system that one row will be
a multiple of the other and so we will get infinite solutions. From this point on we won’t
be actually solving systems in these cases. We will just go straight to the equation and
we can use either of the two rows for this equation.

Now, let’s get back to the eigenvector, since that is what we were after. In general then
the eigenvector will be any vector that satisfies the following,

ﬁ:[nlj:[_UZJ ,772750
1, 7,
To get this we used the solution to the equation that we found above.

We really don’t want a general eigenvector however so we will pick a value for 7, to get
a specific eigenvector. We can choose anything (except 7,=0 ), so pick something that
will make the eigenvector “nice”. Note as well that since we’ve already assumed that the
eigenvector is not zero we must choose a value that will not give us zero, which is why
we want to avoid except 7,=0 in this case. Here’s the eigenvector for this eigenvalue.

-1
7 =( J using 77, =1

Now we get to do this all over again for the second eigenvalue.

/12: 1:
We’ll do much less work with this part than we did with the previous part. We will need

to solve the following system.
1 7 _ 0
1 7)o

Clearly both rows are multiples of each other and so we will get infinitely many
solutions. We can choose to work with either row. We’ll run with the first because to
avoid having too many minus signs floating around. Doing this gives us,
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n+1n,=0 n==1In,

Note that we can solve this for either of the two variables. However, with an eye towards
working with these later on let’s try to avoid as many fractions as possible. The

eigenvector is then,
-7
77:(”1]:( 772] ’772¢0
7, 7,
-7
7% :( j using 7, =1

Summarizing we have,

2, =1 i = (fj

Note that the two eigenvectors are linearly independent as predicted.

Example 2 Find the eigenvalues and eigenvectors of the following matrix.

Solution
This matrix has fractions in it. That’s life so don’t get excited about it. First we need the
eigenvalues.

1
det(A-A1)=

(- e

So, it looks like we’ve got an eigenvalue of multiplicity 2 here. Remember that the
power on the term will be the multiplicity.

Now, let’s find the eigenvector(s). This one is going to be a little different from the first
example. There is only one eigenvalue so let’s do the work for that one. We will need to
solve the following system,
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% -1 m _ 0 _§
(é ](n][oj = Rk

So, the rows are multiples of each other. We’ll work with the first equation in this
example to find the eigenvector.
2

2
5771_77220 77225771

Recall in the last example we decided that we wanted to make these as “nice” as possible
and so should avoid fractions if we can. Some times, as in this case, we simply can’t so
we’ll have to deal with it. In this case the eigenvector will be,

ﬁ:(ﬂljz(zﬂl ], %0
m, 3"

. 3

77(1)=£2J1 771=3

Note that by careful choice of the variable in this case we were able to get rid of the
fraction that we had. This is something that in general doesn’t much matter if we do or
not. However, when we get back to differential equations it will be easier on us if we
don’t have any fractions so we will usually try to eliminate them at this step.

Also in this case we are only going to get a single (linearly independent) eigenvector.

We can get other eigenvectors, by choosing different values of 77;. However, each of
these will be linearly dependent with the first eigenvector. If you’re not convinced of this
try it. Pick some values for 77; and get a different vector and check to see if the two are
linearly dependent.

Recall from the fact above that an eigenvalue of multiplicity k will have anywhere from 1
to k linearly independent eigenvectors. In this case we got one. For most of the 2 x 2
matrices that we’ll be working with this will be the case, although it doesn’t have to be.
We can, on occasion, get two.

Example 3 Find the eigenvalues and eigenvectors of the following matrix.

4 -17
A=
o)

Solution
So, we’ll start with the eigenvalues.
—4-1 17
det(A-Al)=
2 2—-A
=(-4-1)(2-1)+34
=1 +21+26
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This doesn’t factor, so upon using the quadratic formula we arrive at,
A, =—1+£5i

In this case we get complex eigenvalues which are definitely a fact of life with
eigenvalue/eigenvector problems so get used to them.

Finding eigenvectors for complex eigenvalues is identical to the previous two examples,
but it will be somewhat messier. So, let’s do that.

A1=-145i:
The system that we need to solve this time is

G )]
7 29

Now, it’s not super clear that the rows are multiples of each other, but they are. In this
case we have,

Rl:—%(3+5i)R2

This is not something that you need to worry about, we just wanted to make the point.
For the work that we’ll be doing later on with differential equations we will just assume
that we’ve done everything correctly and we’ve got two rows are multiples of each other.
Therefore, all that we need to do here is pick one of the rows and work with it.

We’ll work with the second row this time.
21, +(3-5i)n,=0

Now we can solve for either of the two variables. However, again looking forward to
differential equations, we are going to need the “i”” in the numerator so solve the equation
in such a way as this will happen. Doing this gives,

2, :_(3_5i)772

1 .
= _5(3_50772

So, the eigenvector in this case is

1 .
——(3-5i
ﬁ:{mj: 5 (357, | 7, %0
7, 7,
q -3+5i
77(1):( 2 j, 772:2

As with the previous example we choose the value of the variable to clear out the
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fraction.

Now, the work for the second eigenvector is almost identical and so we’ll not dwell on
that too much.

/12 =-1-5i:
The system that we need to solve here is

RSN (K
WA AR

Working with the second row again gives,

) 1 .
2n, +(3+5i)7,=0 = 771:—5(3+5|)772

The eigenvector in this case is

1 .
——(3+5i
77=(le= g (351, | 7, #0
? m,
. —3-5i
77(2) :( ) J1 7, = 2
Summarizing,
A =—1+5i o = 3o
2
-3-5i
= —1-5i i? =
s 3

There is a nice fact that we can use to simplify the work when we get complex
eigenvalues. We need a bit of terminology first however.

If we start with a complex number,

z=a+bhi
then the complex conjugate of z is

Z=a-hi

To compute the complex conjugate of a complex number we simply change the sign on
the term that contains the “i”. The complex conjugate of a vector is just the conjugate of
each of the vectors components.

We now have the following fact about complex eigenvalues and eigenvectors.

© 2005 Paul Dawkins 26 http://tutorial. math.lamar.edu/terms.asp




Differential Equations

Fact

If Ais an n x n matrix with only real numbers and if 2; = a + bi is an eigenvalue with
eigenvector 7). Then A, = a - bi is also an eigenvalue and it’s eigenvector is the

conjugate of 7.

This is a fact is something that you should feel free to use as you need to in our work.

Now, we need to work one final eigenvalue/eigenvector problem. To this point we’ve
only worked with 2 x 2 matrices and we should work at least one that isn’t 2 x 2. Also,
we need to work one in which we get an eigenvalue of multiplicity greater than one that
has more than one linearly independent eigenvector.

Example 4 Find the eigenvalues and eigenvectors of the following matrix.

