

The controversial role of the Polycomb group proteins in transcription and cancer: how much do we not understand Polycomb proteins?

Andrea Scelfo, Andrea Piunti and Diego Pasini

Department of Experimental Oncology, European Institute of Oncology, Milan, Italy

Keywords

cancer, chromatin, epigenetics, histone modifications, Polycomb, PRC1, PRC2, transcriptional regulation

Correspondence

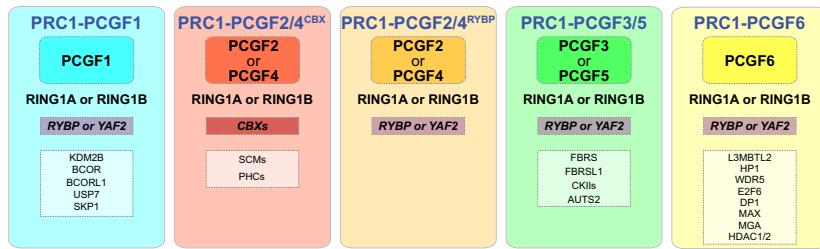
D. Pasini, Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy
Fax: +390294375990
Tel: +390294375139
E-mail: diego.pasini@ieo.eu

(Received 21 August 2014, revised 3 October 2014, accepted 14 October 2014)

doi:10.1111/febs.13112

Polycomb group proteins (PcGs) are a large protein family that includes diverse biochemical features assembled together in two large multiprotein complexes. These complexes maintain gene transcriptional repression in a cell type specific manner by modifying the surrounding chromatin to control development, differentiation and cell proliferation. PcGs are also involved in several diseases. PcGs are often directly or indirectly implicated in cancer development for which they have been proposed as potential targets for cancer therapeutic strategies. However, in the last few years a series of discoveries about the basic properties of PcGs and the identification of specific genetic alterations affecting specific Polycomb proteins in different tumours have converged to challenge old dogmas about PcG biological and molecular functions. In this review, we analyse these new data in the context of the old knowledge, highlighting the controversies and providing new models of interpretation and ideas that will perhaps bring some order among apparently contradicting observations.

Introduction


Polycomb group proteins (PcGs) were first described in *Drosophila melanogaster* as important regulators of development and tissue morphogenesis, starting more than 60 years ago with the identification of Polycomb [1]. The PcG mammalian orthologues began to be described in the early 1990s, starting from the identification of *Bmi1* (*Psc* in *D. melanogaster*) and the discovery of its direct role in cancer development as a cooperative oncogene in a mouse model of Myc-induced lymphomagenesis [2,3]. These observations raised a large interest in PcG factors, which led to the identification of several other mammalian orthologues [4]. These studies characterized PcGs at a biochemical and functional level

revealing that PcGs are present as two distinct multi-protein nuclear complexes [5] that, due to their repressive nature, were eventually named Polycomb repressive complex 1 and 2 (PRC1 and PRC2). These complexes are formed by several PcGs with different and still not fully understood functions [6].

The PRC1 is the complex with the largest number of reported subunits and recent studies highlighted the existence of at least five biochemically distinct sub-complexes with potentially different biological functions [7] (Fig. 1). All the PRC1 sub-complexes contain the core RING1A or RING1B E3-ligases (also known as RING1 and RNF2, respectively) that catalyse all

Abbreviations

AML, acute myeloid leukaemia; CpGi, CpG islands; DIPG, diffuse intrinsic pontine gliomas; Eed, embryonic ectoderm development; Ezh, enhancer of zeste; HSC, haematopoietic stem cell; KMT, lysine methyltransferase; KO, knockout; MDS, myelodysplastic syndrome; MEF, mouse embryonic fibroblast; mESC, mouse embryonic stem cell; ncRNA, non-coding RNA; PCGF, polycomb group ring finger; PcGs, Polycomb group proteins; PNS, peripheral nervous system; PRC, Polycomb repressive complex; PRE, Polycomb response element; Suz12, suppressor of zeste.

Fig. 1. Biochemical structure of the different PRC1 complexes. The picture summarizes the existence of functionally distinct PRC1 sub-complexes. The assigned nomenclature is from the original publication by Gao *et al.* [7] assuming that specific PCGF proteins, in association with either CBXs or RYBP/YAF2, define the functional and biochemical nature of the complexes. The definition of these complexes also assumes that PCGF2 and PCGF4 or PCGF3 and PCGF5 play redundant functions, as the biochemical composition of the PRC1 complexes formed by these proteins was identical.

mono-ubiquitination of the lysine 119 found on histone H2A (H2Aubq) [8,9]. Ring1a and Ring1b require stable interaction with different polycomb group ring finger (PCGF) proteins, which biochemically define the different forms of PRC1 (Fig. 1) [7]. The PRC2 composition is simpler than PRC1 and retains the ability to methylate (me) lysine 27 of histone H3 (H3K27). Such activity is exerted by the lysine methyltransferases (KMT) Ezh2 and Ezh1 [10] that control all the three states of H3K27 methylation (H3K27me1, H3K27me2 and H3K27me3) [11]. The catalytic activity of PRC1 and PRC2 is fully dependent on the formation of a core complex structure. While the RING1A/B ubiquitin-ligase activity largely requires the interaction with PCGF proteins *in vitro* and *in vivo* [12,13], EZH2/1 KMT activity requires interaction with the proteins EED and SUZ12 [14–16]. PRC1 and PRC2 are in large part associated together at chromatin sites enriched for genes involved in differentiation and proliferation processes [17,18]. Although Pcg chromatin binding largely correlates with transcriptional repression [19], recent reports challenged this dogma and provided evidence that linked Pcg activity also to active transcription [11,20,21].

