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Types of causative
variant

Coding or regulatory ?

SNPs, simple InDels,
CNVs ?

Mechanism

Molecular / cellular
processes by which natural
allelic variation leads to
phenotypic change

Motivation

Evolution

What forces maintain genetic
variation !

(

Mutation-Selection
Balance

deleterious
Very rare (< 1% MAF)

Large effect

\

Variants unconditionally

(

Balancing
Selection

Variants maintained
by selection
Intermediate-frequency

Subtle effect




Drosophila Synthetic
Population Resource
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Empirical “Positive Control”

Overall activity of Alcohol Dehydrogenase
(ADH) enzyme

Quantitative genetic variation of enzyme activities in natural
populations of Drosophila melanogaster

(population genetics/modifier loci/!'egulatory elements/protein polymorphism)
C. C. LAURIE-AHLBERG', G. MARONH, G. C. BEWLEY', J. C. LUCCHESH, AND B. S. WEIRS

Adh Locus

Quantitative analysis of RNA produced by Slow and Fast alleles of

Adh in Drosophila melanogaster
(gene regulation/alcohol dehydrogenase/molecular evolution/polymorphism)

CATHY C. LAURIE* AND LYNN F. STAM*

Use of in Vitro Mutagenesis to Analyze the Molecular Basis of the
Difference in Adh Expression Associated With the Allozyme
Polymorphism in Drosophila melanogaster

Madhusudan Choudhary’ and Cathy C. Laurie?

The Effect of an Intronic Polymorphism on Alcohol Dehydrogenase
Expression in Drosophila melanogaster

Cathy C. Laurie and Lynn F. Stam

Molecular Dissection of a Major Gene Effect on a Quantitative Trait: The Level
of Alcohol Dehydrogenase Expression in Drosophila melanogaster

Lynn F. Stam and Cathy C. Laurie

Classic studies on the
quantitative genetics of ADH
expression (Cathy Laurie)

Allozyme Polymorphism

Fast AAG Lys
Slow ACG Thr

v

Intronic InDel Polymorphism

Vi-Low 29-bp
VI-High 34-bp




Variation

® Slow founders show consistently low

ADH activity

® Variation among

founders -
implies other loci involved
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ADH Enzyme Activity QTL
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Adh QTL Phasing

ADH Activity
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Three allelic
groups

Low activity
Al,A2,B7

Medium activity
B3

High activity
A4-A7,BI, B2,
B4, B6,ABS8

Confirm effect of Fast/Slow, but other

alleles at Adh are also involved




Additional ADH QTL
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Control for Adh haplotypes
defined by F/S and VI




QTL to Causative Variants

Founder Predicted Sequence
means allelic alignment within
at QTL configuration QTL interval

GGCCAGTAAAAATATTAAATTCACACT
GGCCAGTAAAAACATTAAATTCACACT
GGCCAGTAAAAATATTAAATTCACAGT
GACCAGCAAAAATATTAAATTTACAGT
GACCAGCAAAAACATTAAATTTACAGT
GGCCAGCAAAAATATTAAATTTACACT
GGCCAGCAAAAACATTAAATTTACACT
GGCCAGCAAAAATATTAAATTTACAGT

rrrrcrreIITX




Few “in-phase” Polymorphisms

SNP | nsSNP

Ql 169
QR2 6

QR3 102
QR4 |2
QR6 537
QR7 2

QRS 37

Ql
Includes known
F/S Adh variant

QR2
Includes frameshift
mutation in CG7377

and intronic deletion
in CG6024



Nicotine Resistance QTL
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Expression Candidates (2L)
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Expression Candidates (3R)

Coverage
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Starvation Resistance in DSPR

Resistance in males
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Resistance in females (sorted by male means)
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Numerous Starvation QTL

QTL mapping in males
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Female QTL Summary

QTL | Popn | Chr | % Var Expl Size (Mb) # Genes

I A 2R 5.8 | .4 220

2 A 2R 4.6 0.9 179

3 A 2R 4.4 0.6 103

4 A 3L 6.4 0.5 4]

5 A 3R 6.7 1.5 208 <€—t— centromeric
6 B 2L 4.6 0.4 28

7 B 2L 4.3 0.5 40

8 B 2L 7.1 2.5 243 <€—— centromeric
9 B 3L 10.5 0.5 43

|0 B 3R 4.9 0.5 64

|l B 3R 4.4 0.5 | 04

58+ 1.87 | 09 %0.66 116 + 81.8




Strain
Effects

Rare QTL

Common QTL
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Heterozygous Mapping Designs

— Map using trans-heterozygous cross progeny
— Minimizes inbreeding depression
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LOD

LOD

LOD

LOD

Homozygous
RIL

(N = 801)

Heterozygous
RIL x RIL
(N =748)

Heterozygous
RIL x Std |
(N =788)

Heterozygous

RIL % Std 2
(N =721)




Expression Profiling

® RNA from ~300 3-5 d.o.

mated female heads per
genotype

® NimbleGen 12 x |35K
microarrays
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16,637 target genes
(8 probes/target)

® Robust multi-array (RMA) analysis

Account for mismatches in probes

Strong correlation between
replicate arrays



Mapped eQTL
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cis-eQTL
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Clk Clock FBgn0023076 |cis
tim timeless FBgn0014396 |cis
rho rhomboid FBgn0004635 |cis
cyc cycle FBgn0023094 |cis
Oda Ornithine decarboxylase antizyme |FBgn0014184 |trans
Slob Slowpoke binding protein FBgn0264087 |trans
DopR Dopamine receptor FBgn0O0I1 1582 |cis
Ssk Snakeskin FBgn0036945 |trans
Pka-R2 cAMP-dependent protein kinase R2 |FBgn0022382 |cis
5-HTIB |Serotonin receptor |B FBgn0263116 |cis

Behavioral / Neural Gene eQTL

Variance explained

.

7,828 eQTL mapped for
7,422 target gene
expression measures



QTL for
methotrexate
toxicity

No clear
biallelic pattern
of strain effects

Multiallelic QTL ?
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Caffeine Resistance QTL
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pQTL-eQTL Overlap

— Combine pQTL and eQTL to help define loci
contributing to phenotypic variation
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