0 11
A={1 0 1
110
Solution
Despite the fact that this is a 3 x 3 matrix, it still works the same as the 2 x 2 matrices that

we’ve been working with. So, start with the eigenvalues

-4 1 1
det(A-Al)=1 -1 1
1 1 -4
=-2°+31+2

(2241 A=2 A=t
So, we’ve got a simple eigenvalue and an eigenvalue of multiplicity 2. Note that we

used the same method of computing the determinant of a 3 X 3 matrix that we used in the
previous section. We just didn’t show the work.

Let’s now get the eigenvectors. We’ll start with the simple eigenvector.

A= 2:

Here we’ll need to solve,
-2 1 1)\(n 0
1 -2 1|n|=0
1 1 -2)\n 0

This time, unlike the 2 x 2 cases we worked earlier, we actually need to solve the system.
So let’s do that.

-2 1 1 0 1 -2 1 0\R,+2R(1 -2 1 O
R <R,
1 -2 1 0 -2 1 1 O0|R-R |0 -3 3 0
=
1 1 -2 0 1 1 -2 0 = 0 3 -3 0
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in 1 2 1 0)R,-3R,(1 0 -1 0
210 1 -1 0|R+2R,J0 1 -1 O
“lo 3 30/ = 00 o0 0
Going back to equations gives,
m-m,=0 = =1

n,—1,=0 = 7, =1,

So, again we get infinitely many solutions as we should for eigenvectors. The
eigenvector is then,

m UK
n=\1|=| | 7, #0
73 UE
1
ﬁ(l): 1], =1
1

Now, let’s do the other eigenvalue.

12 =-1:
Here we’ll need to solve,

11 1\(n 0

11 1}|n|=0

11 1)\n, 0
Okay, in this case is clear that all three rows are the same and so there isn’t any reason to
actually solve the system since we can clear out the bottom two rows to all zeroes in one
step. The equation that we get then is,

m+n,+n,=0= Th="=1,=1;

So, in this case we get to pick two of the values for free and will still get infinitely many
solutions. Here is the general eigenvector for this case,

h =1, =1
n=\n = m | 1, =0 and 7, # 0 at the same time
75 73

Notice the restriction this time. Recall that we only require that the eigenvector not be
the zero vector. This means that we can allow one or the other of the two variables to be
zero, we just can’t allow both of them to be zero at the same time!

What this means for us is that we are going to get two linearly independent eigenvectors
this time. Here they are.
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7%= 0 n,=0and 7, =1

7% =]1 n,=1and 7, =0

Now when we talked about linear independent vectors in the last section we only looked
at n vectors each with n components. We can still talk about linear independence in this
case however. Recall back with we did linear independence for functions we saw at the
time that if two functions were linearly dependent then they were multiples of each other.
Well the same thing holds true for vectors. Two vectors will be linearly dependent if

they are multiples of each other. In this case there is no way to get 77(2) by multiplying
7i® by a constant. Therefore, these two vectors must be linearly independent.

So, summarizing up, here are the eigenvalues and eigenvectors for this matrix

1
A=2 7% =|1
1
-1
dy=-1 i?=l0
1
-1
2y =-1 7¥=| 1

Systems of Differential Equations

In the introduction to this section we briefly discussed how a system of differential
equations can arise from a population problem in which we keep track of the population
of both the prey and the predator. It makes sense that the number of prey present will
affect the number of the predator present. Likewise, the number of predator present will
affect the number of prey present. Therefore the differential equation that governs the
population of either the prey or the predator should in some way depend on the
population of the other. This will lead to two differential equations that must be solved
simultaneously in order to determine the population of the prey and the predator.

The whole point of this is to notice that systems of differential equations can arise quite
easily from naturally occurring situations. Developing an effective predator-prey system
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of differential equations is not the subject of this chapter. However, systems can arise
from n™ order linear differential equations as well. Before we get into this however, let’s
write down a system and get some terminology out of the way.

We are going to be looking at first order, linear systems of differential equations. These
terms mean the same thing that they have meant up to this point. The largest derivative
anywhere in the system will be a first derivative and all unknown functions and their
derivatives will only occur to the first power and will not be multiplied by other unknown
functions. Here is an example of a system of first order, linear differential equations.

X=X +2X,
X, = 3X, +2X,

We call this kind of system a coupled system since knowledge of x; is required in order
to find x; and likewise knowledge of x; is required to find x,. We will worry about how
to go about solving these later. At this point we are only interested in becoming familiar
with some of the basics of systems.

Now, as mentioned earlier, we can write an n™ order linear differential equation as a
system. Let’s see how that can be done.

Example 1 Write the following 2" order differential equations as a system of first order,
linear differential equations.

2y"-5y'+y=0 y(3)=6 y'(3)=-1
Solution

We can write higher order differential equations as a system with a very simple change of
variable. We’ll start by defining the following two new functions.

X (t)=y(t)
% (t)=y'(t)
Now notice that if we differentiate both sides of these we get,
X1’ = y’ =X

X’ _ ”__i +E '__l +EX
2 =Y = 2y 2y— 2X1 572

Note the use of the differential equation in the second equation. We can also convert the
initial conditions over to the new functions.

% (3)=y(3)=6

X =X, X (3)=6

© 2005 Paul Dawkins 30 http://tutorial.math.lamar.edu/terms.asp




Differential Equations

We will call the system in the above example an Initial Value Problem just as we did
for differential equations with initial conditions.

Let’s take a look at another example.

Example 2 Write the following differential equations as a system of first order, linear
differential equations.

y(4)+3y”—sin(t)y'+8y:t2 y(O):l y’(0)=2 y”( ) 3 ym( ) 4
Solution

Just as we did in the last example we’ll need to define some new functions. This time
we’ll need 4 new functions.

!

% = = ><{=y
X3 =" = X;=Yy" =
X, =y" = x,=y"“ :—8y+sm()y'—3y”:—8x1+sin(t)x2—3x3+t2

The system along with the initial conditions is then,

X =%, X1(0)=l
X; =X, X,(0)=2
X, =X, X (0)=3
Xy =—8x, +sin(t)x, —3%, +t° X,(0)=4

Now, when we finally get around to solving these we will see that we generally don’t
solve systems in the form that we’ve given them in this section. Systems of differential
equations can be converted to matrix form and this is the form that we usually use in
solving systems.

Example 3 Convert the system the following system to matrix from.
X =4x +7X,
=—2X, —5X,
Solution
First write the system so that each side is a vector.

X/ [ A +TX,
x, ) —2x —5x,
Now the right side can be written as a matrix multiplication,

2 5]
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Now, if we define,

then,

.

The system can then be wrote in the matrix form,

I A
X = X
2 -5

Example 4 Convert the systems from Examples 1 and 2 into matrix form.