Several components of both complexes are not essential for the intrinsic enzymatic activity of PRCs but seem to play fundamental roles in regulating the function and chromatin association of the two complexes. This is the case for RYBP, KDM2B (PRC1) or JARID2 (PRC2), which regulate stability and recruitment of Pcg complexes to chromatin [22–25]. The complete understanding of the mechanisms that recruit PRC1 and PRC2 to chromatin in mammalian cells still remains a matter of debate that will be analysed in more detail in a following section.

Pcg biological functions have been generally studied in two main directions: (a) the role of Pcs in differ-

entiation and development and (b) the role in cellular proliferation and tumorigenesis [5,26]. While the genetic depletion of different Pcs results in mouse embryonic lethality or in distinct developmental defects, increased Pcg activity is a negative prognostic factor for several tumours and Pcg inhibition is generally considered a potential strategy for cancer treatment [5].

In this review we analyse the recent data that uncover new functions and molecular properties of Pcs, revisiting old and new dogmas and controversies linked to Pcg biological activities.

Enzymatic activity of PRC2 and the role of its different partners

The best characterized activity of PRC2 is the trimethylation of H3K27 [16,27,28], which is preferentially deposited at CpG-dense genomic regions that largely correspond to gene promoters. Such deposition occurs simultaneously with the stable association of Pcs to the modified chromatin loci and correlates with transcriptional repression. The core composition of PRC2 is conserved from *Drosophila* to mammals, is maintained across cell types and implies the stable association of four core protein components: suppressor of zeste (Suz12), embryonic ectoderm development (Eed), retinoblastoma binding proteins 46 and 48 (RBBP4/7) and the two enhancer of zeste paralogues Ezh1 and Ezh2. The SET domain of EZH1/2 retains KMT activity specific for H3K27. The two different enhancer of zeste proteins are mutually exclusive within the PRC2 complex and display different *in vitro* KMT activities, cell type specific expression patterns and chromatin binding capabilities [29]. All core proteins are essential for Ezh1/2 enzymatic activity both *in vivo* and *in vitro* [15,30], which is consistent with the comparable developmental block observed in Eed,

Suz12 or Ezh2 knockout (KO) mice [14,31,32] and in line with the role of PRC2 in repressing the transcription of genes involved in cell differentiation and lineage specification [33–36]. Eed contains a WD40 domain that can directly bind H3K27me3, thus suggesting a self-sustaining mechanism for PRC2 activity during cell cycle progression [37,38]. In addition, H3K27me3 can establish an allosteric regulation that enhances the KMT activity of PRC2 [37]. *In vitro*, PRC2 KTM activity is boosted up to 7-fold in the presence of an H3K27me3 peptide, suggesting that allosteric regulation is not achieved via simple stabilization of PRC2 with its substrate (the nucleosome) but possibly through conformational changes in the complex. However, it remains unclear if Eed interaction with H3K27me3 is directly involved in such regulation since recent reports showed that a PRC2 complex, containing an Eed form mutated in its WD40 domain (Y365A) unable to bind H3K27me3, can be stimulated by H3K27me3 peptides to a similar extent as its wild-type counterpart [39], which is in contrast to what was previously reported [40]. These results leave the question about the physiological role of Eed recognition of H3K27me3 and the mechanism by which H3K27me3 can stimulate PRC2 activity in *cis* or *trans* in living cells open. *In vitro*, the PRC2 K_m is not altered by the addition of an H3K27me3 peptide, while the reaction V_{max} becomes strongly enhanced [40]. This demonstrates that allosteric H3K27me3 stimulation of PRC2 activity does not act by improving the affinity of the enzyme for its substrate but by increasing the rate of product conversion. Interestingly, the same study showed that the enzymatic kinetics and H3K27me3 allosteric stimulation were identical on mononucleosomes containing H3K27me0:H3K27me3 heterodimers with respect to fully unmethylated nucleosomes, demonstrating the lack of in *cis* H3K27me3 stimulation of PRC2 activity [40]. Moreover, the same study reported (but did not show) that PRC2 activity could not be stimulated in *trans* by fully methylated nucleosomes, leaving open the question whether pre-deposited H3K27me3 can stimulate PRC2 activity *in vivo*.