Solution
We’ll start with the system from Example 1.
X =X, X (3)=6
, 1 5
X ==Xt X, X, (3)=-1
First define,

The system is then,

X =% x (0)=1
X, =X, X,(0)=2
X, =X, X;(0)=3
Xy =—8x%, +sin(t)x, —3%, +t° x,(0)=4

In this case we need to be careful with the t? in the last equation. We’ll start by writing
the system as a vector again and then break it up into two vectors, one vector that
contains the unknown functions and the other that contains any known functions.

X X, X, 0
X, Xy s 0
= = +
X X, X, 0
x; ) (=8x +sin(t)x, —3x;+t* ] (=8 +sin(t)x,—3x, | |t

Now, the first vector can now be written as a matrix multiplication and we’ll leave the
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second vector alone.

0 1 0 O 0 1
L |0 0 10| o 1(0)=|2
0 0 0 1 0 3
-8 sin(t) -3 0 t? 4
where,
% (t)
| % (1)
O
X, (t)

Note that occasionally for “large” systems such as this we will one step farther and write
the system as,

X' = AX+§(t)

The last thing that we need to do in this section is get a bit of terminology out of the way.
Starting with
(t)

we say that the system is homogeneous if § (t) =0 and we say the system is

<!

X' = AX +

Q)

nonhomogeneous if g(t)=0.

Solutions to Systems

Now that we’ve got some of the basic out of the way for systems of differential equations
it’s time to start thinking about how to solve a system of differential equations. We will
start with the homogeneous system written in matrix form,

X' = AX (1)
where, A'isan n x n matrix and X is a vector whose components are the unknown
functions in the system.

Now, if we start with n = 1 then the system reduces to a fairly simple linear (or separable)
first order differential equation.

X' = ax
and this has the following solution,
x(t)=ce®

So, let’s use this as a guide and for a general n let’s see if
X(t)=re" (2)
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will be a solution. Note that the only real difference here is that we let the constant in
front of the exponential be a vector. All we need to do then is plug this into the
differential equation and see what we get. First notice that the derivative is,

X'(t)=rre"

So upon plugging the guess into the differential equation we get,

I’ﬁert — Aﬁe”
(A —rij)e™ =0
(A-rl)ie" =0

Now, since we know that exponentials are not zero we can drop that portion and we then
see that in order for (2) to be a solution to (1) then we must have

(A-rl)7ij=0

Or, in order for (2) to be a solution to (1), r and 77 must be an eigenvalue and eigenvector
for the matrix A.

Therefore, in order to solve (1) we first find the eigenvalues and eigenvectors of the
matrix A and then we can form solutions using (2). There are going to be three cases that
we’ll need to look at. The cases are real, distinct eigenvalues, complex eigenvalues and
repeated eigenvalues.

None of this tells us how to completely solve a system of differential equations. We’ll
need the following couple of facts to do this.

Fact

1. If X,(t) and X, (t) are two solutions to a homogeneous system, (1), then

% (t)+C,%, (t)
is also a solution to the system.
2. Suppose that A is an n x n matrix and suppose that X, (t), X, (t), ..., X, (t) are
solutions to a homogeneous system, (1). Define,
X :()?1 X, - Xn)
In other words, X is a matrix whose ith column is the i solution. Now define,
W =det(X)
We call W the Wronskian. If W =0 then the solutions form a fundamental set
of solutions and the general solution to the system is,

X(t)=cX (t)+C,%, (t)+--+c,X (1)

Note that if we have a fundamental set of solutions then the solutions are also going to be
linearly independent. Likewise, if we have a set of linearly independent solutions then
they will also be a fundamental set of solutions since the Wronskian will not be zero.
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Phase Plane

Before proceeding with actually solving systems of differential equations there’s one
topic that we need to take a look at. This is a topic that’s not always taught in a
differential equations class but in case you’re in a course where it is taught we should
cover it so that you are prepared for it.

Let’s start with a general homogeneous system,
X' = AX (1)

Notice that

X=0
is a solution to the system of differential equations. What we’d like to ask is, do the other
solutions to the system approach this solution as t increases or do they move away from
this solution? We did something similar to this when we classified equilibrium solutions
in a previous section. In fact, what we’re doing here is simply an extension of this idea to
systems of differential equations.

The solution X =0 is called an equilibrium solution for the system. As with the single
differential equations case, equilibrium solutions are those solutions for which

A% =0

We are going to assume that A is a nonsingular matrix and hence will have only one
solution,

—

X=0
and so we will have only one equilibrium solution.

Back in the single differential equation case recall that we started by choosing values of y
and plugging these into the function f(y) to determine values of y’. We then used these

values to sketch tangents to the solution at that particular value of y. From this we could
sketch in some solutions and use this information to classify the equilibrium solutions.

We are going to do something similar here, but it will be slightly different as well. First
we are going to restrict ourselves down to the 2 x 2 case. So, we’ll be looking at systems

of the form,
X, = ax, +bx, . (a bj#

; = X = X
X, = CX, +dX, c d

Solutions to this system will be of the form,

S

and our single equilibrium solution will be,
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(o

In the single differential equation case we were able to sketch the solution, y(t) in the y-t
plane and see actual solutions. However, this would somewhat difficult in this case since
our solutions are actually vectors. What we’re going to do here is think of the solutions
to the system as points in the x;-x, plane and plot these points. Our equilibrium solution
will correspond to the origin of x;-x, plane and the x;-x, plane is called the phase plane.

To sketch a solution in the phase plane we can pick values of t and plug these into the
solution. This gives us a point in the x;3-X, or phase plane that we can plot. Doing this for
many values of t will then give us a sketch of what the solution will be doing in the phase
plane. A sketch of a particular solution in the phase plane is called the trajectory of the
solution. Once we have the trajectory of a solution sketched we can then ask whether or
not the solution will approach the equilibrium solution as t increases.

We would like to be able to sketch trajectories without actually having solutions in hand.
There are a couple of ways to do this. We’ll look at one of those here and we’ll look at
the other in the next couple of sections.

One way to get a sketch of trajectories is to do something similar to what we did the first
time we looked at equilibrium solutions. We can choose values of X (note that these will
be points in the phase plane) and compute AX. This will give a vector that represents

X" at that particular solution. As with the single differential equation case this vector will
be tangent to the trajectory at that point. We can sketch a bunch of the tangent vectors
and then sketch in the trajectories.

This is a fairly work intensive way of doing these and isn’t the way to do them in general.
However, it is a way to get trajectories without doing any solution work. All we need is
the system of differential equations. Let’s take a quick look at an example.

Example 1 Sketch some trajectories for the system,
r_ 2

X, =X +2X, N o 1 2 5

X, = 3X, +2X, 3 2
Solution
So, what we need to do is pick some points in the phase plane, plug them into the right
side of the system. We’ll do this for a couple of points.

1

B —1j (12 —1J
X = X = =

1 3 2)\1
S (2 (1 2)(2) (2
X= = X = =

0 3 2){0 6
(-3 o, (1 2)-3 -7
X= = X = =

-2 3 2){-2 -13
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So, what does this tell us? Well at the point (-1, 1) in the phase plane there will be a
vector pointing in the direction (1, —1). At the point (2,0) there will be a vector pointing

in the direction (2,6). At the point (-3,-2) there will be a vector pointing in the direction
(-7,-13).