The H3K27 residue is modified post-translationally by EZH1/2 in a stepwise manner from the mono-methylated to the tri-methylated form (H3K27me1/2/3). Each different H3K27 methylated form can have different deposition patterns along the genome and functional outcomes [11]. *In vivo*, PRC2 activity regulates the deposition of H3K27me2 and H3K27me1 without stable association with target genomic loci [11]. Such deposition is linear with DNA synthesis [11], suggesting a rapid methylation of H3K27 upon

the replication-dependent incorporation of new histones, in accordance with the localization of PRC2 at sites of ongoing DNA replication [38,41]. Proteomic studies performed in mouse embryonic stem cells (mESCs) showed that more than 80% of H3K27 is methylated and that the large majority (~ 70%) is in the di-methylated form. This suggests that the main enzymatic product of PRC2 in living cells is H3K27me2, which covers large genomic regions [11]. H3K27me3, which in ESCs accounts for approximately 7% of whole H3K27, is preferentially deposited at specific loci in correspondence to CpG-rich DNA regions that largely correspond to TATA-less gene promoters [11,42]. While both H3K27me3 and H3K27me2 correlate with transcriptional silent genomic regions, H3K27me1 (accounting for approximately 4% of all H3K27) is deposited throughout the gene bodies of actively transcribed genes in correspondence to H3K36me3 enrichment, a histone post-translational modification directly controlled by transcriptional elongation [11,43–46]. *In vitro* studies showed that H3K27me0 and H3K27me1 are better substrates for PRC2 than H3K27me2 [47]. This is consistent with the *in vivo* distribution of the H3K27 methylation pattern where H3K27me2 is the major product of PRC2 activity [11]. We have proposed that H3K27me1 domains are formed via H3K36me3-mediated in *cis* inhibition of PRC2-dependent H3K27me1 conversion to H3K27me2, while H3K27me3 deposition is achieved only upon stable interaction of PRC2 with chromatin, a condition necessary to compensate its low enzymatic efficiency in methylating H3K27me2 [47,48]. This model becomes even more evident when EZH2 Y641 hyperactive mutations (recently discovered in human lymphomas) are analysed *in vivo* and *in vitro* (these mutations will be discussed in detail in a following section). EZH2 Y641 mutations probably induce changes within the EZH2 SET domain that greatly enhance the ability of the enzyme to methylate H3K27me2. *In vivo* this results in a dramatic increase of H3K27me3 deposition with respect to the H3K27me1/me2 levels [47]. The diffused deposition of H3K27me2 in intra- and inter-genic domains has a protective function in preventing the aberrant activation of enhancer-like elements counteracting H3K27 acetylation (ac) [11]. This is consistent with previous reports showing that global H3K27ac levels are increased upon loss of PRC2 activity [24,49].

H3K27me3 deposition seems to occur only in the presence of a stable association of the PRC2 complex with chromatin. This is achieved by the association of PRC2 accessory proteins that are dispensable for the intrinsic KTM activity but important for the stabiliza-

tion of the complex at target sites. These proteins have been suggested to differentially regulate PRC2 activity among cell types and across developmental stages [10]. These accessory proteins include (a) AEBP2 [15], a zinc finger protein that enhances KTM activity *in vitro* and shows about 70% of co-localization with PRC2 (Suz12) genomic target loci [50]; (b) the three mammalian homologues of *Drosophila* Polycomb-like (Pcl1-3, also known as PHF1 [51,52], MTF2 [53,54], PHF19 [55,56]) which display some tissue specific expression and present a TUDOR domain capable of binding H3K36me3; such affinity has been suggested to be a triggering mechanism to initiate silencing of actively transcribed genes [57,58]; (c) the Jumonji and ARID domain containing protein Jarid2 (which is able to bind GC-GA rich DNA elements) required for PRC2 recruitment at target genes and for proper ESC differentiation [24,59–62]. Importantly, Pcl and Jarid2 proteins incorporate in the PRC2 complex in a mutually exclusive manner suggesting that the interaction with different accessory subunits could contribute to targeting the PRC2 complex to specific promoters in a context restricted manner [57]. Recent findings also revealed a physical interaction in mESCs and in human cancer cell lines between PRC1 and Eed (a specific member of the PRC2 complex) providing an additional layer of regulation and complexity. Eed can associate more stably with PRC1 proteins that belong to the CBX-containing PRC1 sub-complex (PRC1^{CBX}). In particular, Eed interacts with PCGF4 (BMI1) and PCGF2 (MEL18). In this work, the authors suggested that Eed mediates the recruitment of this PRC1 variant to Pcg target loci in prostate cancer cell lines [63].

Biological and biochemical complexity of PRC1

PRC1 is present in different sub-complexes that are biochemically distinct from each other (Fig. 1) [7,64]. All PRC1 sub-complexes contain the RING1A or RING1B subunit, which determines PRC1 catalytic outcome [65]. These different sub-complexes are defined by the presence of one of the six PCGF subunits which are crucial for RING1A/B E3 ligase activity [7]. Although PRC1 sub-complexes were previously divided in six different complexes based on the presence of specific Pcgf proteins [7], such classification did not take into account the presence of CBXs or Rybp/YAF2 proteins, or considered that some of these complexes have redundant biochemical composition. Therefore, we decided to provide a new classification of the different PRC1 sub-complexes that is based on their interacting proteins as shown in Fig. 1. The so-

called ‘canonical PRC1’ is defined by the presence of the PCGF proteins 2 or 4 (BMI1 and MEL18, respectively) and by the association of other subunits like PHC and CBX (PRC1-PCGF2/4^{CBX}) [66]. This complex seems to be recruited to chromatin through the ability of the CBX proteins to bind the H3K27me3 deposited by PRC2 [5]. Such mechanism is consistent with the large overlap in the target genes between PRC2 and RING1B [36] and with the global loss of RING1B chromatin association at those target sites in the absence of PRC2 activity [22]. However, upon loss of PRC2 activity, the global H2Aubq levels remain largely unaffected suggesting that PRC1 enzymatic activity does not depend on PRC2 [22]. Indeed, the residual PRC1 containing RYBP remains associated with the target genes to sustain the H2Aubq levels in the absence of PRC2 [22]. RYBP and its parologue YAF2 are present in all the PRC1 sub-complexes and consequently are mutually exclusive with CBX proteins when associated with PCGF2/4. This forms the PRC2-dependent PRC1-PCGF2/4^{CBXs} and the non-canonical PRC1-PCGF2/4^{RYBP} complex (Fig. 1) [7,22]. Overall, the intricate biochemical structure of RING1A/B-associated proteins generates sub-complexes with potentially different biological functions. Surprisingly, CBX- and RYBP-containing complexes share a large degree of overlap in target genes [7,67] although they seem to bind adjacent regions separately [7]. In addition, a recent work demonstrated that PRC1-PCGF2/4 complexes are unable to deposit H2Aubq when forcibly recruited on chromatin [68] suggesting that (a) pre-existing H3K27me3 could be essential for PRC1-PCGF2/4 activity and (b) deposition of the H2Aubq is largely dependent on the activity of RYBP/YAF2-containing complexes. However, the fact that PRC1-PCGF2/4 complexes (which can also contain RYBP instead of CBXs) do not contribute to H2Aubq deposition in these conditions may suggest that PRC1-PCGF2/4 complexes are not a major source of H2Aubq in living cells [68].

The mechanisms by which the PRC1 and the specific sub-complexes are recruited on chromatin still remain an important open issue. Recent findings uncovered a role for Kdm2b in recruiting PRC1 on chromatin [69]. Kdm2b is specifically associated with the PRC1-PCGF1, which controls a large part of H2Aubq present in mESCs [7]. Together with its parologue Kdm2a (which does not associate with PRC1), Kdm2b is a histone H3K36me3/2 specific demethylase [70]. Both demethylases contain a CXXC domain with high affinity towards CpG-rich DNA regions, consistent with their diffuse localization to CpG-rich promoters [71]. Kdm2b depletion in mESCs leads to premature differ-

entiation [25] similarly to *Ring1a/b* loss of function [9]. Furthermore, Kdm2b forced recruitment on chromatin leads to the recruitment of endogenous components of PRC1-PCGF1 and to the co-recruitment of PRC2, which can establish *de novo* H2Aubq and H3K27me3, respectively [68]. Another non-canonical PRC1 sub-complex that is probably involved in the regulation of ESC identity is PRC1-PCGF6 [7,72]. This complex contains the proteins L3mbtl2 and Wdr5, which are essential to maintain the pluripotent state of ESCs [73,74]. However, PRC1-PCGF6 is formed by promiscuous subunits: Wdr5 is also an essential component of all COMPASS complexes that control all H3K4 methylation states in different cell types [75]; Max is the dimerization partner of Myc that is essential for its transcriptional activity [76]; E2f6, a non-transactivating member of the E2F transcription factor family, can also associate with members of PRC2 and G9a/GLP complexes in proliferating cells [77,78]; Hdac1/2 are partners of several different repressive complexes [79]; and L3mbtl2 is stably present also in the NuRD complex [73]. The specific role of these proteins in the PRC1-PCGF6 is still poorly characterized. While the purified L3mbtl2-PRC1 complex is able to deposit H2Aubq on recombinant nucleosome [72], *L3mbtl2* KO mESCs do not show any significant change in the levels of this histone modification [73]. It is possible that L3mbtl2 contributes to the deposition of H2Aubq only at specific loci [72], even though L3mbtl2 does not seem to regulate classical PcG targets in mESCs [73]. The PRC1-PCGF1 and PRC1-PCGF3/5 are even more poorly characterized; however, the forced recruitment of these specific sub-complexes to chromatin is sufficient to deposit H2Aubq and to induce PRC2 recruitment [68]. In general, the current knowledge about the biological and molecular functions of the different PRC1 sub-complexes is still largely not understood and a more comprehensive characterization of their functions is absolutely required to decrypt the multifaceted activity of PRC1 and PRC2 complexes.

Functional interplay between PcGs and non-coding RNAs

In the last few years an increasing number of reports have highlighted that PcGs can functionally interact with RNA molecules. Besides protein-coding RNA transcripts, the large fraction of PcG interacting RNAs have non-coding properties (ncRNAs). Such interaction can involve both small ncRNAs of a few tens of nucleotides and long ncRNAs hundreds of kilobases in length that can fold into secondary structures and