Doing this for a large number of points in the phase plane will give the following sketch
of vectors.
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ff!fff!!ﬁ?rrk
I N i Ve SN
TV AV A S A R
VO S S A P gt g Pe L
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FAV AN ) P N N
£ LSS S AR o e e

Now all we need to do is sketch in some trajectories. To do this all we need to do is
remember that the vectors in the sketch above are tangent to the trajectories. Also the
direction of the vectors give the direction of the trajectory as t increases so we can show
the time dependence of the solution by adding in arrows to the trajectories.

Doing this gives the following sketch.
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This sketch is called the phase portrait. Usually phase portraits only include the
trajectories of the solutions and not any vectors. All of our phase portraits form this point
on will only include the trajectories.

In this case it looks like most of the solutions will start away from the equilibrium
solution then as t starts to increase they move in towards the equilibrium solution and
then eventually start moving away from the equilibrium solution again.

There seem to be four solutions that have slightly different behaviors. It looks like two of
the solutions will start at (or near at least) the equilibrium solution and them move
straight away from it while two other solution start away from the equilibrium solution
and then move straight in towards the equilibrium solution.

In these kinds of cases we call the equilibrium point a saddle point and we call the
equilibrium point in this case unstable since all but two of the solutions are moving away
from it as t increases.

As we noted earlier this is not generally the way that we will sketch trajectories. All we
really need to get the trajectories are the eigenvalues and eigenvectors of the matrix A.
We will see how to do this over the next couple of sections as we solve the systems.

Here are a few more phase portraits so you can see some more possible phase portraits.
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Mode - Asymptotically Stable

Improper Mode - Unstable
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Center - Stable

Sprial - Unstable

Not all possible phase portraits have been shown here. These are here to show you some
of the possibilities. Note as well that with the two nodes and the spiral the direction of
motion could just as easily be reversed which would also switch the stability of those

phase portraits.

Also notice the difference between stable and asymptotically stable. An asymptotically
stable node or spiral will move in towards the equilibrium point as t increases whereas, a
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center (which is always stable) will just move around the equilibrium point but never
actually move in towards it.

We will solve the systems that gave the phase portraits above in the next few sections.

Real, Distinct Eigenvalues

It’s now time to start solving systems of differential equations. We’ve seen that solutions
to the system,

will be of the form
% = ﬁe”
where A and 7 are eigenvalues and eigenvectors of the matrix A. We will be working
with 2 x 2 systems so this means that we are going to be looking for two solutions,
% (t)and X, (t), where the determinant of the matrix,
X = ()?1 7(2)
IS nonzero.

We are going to start by looking at the case where our two eigenvalues, A; and A, are real
and distinct. In other words they will be real, simple eigenvalues. Recall as well that the
eigenvectors for simple eigenvalues are linearly independent. This means that the
solutions we get from these will also be linearly independent. If the solutions are linearly
independent the matrix X must be nonsingular and hence these two solutions will be a
fundamental set of solutions. The general solution in this case will then be,

X(t)=ce*i" +c,e™i?

Note that each of our examples will actually be broken into two examples. The first
example will be solving the system and the second example will be sketching the phase
portrait for the system. Phase portraits are not always taught in a differential equations
course and so we’ll strip those out of the solution process so that if you haven’t covered
them in your class you can ignore the phase portrait example for the system.

Example 1 Solve the following IVP.

Wk el

Solution
So, the first thing that we need to do is find the eigenvalues for the matrix.
1-1 2
det(A-Al)=
3 2-2
=1*-31-4
=(A+1)(1-4) = A=-11,=4
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Now let’s find the eigenvectors for each of these.

11 =-1:
We’ll need to solve,

2 2y m_[9 217, +217, =0
3 37, 0 T+ 21, h 7,

The eigenvector in this case is,
12 =4:

- -1
7-7-:( 772) — 7-7’(1):[ ]1 772:1
, 1
We’ll need to solve,

—32m (0 3y, + 217, =0 2
3 —2)\n, 0 m + £, i 3 7,

The eigenvector in this case is,

2 2
ﬁ:(:‘}?]ZJ = 7_7’(2):( j, 772:3
, 3

Then general solution is then,
-1 2
X(t)=ce™ +c,e™

Now, we need to find the constants. To do this we simply need to apply the initial

conditions.
ro=s)e(y

All we need to do now is multiply the constants through and we then get two equations
(one for each row) that we can solve for the constants. This gives,

—-c,+2¢,=0 - c _ 8 .
c,+3c, =4 ' S

The solution is then,

Now, let’s take a look at the phase portrait for the system.

Example 2 Sketch the phase portrait for the following system.
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L (1 2),
X' = X
3 2
Solution
From the last example we know that the eigenvalues and eigenvectors for this system are,

A=-1 ﬁ@=(:j

2
A =4 72 =
2 n (3]

It turns out that this is all the information that we will need to sketch the direction field.
We will relate things back to our solution however so that we can see that things are
going correctly.

Well start by sketching lines that follow the direction of the two eigenvectors. This
gives,

20 10 20

Now, from the first example our general solution is

X(t)=ce™ (_ﬂ +c,e [2)

If we have c, = 0 then the solution is an exponential times a vector and that all the
exponential does is affect the magnitude of the vector and the constant c; will affect both
the sign and the magnitude of the vector. In other words, the trajectory in this case will

be a straight line that is parallel to the vector, ﬁ(l) . Also notice that as t increases the

exponential will get smaller and smaller and hence the trajectory will be moving in
towards the origin. If ¢;>0 the trajectory will be in Quadrant Il and if ;<0 the trajectory
will be in Quadrant 1V.
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So the line in the graph above marked with ﬁ(l) will be a sketch of the trajectory
corresponding to ¢, = 0 and this trajectory will approach the origin as t increases.

If we now turn things around and look at the solution corresponding to have ¢; = 0 we
will have a trajectory that is parallel to ﬁ(z). Also, since the exponential will increase as t

increases and so in this case the trajectory will now move away from the origin as t
increases. We will denote this with arrows on the lines in the graph above.

20 10 20

Notice that we could have gotten this information with actually going to the solution. All
we really need to do is look at the eigenvalues. Eigenvalues that are negative will
correspond to solutions that will move towards the origin as t increase in a direction that
is parallel to its eigenvector. Likewise, eigenvalues that are positive move away from the
origin as t increases in a direction that will be parallel to its eigenvector.

If both constants are in the solution we will have a combination of these behaviors. For
large negative t’s the solution will be dominated by the portion that has the negative
eigenvalue since in these cases the exponent will be large and positive. Trajectories for

large negative t’s will be parallel to ﬁ(l) and moving in the same direction.