form sequence specific DNA interactions [80]. These findings made PcG-ncRNA interaction an exciting mechanism by which PcGs can be recruited at target loci. This mainly involves (a) PRC2 recruitment to the inactivating X-chromosome via direct *Xist* interaction; (b) PcG recruitment to a Hox gene cluster by the *HOTAIR* ncRNA; (c) PcG recruitment to the *Ink4a-Arf* locus by the *ANRIL* ncRNA. Both PRC1 and PRC2 complexes decorate the inactive X-chromosome (Xi) in mammals depositing H3K27me3 and H2Aubq, respectively. While PRC1 recruitment at Xi is poorly characterized, PRC2 coating of the Xi is mediated by its ability to interact with different antagonistic ncRNAs transcribed from the X-chromosome inactivation centre (RepA and *Tsix*): this generates a complex mechanism of regulation resulting in the full transcriptional activation of one *Xist* allele. The resulting *Xist* transcript coats the Xi in *cis* and mediates PcG recruitment. However, it is still not clear if direct *Xist* binding is mediated by Ezh2 [81,82] or by the PRC2 subunit Jarid2 [83]. Similarly, the PRC1-PCGF2/4^{CBX} subunit Cbx7 can also be recruited to the Xi in an RNA-dependent manner [84].

A similar mechanism was shown to recruit PRC2 at the *HOXD* in *trans* via direct interaction of PRC2 with the ncRNA *HOTAIR*, a 2.1 kb transcript originating from a non-coding region of the *HOXC* cluster [85]. It was further proposed that different regions of the *HOTAIR* RNA could bind multiple repressive complexes functioning as a recruitment platform for epigenetic repressors to specific loci. Indeed, both PRC2 and the LSD1/CoREST/REST complex bind *HOTAIR* simultaneously to its 5' and 3' end, respectively, to form a super-repressive complex [86]. *HOTAIR* is highly expressed in cancer cell lines and is linked to enhanced tumour progression. However, such mechanism seems to be a specific feature of human cells, as murine *Hotaire* deletion has no effect on HoxD expression during mouse development [87]. Finally, the PRC1 complex has been shown to repress the *Ink4a-Arf* locus in part via its interaction with *ANRIL*, a long antisense non-coding transcript originating from the *Ink4a-Arf* locus. *ANRIL* is highly expressed in prostate cancer tissues and mediates *INK4b/ARF/INK4a* epigenetic silencing by stabilizing in *cis* PRC1 activity to the locus [88].

High-throughput and *in vitro* approaches, aiming to identify additional ncRNAs associated with PcGs, have highlighted a promiscuous affinity of PRC2 for binding RNA molecules. More than 9000 different PRC2-associated RNAs were identified in mESC by RNA immunoprecipitation analysis [89]. The recombinant PRC2 complex is able to bind *in vitro* with good affinity a variety of RNA molecules of different

lengths (up to 300 bp) with no preference for a particular sequence. This suggests that PRC2 association with RNA could be dictated by affinity for RNA secondary structures rather than by recognition of particular binding motifs [90]. The transcription of short RNAs (50–200 bp in average length) has been reported at a fraction of PcG target loci in primary T cells and mESCs. These short Pol-II-dependent transcripts fold in secondary structures that are able to bind SUZ12, to recruit PRC2 and silence target genes [91]. Crosslinking immunoprecipitation analysis performed to identify PRC2-associated RNAs highlighted that PRC2 binds nascent RNA transcripts originating from active regions with low PcG enrichment and H3K27me3 deposition [90,92]. In the first report, the authors propose that PRC2 senses nascent RNA expression as an ‘escape’ from repression. PRC2 binding to nascent transcripts would therefore stimulate PRC2 activity and deposition of H3K27me3 to re-establish gene repression [90]. Differently, the second report suggests that contact between nascent RNAs and PRC2 prevents the accumulation of H3K27me3 allowing low transcription levels [92]. Further investigation is still needed to properly comprehend the role of PRC2 in binding nascent RNA transcripts. Interestingly, while PRC2 nascent RNA binding regions were devoid in JARID2 association [90,92], crosslinking immunoprecipitation assays for JARID2 mostly identified interaction with lncRNAs, suggesting different functional properties for PRC2 association with RNA molecules [93].

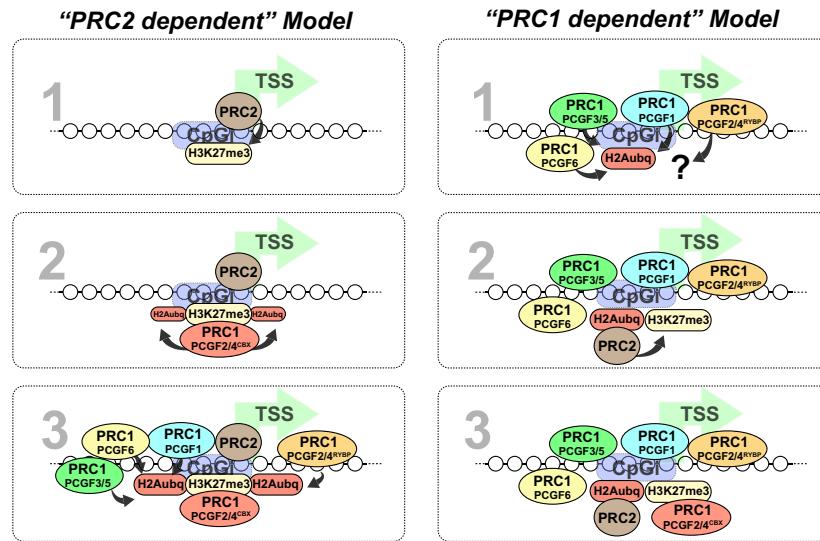
Chromatin recruitment of Polycomb group proteins