Solutions for large positive t’s will be dominated by the portion with the positive
eigenvalue. Trajectories in this case will be parallel to 77(2) and moving in the same
direction.

In general, it looks like trajectories will start “near” ﬁ(l) , move in towards the origin and

then as they get closer to the origin they will start moving towards ﬁ(z) and then continue
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up along this vector. Sketching some of these in will give the following phase portrait.
Here is a sketch of this with the trajectories corresponding to the eigenvectors marked in
blue.

- -|-II!EII

U

LK AL 1y 17 171
b_ 0 20

g

In this case the equilibrium solution (0,0) is called a saddle point and is unstable. In this
case unstable means that solution move away from it as t increases.

So, we’ve solved a system in matrix form, but remember that we started out without the
systems in matrix form. Now let’s take a quick look at an example of a system that isn’t
in matrix form initially.

Example 3 Find the solution to the following system.
X, = X, +2X, x (0)=0
X, = 3% +2X, X,(0)=—4

Solution
We first need to convert this into matrix form. This is easy enough. Here is the matrix

form of the system.
(1 2)_ = 0
ol
3 2 —4

This is just the system from the first example and so we’ve already got the solution to this

system. Here itis.
-1 2
R(t) = —8et[ L] Lo
5 1) 5 3

Now, since we want to solution to the system not in matrix form let’s go one step farther
here. Let’s multiply the constants and exponentials into the vectors and then add up the
two vectors.
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Now, recall,

t — —t =~ 4t

X, (t) 5e e
t)=—ae ' -2

X, (t) & -ge

Let’s work another example.

Example 4 Solve the following IVP.

TR el

Solution
So, the first thing that we need to do is find the eigenvalues for the matrix.
-5-1 1
det(A—Al)=
4 -2-1
=P +71+6

=(A+1)(1+6) = A=-14,=-6
Now let’s find the eigenvectors for each of these.

A1=-1:
We’ll need to solve,

_41771—0:> dn.+n,=0 = =4
Y] 772—0 o+, = 17, =41,

The eigenvector in this case is,
A=-6:

_ Ui _y (1
= - = , =1
7 (4771J 7 (4 L
We’ll need to solve,

11 0
& = = n+n,=0 = m=-1n,
4 4)\n, 0

The eigenvector in this case is,

~ -1
772( 772} — 77(2):( j 17, =1
u 1
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Then general solution is then,

e

Now, we need to find the constants. To do this we simply need to apply the initial

conditions.
= o=e(3)

Now solve the system for the constants.

The solution is then,

Now let’s find the phase portrait for this system.

Example 5 Sketch the phase portrait for the following system.

L (-5 1),
X' = X
4 =2
Solution
From the last example we know that the eigenvalues and eigenvectors for this system are,

a1 ()]

-1
Jy =6 7% =
2 n (1j

This one is a little different from the first one. However it starts in the same way. We’ll
first sketch the trajectories corresponding to the eigenvectors. Notice as well that both of
the eigenvalues are negative and so trajectories for these will move in towards the origin
as t increases. When we sketch the trajectories we’ll add in arrows to denote the
direction they take as t increases. Here is the sketch of these trajectories.
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Now, here is where the slight difference from the first phase portrait comes up. All of the
trajectories will move in towards the origin as t increases since both of the eigenvalues
are negative. The issue that we need to decide upon is just how they do this. This is
actually easier than it might appear to be at first.

The second eigenvalue is larger than the first. For large and positive t’s this means that
the solution for this eigenvalue will be smaller than the solution for the first eigenvalue.
Therefore, as t increases the trajectory will move in towards the origin and do so parallel

to ﬁ(l) . Likewise, since the second eigenvalue is larger than the first this solution will
dominate for large and negative t’s. Therefore, as we decrease t the trajectory will move

away from the origin and do so parallel to ﬁ(z).

Adding in some trajectories gives the following sketch.
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In these cases we call the equilibrium solution (0,0) a node and it is asymptotically
stable. Equilibrium solutions are asymptotically stable if all the trajectories move in
towards it as t increases.

Note that nodes can also be unstable. In the last example if both of the eigenvalues had
been positive all the trajectories would have moved away from the origin and in this case
the equilibrium solution would have been unstable.

Before moving on to the next section we need to do one more example. When we first
started talking about systems it was mentioned that we can convert a higher order
differential equation into a system. We need to do an example like this so we can see
how to solve higher order differential equations using systems.

Example 6 Convert the following differential equation into a system, solve the system
and use this solution to get the solution to the original differential equation.

2y"+5y' -3y =0, y(0)=—4 y'(0)=9
Solution
So, we first need to convert this into a system. Here’s the change of variables,
X =Yy X=Y=X
X, =Y x;=y”=§y—§y'=§x1—§xz
2° 2 2 2

The system is then,

where,
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TR

Now we need to find the eigenvalues for the matrix.
-1 1

det(A-Al)=
(-7

Now let’s find the eigenvectors.

A1=-3:
We’ll need to solve,

3 1\(n 0

(3 1}[ 1j:( ] = 3n,+1,=0 = 1,=-3n
3 1)lp 0
2 2\

The eigenvector in this case is,
ﬂz =

_ m (1) 1
= - = , = 1
7 (_3771] 7 [_3 L
We’ll need to solve,

L s Ly = gy
3 3){n,) 0 2t 22"

The eigenvector in this case is,

_ (n o (2
n=(llj = 77(2){ ] n,=2
2Th 1

The general solution is then,

N1

Apply the initial condition.

o )100[ e[

This gives the system of equations that we can solve for the constants.
c,+2¢,=-4 22 3

= C,=——, C,=—=

-3¢, +¢, =9 7 7

The actual solution to the system is then,
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Now recalling that,

we can see that the solution to the original differential equation is just the top row of the
solution to the matrix system. The solution to the original differential equation is then,
22 5 6 ¢
t)=——e" —=¢?
v 7 7

Notice that as a check, in this case, the bottom row should be the derivative of the top
row.

Complex Eigenvalues

In this section we will look at solutions to

X'= AX
where the eigenvalues of the matrix A are complex. With complex eigenvalues we are
going to have the same problem that we had back when we were looking at second order
differential equations. We want our solutions to only have real numbers in them,
however since our solutions to systems are of the form,

% = ﬁe“
we are going to have complex numbers come into our solution from both the eigenvalue
and the eigenvector. Getting rid of the complex numbers here will be similar to how we
did it back in the second order differential equation case, but will involve a little more
work this time around. It’s easiest to see how to do this in an example.

Example 1 Solve the following IVP.

SHES

Solution
We first need the eigenvalues and eigenvectors for the matrix.
3-4 -9
det(A-Al)=
4 -3-1
= 22+27 A, =£3/3i

So, now that we have the eigenvalues recall that we only need to get the eigenvector for
one of the eigenvalues since we can get the second eigenvector for free from the first
eigenvector.

2, =33i:
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We need to solve the following system.

R N

Using the first equation we get,
(3-33i)n,—9n, =0

772 :%(1—\/5|)771

So, the first eigenvector is,

h
n=|1 .
5(1_\/§|)771
3
0 — =3
n [l—\/gi] m

When finding the eigenvectors in these cases make sure that the complex number appears
in the numerator of any fractions since we’ll need it in the numerator later on. Also try to
clear out any fractions by appropriately picking the constant. This will make our life
easier down the road.

Now, the second eigenvector is,
ﬁ(Z) _ 3
1++/3i
However, as we will see we won’t need this eigenvector.

The solution that we get from the first eigenvalue and eigenvector is,

So, as we can see there are complex numbers in both the exponential and vector that we
will need to get rid of in order to use this as a solution. Recall from the complex roots
section of the second order differential equation chapter that we can use Euler’s formula
to get the complex number out of the exponential. Doing this gives us,

. 3
xl(t):(cos(3«/§t)+|S|n(3\/§t))[l_\/§i]
The next step is to multiply the cosines and signs into the vector.
0 3cos(3\/§t)+3isin(3\/§t)
% (t)=

cos(3\/§t)+ isin (3\/§t)—\/§i cos(3«/§t)+ 3sin (3\/§t)
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Now combine the terms with an “i” in them and split these terms off from those terms
that don’t contain an “i”. Also factor the *“i” out of this vector.

()= 3cos(3\/§t) N 35in(3\/§t)

cos(3\/§t) ++/3sin (3\/§t) sin (Sﬁt)—\@cos(&@t)
= (t)+iv(t)

Now, it can be shown (we’ll leave the details to you) that G (t) and V(t) are two linearly

independent solutions to the system of differential equations. This means that we can use
them to form a general solution and they are both real solutions.

So, the general solution to a system with complex roots is
X(t)=c(t)+c,v(t)
where G(t) and V(t) are found by writing the first solution as

X(t)=a(t)+iv(t)

For our system then, the general solution is,

3cos(3V3t) 3sin(3v3t)
| cos(343) + VBsin (343 || sin(33t) - VB cos(343)

=

We now need to apply the initial condition to this to find the constants.

o)< )

This leads to the following system of equations to be solved,

%2 B T}
c,—+/3c, =4 b3 " 33

The actual solution is then,

) ) 3005(3\/§t) 14 35in(3\/§t)

t):3 cos(3\/§t)+\@sin(3\@t) +ﬁ sin(3\/§t)—\@cos(3\/§t)

As we did in the last section we’ll do the phase portraits separately from the solution of
the system in case phase portraits haven’t been taught in your class.

Example 2 Sketch the phase portrait for the system.

S (3 -9,
X = X
4 -3
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Solution

When the eigenvalues of a matrix A are purely complex, as they are in this case, the
trajectories of the solutions will be circles or ellipses that are centered at the origin. The
only thing that we really need to concern ourselves with here are whether they are
rotating in a clockwise or counterclockwise direction.

This is easy enough to do. Recall when we first looked at these phase portraits a couple
of sections ago that if we pick a value of X(t) and plug it into out system we will get a

vector that will be tangent to the trajectory at that point and pointing in the direction that
the trajectory is traveling.. So, let’s pick the following point and see what we get.

IR e

Therefore at the point (1,0) in the phase plane the trajectory will be point in a upwards
direction. The only way that this can be is if the trajectories are traveling in a
counterclockwise direction.

Here is the sketch of some of the trajectories for this problem.

20

I F /79 B L I B N B
_mL_g))/ 10 2
i

The equilibrium solution in the case is called a center and is stable.

Note in this last example that the equilibrium solution is stable and not asymptotically
stable. Asymptotically stable refers to the fact that the trajectories are moving in toward
the equilibrium solution as t increases. In this example the trajectories are simply
revolving around the equilibrium solution and not moving in towards it. The trajectories
are also not moving away from the equilibrium solution and so they aren’t unstable.
Therefore we call the equilibrium solution stable.
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Not all complex eigenvalues will result in centers so let’s take a look at an example
where we get something different.

Example 3 Solve the following IVP.

L el

Solution
Let’s get the eigenvalues and eigenvectors for the matrix.
3-14 -13
det(A—Al)=
5 1-2
=1*—-42+68 A, =2%8i

Now get the eigenvector for the first eigenvalue.

A =2+8i:
We need to solve the following system.
1-8i  -13 \(n, 0
)
Using the second equation we get,
5n,+(-1-8i)n, =0

1 ]
n :g(l+8|)772

So, the first eigenvector is,

1 .
—(1+8i
7 = 5( )772
m,
. 1+8i
77(1):( 5 j n,=95

The solution corresponding the this eigenvalue and eigenvector is
o (148
% (t)= e(z*g')t( 5 j

:emegn(lzsij
=e” (cos(8t)+isin (8t))(1+58ij

As with the first example multiply cosines and signs into the vector and split it up. Don’t
forget about the exponential that is in the solution this time.
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% (1) e (cos(Bt)—Ssin(St)jHeZt £8cos(8t)+sin(8t)]

5cos(8t) 5sin(8t)
=0(t)+iv(t)

The general solution to this system then,

o) s el

Now apply the initial condition and find the constants.

PECRE

c,+8¢c, = 3}

= c,=-2,C=—
5¢, =—10 ' ?

The actual solution is then,

(1) = 26 [003(8'[) —8sin (8‘[)] LB [8cos(8t) +sin (8t)J

5cos(8t) 8 5sin(8t)

Let’s take a look at the phase portrait for this problem.

Example 4 Sketch the phase portrait for the system.

_, (3 -13)_
X = X
5 1
Solution

When the eigenvalues of a system are complex with a real part the trajectories will spiral
into or out of the origin. We can determine which one it will be by looking at the real
portion. Since the real portion will end up being the exponent of an exponential function
(as we saw in the solution to this system) if the real part is positive the solution will grow
very large as t increases. Likewise, if the real part is negative the solution will die out as
t increases.

So, if the real part is positive the trajectories will spiral out from the origin and if the real
part is negative they will spiral into the origin. We determine the direction of rotation
(clockwise vs. counterclockwise) in the same way that we did for the center.

In our case the trajectories will spiral out from the origin since the real part is positive

<[z a0

will rotate in the counterclockwise direction as the last example did.
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Here is a sketch of some of the trajectories for this system.

20

Here we call the equilibrium solution a spiral (oddly enough...) and in this case it’s
unstable since the trajectories move away from the origin.

If the real part of the eigenvalue is negative the trajectories will spiral into the origin and
in this case the equilibrium solution will be asymptotically stable.

Repeated Eigenvalues

This is the final case that we need to take a look at. In this section we are going to look at
solutions to the system,

X' = AX
where the eigenvalues are repeated eigenvalues. Since we are going to be working with
systems in which A is a 2 x 2 matrix we will make that assumption from the start. So the
system will have a double eigenvalue, A.