The investigation of the mechanisms underlying PcG targeting at specific genomic loci is one of the most debated and still undefined issues. Such mechanisms, ultimately leading to gene repression and establishment of correct transcriptional programmes, are better characterized in *Drosophila* but seem to retain a low level of conservation in vertebrates where alternative recruitment mechanisms have been proposed. However, such differences could be smaller than what they seem, as most of the knowledge related to PcG recruitment and transcriptional control in *Drosophila* is based on genetic screens and studies performed before the era of ChIP and high-throughput sequencing. Such genetic approaches led to the identification of distal *cis*-regulatory elements bound by PcGs, defined as Polycomb response elements (PREs), that are involved in the coordinated spatio-temporal regulation of homeobox gene transcription during devel-

opment [94–96]. Differently, all available knowledge related to PcG transcriptional activity in mammals is largely based on correlative studies aimed at mapping sites of enrichment for PcGs along the genome. PREs are almost devoid of nucleosomes and present consensus sites for a number of DNA binding proteins that are able to recruit PcG repressive complexes [97,98]. Such DNA binding factors are not conserved in mammals with the exception of PHO (YY1 in mammals). However, genome-wide and biochemical studies have demonstrated that YY1 does not play any role in PcG recruitment in mammalian cells [99]. Indeed, retrospective analyses performed in *Drosophila*, with a similar approach to that used for mammalian cells, highlighted that PcG enrichment and H3K27me3 deposition are not restricted to PREs and can be frequently found also at gene promoters [97,98]. This suggests that the general mechanisms of PcG recruitment might retain a certain degree of conservation. In mammals, PcGs preferentially associate with CpG-rich promoters [42]. Although in the *Drosophila* genome CpG islands (CpGi) do not exist, the ‘broad’ features of mammalian CpG-rich promoters are highly conserved also in the *Drosophila* system (CpG-rich promoters do not have a TATA box and an initiator signal, and do not display a precise transcription start site) [100], suggesting that the PcG recruitment mechanism could be linked to the underlying nature of CpG-rich promoters rather than directly to the CpG-rich DNA elements. Indeed, no clear-cut data have been published about the role of the direct recognition of these DNA elements by PRC1 and/or PRC2 complexes and their recruitment to target promoters.

The solid genetic data published on *Drosophila* about the role of DNA binding transcription factors mediating PcG recruitment favoured models where PcGs are selectively recruited at specific target genes via direct interaction with cell type specific transcription factors [101]. For example, both PRC1 and PRC2 have been shown to interact and to be potentially recruited at promoters by the transcription factor REST [102,103]. Bmi1 (PRC1) was biochemically purified along with Runx1/Cbf β , which is able to recruit PRC1 in a PRC2-independent manner [104]. Similarly, PRC2 can be recruited by Snail1 to play a role in epithelial to mesenchymal transition [105] or, aberrantly, via interaction with leukaemic DNA binding fusion proteins such as PML-RAR α [106] and PLZF-RAR α [107].

The discovery of the affinity of PRC1 and PRC2 complexes for RNA binding molecules also favoured a different model in which ncRNAs could drive


promoter specific recruitment of PcG activities, as described in the previous section. However, the promiscuous binding affinity of PcGs for RNA species, and the large number of RNA molecules to which PcGs can associate *in vivo*, favour the existence of an *in cis* mechanism that senses transcribed RNA molecules (independently of their nucleotide sequence) rather than an *in trans* mechanism of active recruitment, such as those proposed for HOTAIR at the HOXD locus.

The model by which *in cis* transcribed RNAs, that can be either small, nascent or lncRNAs, mediate PcG recruitment is in contrast with another model in which PcGs would tend to bind by default CpG-rich promoters, and this association is simply excluded by either active transcription or DNA hyper-methylation at the CpGi [42,108–110]. Indeed, recent evidence reported that chemical inhibition of RNA Pol II activity doubled the amount of PcG bound promoters (together with H3K27me3 deposition) within a few hours from the block of transcription. Such accumulation still occurs at CpGi-containing promoters that were previously annotated as PcG targets in differentiated cells [108]. This result implies that PRC2 association to CpGi occurs as a default mechanism and that transcription is sufficient to exclude PcG association from promoter elements. This observation is in line with the known role of PcGs during *Drosophila* development, where PcGs or TrxGs are recruited to PREs to maintain a pre-established transcription status [111]. Consistently with this model, the induction of transcription from an ectopic PRC2-bound CpG-rich promoter was sufficient to prevent PRC2 association *in vivo* [109]. Nonetheless, the model leaves the mechanism by which PRC2 and non-canonical PRC1 preferentially associate to CpG-rich DNA elements still an open question.