This presents us with a problem. We want two linearly independent solutions so that we
can form a general solution. However, with a double eigenvalue we will have only one,

% = je”

So, we need to come up with a second solution. Recall that when we looked at the
double root case with the second order differential equations we ran into a similar
problem. In that section we simply added a t to the solution and were able to get a second
solution. Let’s see if the same thing will work in this case as well. We’ll see if

X =te"s
will also be a solution.
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To check all we need to do is plug into the system. Don’t forget to product rule the
proposed solution when you differentiate!

e + Afjte™ = Arjte™

Now, we got two functions here on the left side, an exponential by itself and an
exponential times at. So, in order for our guess to be a solution we will need to require,

Afj = (A-A1)ij=0

£
I

The first requirement isn’t a problem since we this just says that A is an eigenvalue and
it’s eigenvector is 77 . We already knew this however so there’s nothing new there. The

second however is a problem. Since 7 is an eigenvalue we know that it can’t be zero, yet
in order to satisfy the second condition it would have to be.

So, our guess was incorrect. The problem seems to be that there is a lone term with just
an exponential in it so let’s see if we can’t fix up our guess to correct that. Let’s try the
following guess.

X=te"ij+e"p
where p is an unknown vector that we’ll need to determine.

As with the first guess let’s plug this into the system and see what we get.
ije™ + Adjte’ + Ape™ = A(7jte” + pe™)
(7+Ap)e™ + Aijte™ = Arjte™ + Ape™
Now set coefficients equal again,
Afj = Ajj = (A-Al1)ij=0
n+Ap=Ap = (A-A1)p=

T

As with our first guess the first equation tells us nothing that we didn’t already know.
This time the second equation is not a problem. All the second equation tells us is that g

must be a solution to this equation.

It looks like our second guess worked. Therefore,
X, =te’ij+e"p
will be a solution to the system provided p is a solution to
(A-Al)p=7
Also this solution and the first solution are linearly independent and so they form a

fundamental set of solutions and so the general solution in the double eigenvalue case is,
X =c,e"ij+c,(terj+ep)
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Let’s work an example.

Example 1 Solve the following IVP.

L ey

Solution
First find the eigenvalues for the system.
7-1 1
det(A-Al)=
-4 3-1
=1?-104+25
=(2-5) =  4,=5

So, we got a double eigenvalue. Of course that shouldn’t be too surprising given the
section that we’re in. Let’s find the eigenvector for this eigenvalue.

2 1 771:0 = 2n,+n,=0 n,=-2n
_4 _2 772 O 1 2 2 1

The eigenvector is then,
77 :( T j m# 0
—2n,

~ 1
77(1) :(_2] m=1

The next step is find o . To do this we’ll need to solve,

e e = ' = 2p+p, =1 p,=1-2p
-4 -2)\ p, -2

Note that this is almost identical to the system that we solve to find the eigenvalue. The
only difference is the right hand side. The most general possible g is

- A _ (0 .
P (1_ 2,01] - P (:J &

In this case, unlike the eigenvector system we can choose the constant to be anything we
want, so we might as well pick it to make our life easier. This usually means picking it to
be zero.

We can now write down the general solution to the system.

X(t)=ce” {_12} @ (e&{—lzj e mj

Applying the initial condition to find the constants gives us,

HECRER
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c,=2
' } = =2 ¢=-1
-2C,+C,=-5

The actual solution is then,

K(t)-2¢" (_12)_(@ o) @]

Note that we did a little combining here to simplify the solution up a little.

So, the next example will be to sketch the phase portrait for this system.

Example 2 Sketch the phase portrait for the system.

L (7 1),
X' = X
-4 3
Solution

These will start in the same way that real, distinct eigenvalue phase portraits start. We’ll
first sketch in a trajectory that is parallel to the eigenvector and note that since the
eigenvalue is positive the trajectory will be moving away from the origin.

110

S
T T T T eIl R T T 1T T T 11T 1T T T 1

=20 -10 10 20

¥ oo

L
o]

rha
(s’

Now, it will be easier to explain the remainder of the phase portrait if we actually have
one in front of us. So here is the full phase portrait with some more trajectories sketched
in.
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20

20

Trajectories in these cases always emerge from (or move into) the origin in a direction
that is parallel to the eigenvector. Likewise they will start in one direction before turning
around and moving off into the other direction. The directions in which they move are
opposite depending on which side of the trajectory corresponding to the eigenvector we
are on. Also, as the trajectories moves away from the origin it should start becoming
parallel to the trajectory corresponding to the eigenvector.

So, how do we determine the direction? We can do the same thing that we did in the
complex case. We’ll plug in (1,0) into the system and see which direction the trajectories
are moving at that point. Since this point is directly to the right of the origin the
trajectory at that point must have already turned around and so this will give the direction
that it will traveling after turning around.

Doing that for this problem to check our phase portrait gives,

o alo

This vector will point down into the fourth quadrant and so the trajectory must be moving
into the fourth quadrant as well. This does match up with our phase portrait.

In these cases the equilibrium is called a node and is unstable in this case. Note that
sometimes you will hear nodes for the repeated eigenvalue case called degenerate nodes
or improper nodes.

Let’s work one more example.

| Example 3 Solve the following IVP.
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-1 3 1
X' = X X(2)=
) @)
Solution
First the eigenvalue for the system.
-1-2 3
det(A-Al)=| | ? ‘
-1 2-1
_ 243040
4
3Y) 3
= A1+—= = =—=
[ 2) et
Now let’s get the eigenvector.
1 3
7 2 |[m)_(0 1 3
= = =n+=n,=0 =-3
(_% _%J[Uzj (Oj 2771 2772 T 1,
-3
77:( 77772] 772¢0
2
. -3
77(1)=(1j n,=1
Now find p,
1 3
7 2 |(A) (3 1 3
= = —p+t—=p,=-3 =—6-3
(—% ](pj U TR AT
—-6-3 —
- & = p= if p, =0
P> 0

The general solution for the system is then,
(-3
(t)=ce? ( . j+c2[

Applying the initial condition gives,

=

X

-3e°c,—12e%, =1
e’c, +2e7%,=0

The actual solution is then,

af—3 3t
tez[ j+ez
1

[;j =X(2)=ce” £_13j +c, (2e-3 [‘fj e (—06

Note that we didn’t use t=0 this time! We now need to solve the following system,

)

e’ e’
¢ =—, C,=——

3 6
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And just to be consistent with all the other problems that we’ve done let’s sketch the
phase portrait.

Example 4 Sketch the phase portrait for the system.