An additional mechanism that could mediate or contribute to PcG recruitment to specific loci is the ability of different PRC1 and PRC2 subunits to bind specific histone modifications. All Cbx proteins of PRC1-PCGF2/4 can bind H3K27me3 [112,113]. HP1 proteins are stable partners of PRC1-PCGF6 and can bind H3K9me3 [113]. Similarly, the Wdr5 present in PRC1-PCGF6 is also an essential subunit of the COMPASS complexes and is involved in the recognition of H3K4me3 [7,114]. In addition, the PRC2 complex stably includes PCL proteins (PCL1-3) containing a Tudor domain that can directly bind H3K36me2/3, a histone modification linked to active transcription. For instance, it is possible that Wdr5 could favour the association of PRC1 complexes at bivalent promoters (which simultaneously contain H3K4me3 and H3K27me3) in ESCs. However, it is more likely that

the recognition of histone post-translational modifications by PcGs contributes to stabilizing their chromatin association rather than dictating cell type specific promoter association.

Regardless of the mechanisms dictating PcG promoter selection in specific cell types, the hierarchy and the interdependence between PRC1 and PRC2 association at target loci is an additional important issue of investigation and debate. Once the different PRC1 sub-complexes were clearly defined, it immediately became clear that the old hierarchical model in which PRC2 mediates PRC1 recruitment by the recognition of H3K27me3 with CBX proteins was inadequate (Fig. 2) [112,113]. Although the stability of Ring1b at the target promoter is in large part dependent on PRC2, a residual amount of Ring1b (~ 10%) is still associated with target loci in PRC2-null mESCs. This is sufficient to maintain normal levels of H2Aubq [22]. Such residual binding is dependent on RYBP, which is a mutually exclusive subunit in the canonical PRC1 (PRC1-PCGF2/4^{CBXs} versus PRC1-PCGF2/4^{RYBP}) and a constitutive subunit of non-canonical PRC1 complexes (PRC1-PCGF1, PRC1-PCGF3/5 and PRC1-PCGF6) (Fig. 1) [22]. Therefore, the deposition of H2Aubq seems fully dependent on RYBP-containing PRC1 complexes. The fact that KDM2B (Fbxl10) loss of function results in a global reduction of H2Aubq deposition strongly suggests that H2Aubq levels are largely under the control of PRC1-PCGF1^{RYBP}. Kdm2b retains a zinc finger CXXC domain that confers high binding affinity to CG-rich elements suggesting a direct mechanism that links non-canonical PRC1 to CpGi [23,115]. However, Kdm2b is not an exclusive partner of PRC1-PCGF1^{RYBP} and is found to be localized at almost all CpGi present in ESCs. This could serve as a potential platform for PcG recruitment as some of these genes can become PcG targets at later differentiation stages [23]. Recent reports have further challenged the previous model showing that the PRC2 complex can be recruited to chromatin by non-canonical PRC1 sub-complexes. While PRC1-PCGF1^{RYBP} and PRC1-PCGF3/5^{RYBP} are able to deposit H2Aubq and induce the recruitment of PRC2 activity, the forced recruitment of PRC1-PCGF2/4^{CBX} to the same genomic loci failed to deposit H2Aubq and to recruit PRC2 activity [68]. Furthermore, PRC2 was recently shown to bind *in vivo* and *in vitro* H2Aubq [116]. Together, these observations suggest a novel mechanism (Fig. 2) in which non-canonical PRC1 complexes are first recruited to establish H2Aubq domains, which mediate PRC2 association and H3K27me3. The establish-

Fig. 2. Mechanisms of hierarchical PRC1 and PRC2 recruitment to chromatin. The picture highlights different interpretations of PRC1 and PRC2 association at target loci. A 'PRC2-dependent' model is based on the initial literature and implies that PRC2 mediates PRC1 recruitment via H3K27me3 recognition. This scheme introduces the existence of PRC2-independent PRC1 sub-complexes that bind the same genomic loci independently of H3K27me3 and play a major contribution to sustain H2Aubq levels. Differently, the 'PRC1-dependent' model puts in context the recent discoveries showing that PRC2 can be directly recruited to chromatin by non-canonical PRC1 sub-complexes, potentially by recognizing H2Aubq. PRC1-PCGF1 is placed at the centre of a hypothetical CpGi to stress the ability of its subunit KDM2B to bind directly CpG-rich DNA. The PRC1-dependent model also stresses the poor contribution of PRC1-PCGF2/4 in establishing and sustaining H2Aubq levels.

ment of H3K27me3 mediates the recruitment of PRC1-PCGF2/4^{CBX}, recreating the co-occupancy observed *in vivo* by ChIPseq analyses for these complexes to the same target loci. The high affinity of KDM2B for CpGi further suggests that this protein could serve as a direct docking site to 'nucleate' the recruitment of multiple Pcg complexes to the same loci. However, the loss of function of Kdm2b is perinatal lethal in mice in comparison with the severe pre-implantation and post-implantation lethality observed in fully deficient PRC1 and PRC2 KO embryos, respectively [68]. This diminishes the central role of Kdm2b in regulating the recruitment of Pcg activities at CpG-rich promoters. Indeed, loss of function of Kdm2b in mESCs resulted in a modest decrease in PRC2 association at target loci [68]. Similarly, the complete loss of function of PRC1, although with greater effect, was not sufficient to fully displace PRC2 from its target promoters [68], highlighting the existence of multiple mechanisms that stabilize PRC1 and PRC2 association at their target promoters. Finally, it is important to highlight that all these observations were generated under experimental conditions that only address the mechanism by which Pcg maintain a pre-established binding pattern, which could be very different from

the mechanisms that establish *de novo* Pcg chromatin association.