1 3
X' = ( . ] X
-1 -2
Solution

Let’s first notice that since the eigenvalue is negative in this case the trajectories should
all move in towards the origin. Let’s check the direction of the trajectories at (1,0)

S

So it looks like the trajectories should be pointing into the third quadrant at (1,0). This
gives the following phase portrait.
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Nonhomogeneous Systems

We now need to address nonhomogeneous systems briefly. Both of the methods that we
looked at back in the second order differential equations chapter can also be used here.
As we will see Undetermined Coefficients is almost identical when used on systems
while Variation of Parameters will need to have a new formula derived, but will actually
be slightly easier when applied to systems.

Undetermined Coefficients

Undetermined coefficients for systems is pretty much identical to the second order
differential equation case. The only difference is that the coefficients will need to be
vectors now.

Let’s take a quick look at an example.

Example 1 Find the general solution to the following system.

. 1 2\ 2
X' = X+t
5 22
Solution

We already have the complimentary solution as we solved that part back in the real
eigenvalue section. Itis,

- (-1 2

X, (t)=ce™ ( . j+c2e‘“ (3)

Guessing the form of the particular solution will work in exactly the same way it did back
when we first looked at this method. We have a linear polynomial and so our guess will
need to be a linear polynomial. The only difference is that the “coefficients” will need to
be vectors instead of constants. The particular solution will have the form,

zpzta+6=t(zzj+[a

So, we need to differentiate the guess

Before plugging into the system let’s simplify the notation a little to help with our work.
We’ll write the system as,
(1 2)_ 2 o e
3 2 —4

This will make the following work a little easier. Now, let’s plug things into the system.
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t:  Ad+g=0 Ad=—§
t°: Ab-a=0 Ab=3

Now only & is unknown in the first equation so we can use Gaussian elimination to solve
the system. We’ll leave this work to you to check.

1 2 2 3
s -
3 2)\a, —4 -5
Now that we know & we can solve the second equation for b .
1 2 3 Lo (=1
bl = f— b = N
3 2 bz _% %

So, since we were able to solve both equations, the particular solution is then,

3 _u
- 4
2 8
The general solution is then,

e (el

So, as you can see undetermined coefficients is nearly the same as the first time we saw
it. The work in solving for the “constants” is a little messier however.

Variation of Parameters

In this case we will need to derive a new formula for variation of parameters for systems.
The derivation this time will be much simpler than the when we first saw variation of
parameters.

First let X(t) be a matrix whose i column is the i"" linearly independent solution to the
system,

Now it can be shown that X(t) will be a solution to the following differential equation.
X"=AX (1)
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This is nothing more than the original system with the matrix in place of the original
vector.

We are going to try and find a particular solution to
X'=AX+g(t)
We will assume that we can find a solution of the form,
X = X (t)V(t)
where we will need to determine the vector \7(t). To do this we will need to plug this

into the nonhomogeneous system. Don’t forget to product rule the particular solution
when plugging the guess into the system.
X'V4+ XV =AXV+(

Note that we dropped the “(t)” part of things to simplify the notation a little. Now using
(1) we can rewrite this a little.

<l

X'V+X 'V+§
X

!
!

<
[
Q X

Because we formed X using linearly independent solutions we know that det(X) must be
nonzero and this in turn means that we can find the inverse of X. So, multiply both sides
by the inverse of X.

Now all that we need to do is integrate both sides to get V(t).
v(t)=[X gt

As with the second order differential equation case we can ignore any constants of
integration. The particular solution is then,

xp=xjx4gm (2)

Let’s work a quick example using this.

Example 2 Find the general solution to the following system.

o' -5 1) 2t 6
X = X+e
4 -2 -1
Solution

We found the complimentary solution to this system in the real eigenvalue section. Itis,

el

Now the matrix X is,
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e—t _e—6t
X =
4t ™
Now, we need to find the inverse of this matrix. We saw how to find inverses of matrices

back in the second linear algebra review section and the process is the same here even
though we don’t have constant entries. We’ll leave the detail to you to check.

1 At 1 At
X—1: ge ge
_4e6t 1e6t

5 5

Now do the multiplication in the integral.

Now do the integral.

3t
X et dt 13
[xgdt= . |dt= / = °
~5e” [-sedt| \~¢e
Remember that to integrate a matrix or vector you just integrate the individual entries.

We can now get the particular solution.
Xp =X [ X gt

~ et _p® % e
4ot g ® _ % g8t
23 A2t
17 a2t
ﬂe

(Ej
_ a2t 24
=e 7
24
The general solution is then,

g N o L 2t %
X(t)=ce ATeET| )T g

So, some of the work can be a little messy, but overall not to bad.

We looked at two methods of solving nonhomogeneous differential equations here and
while the work can be a little messy they aren’t too bad. Of course we also kept the
nonhomogeneous part fairly simple here. More complicated problems will have
significant amounts of work involved.
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Laplace Transforms

There’s not too much to this section. We’re just going to work an example to illustrate
how Laplace transforms can be used to solve systems of differential equations.

Example 1 Solve the following system.
X = 3% —3X, +2 x (0)=1
X, =-6% —t X,(0)=-1
Solution

First notice that the system is not given in matrix form. This is because the system won’t
be solved in matrix form. Also note that the system is nonhomogeneous.

We start just as we did when we used Laplace transforms to solve single differential
equations. We take the transform of both differential equations.

sX, (s)=%(0)=3X,(s)-3X, (s)+§
X, (5) %, (0)=-6%,(5)- =

Now plug in the initial condition and simplify things a little.
(s-3) Xl(s)+3X2(s)=§+l=%

6X,(s)+sX,(s)=—5-1=-

Now we need to solve this for one of the transforms. We’ll do this by multiplying the top
equation by s and the bottom by -3 and then adding. This gives,
3s°+3

SZ

(s*—3s-18)X,(s)=2+s+
Solving for X; gives,
s®+552+3
X -
{8)= (51 3)(5-0)

Partial fractioning gives,

1 (133 28 3 18}

1(5):108 S—6 s+3 s s

Taking the inverse transform gives us the first solution,

X (1) = %(133@6t —28e™ +3-18t)

Now to find the second solution we could go back up and eliminate X; to find the
transform for X, and sometimes we would need to do that. However, in this case notice
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that the second differential equation is,
X, =—6x —t = xzzj—le—tdt

So, plugging the first solution in and integrating gives,

X, (t)= —%_|.133e6t —28e” +3dt

- —%(133&‘ +56e™ +18t) +c

Now, reapplying the second initial condition to get the constant of integration gives

—l:—i(133+56)+c = =3
108 4

The second solution is then,

X, (t)= —ﬁ(l%eet +56e " +18t - 81)

So, putting all this together gives the solution to the system as,

X ()= ﬁ(l%e“ —28e™ +3-18t)

X, (t) = —ﬁ(meﬁ‘ +56e " +18t —81)

Compared to the last section the work here wasn’t too bad. That won’t always be the
case of course, but you can see that using Laplace transforms to solve systems isn’t too
bad in at least some cases.
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