Polycomb in stem cells and cellular differentiation

Pcg are able to establish heritable chromatin states that preserve gene-silencing patterns in a cell type specific manner. *In vitro* and *in vivo* evidence has shown that Polycomb proteins are able to mediate gene repression through different processes. Two main mechanisms of Pcg-mediated gene repression have been proposed: (a) chromatin compaction and (b) impairment of the functions of the transcription machinery. The ability of PRC1 in compacting nucleosome arrays was first described with the *Drosophila* PRC2 and this allowed the Posterior Sex Combs genomic region to be repressed [117]. Functional Pcg domains of compacted chromatin were also observed as foci within nuclei and were named Pcg bodies [118]. Although these data suggested that PRC1 ubiquitin E3-ligase activity is required for compaction, recent studies in ESCs showed that H2Aubq is dispensable for the condensation of the *Hox* gene cluster but indispensable for proper repression of the same targets [119]. In general, a more compacted state of

the chromatin is less accessible for chromatin remodelers (e.g. SWI/SNF complex) and transcription factors which eventually can lead to transcriptional activation [120]. Moreover, densely packed nucleosomes have been shown to stimulate PRC2 activity on H3K27, thus generating a positive feedback loop on PRC2 activity [121].

Another mechanism of P_cG repression involves the direct inhibition of the transcriptional machinery. Although it was reported that P_cG binding does not exclude RNA Pol II associations to promoters in *Drosophila* cells [122], genome-wide data showed a reduced RNA Pol II occupancy at bivalent promoters in ESCs [123]. RNA Pol II is associated at P_cG target promoters in its poised form (phosphorylated at Ser5 at its C-terminal domain) and the loss of Ring1a/b activity induces a switch to the elongating form (phosphorylated at Ser2) [124,125]. This suggests that P_cG occupancy at bivalent promoters is able to hold and stall RNA Pol II at transcription start sites.

In ESCs, self-renewal is controlled by the expression of pluripotency transcription factors (i.e. Oct4, Sox2 and Nanog) and probably by the repression of lineage specific genes [126]. P_cGs are expressed at high levels in ESCs and are enriched at promoter regions of key developmental regulators [34,35,126]. While loss of PRC2 activity does affect the self-renewal capabilities of ESCs [127,128], complete loss of the entire PRC1 activity induces a gradual loss of ESC self-renewal [9]. This further suggests that the non-canonical PRC1 complexes, which are not dependent on PRC2 activity, play very important developmental roles. This is consistent with the block during embryonic development at the two-cell stage observed in Ring1a/b double null embryos [129] with respect to the early post-implantation lethality of PRC2 [128,130] or PRC1-PCGF2/4^{CBX} deficient mice (Bmi1 and Mel18 double KOs) [131].

Some controversies regarding the role of Cbx7-associated PRC1 complex in maintaining ESC pluripotency exist. Cbx7 is the major Cbx protein expressed in ESC. While its overexpression can enhance ESC self-renewal [132,133], Cbx7 loss of function (RNAi-based) was reported to either impair [132,133] or not impair [132,133] ESC self-renewal. The fact that Cbx7 KO mice develop normally and are viable [134] suggests that, if required, this property of Cbx7 must be restricted to its acute loss in ESCs.

Although the loss of PRC2 activity does not affect ESC self-renewal, it affects the differentiation capabilities of PRC2 deficient ESC. Upon induction of differentiation, PRC2 deficient ESCs fail to activate correct lineage transcription programmes. Such defect

is consistent with the developmental block observed during early post-implantation stages when developmental lineages start to be established [31,32,128]. It is likely that PRC2 deficient ESCs are not able to maintain lineage specific repression of different sets of genes [135]. However, recent findings from our laboratory further suggested that lack of PRC2 activity can also influence the correct establishment of cell type specific enhancer activation as well as the transcription of specific genes in the absence of H3K27me1 deposition at highly transcribed gene bodies [11]. In addition, the depletion of PRC2 regulatory subunits, such as Jarid2 and Pcl2, was also reported to affect the establishment of proper differentiation programmes. Jarid2 depleted ESC cells fail to differentiate in cell culture in accordance with their essential role in embryonic development (Jarid2 deficient embryos die between E11.5 and E15.5) and with their essential function in recruiting PRC2 in ESCs [24,60,62]. Pcl2 depleted ESCs also fail to properly differentiate in cell culture; however, this is due to the maintenance of a high level of the pluripotency factors Nanog and Oct4 in differentiating cells [53]. Such effect seems to be restricted to cell culture experiments, as Pcl2 KO mice only display some growth defects but remain viable [136].

Although the single loss of Ring1b only mildly affected global H2Aubq levels in ESCs, it led to severe embryonic lethality (days *post coitum* 9.5) [137]. The PRC1 subunits RYBP and L3MBTL2 also have important roles in development and loss of their functions result in embryonic lethality due to an aberrant gastrulation [73,138]. RYBP and L3MBTL2 knock-down in ESCs does not allow correct cell culture differentiation, mirrored by an altered cell proliferation and deposition of H2Aubq [7,73]. All KO models for other PRC1 subunits can reach birth; however, they often display different types of developmental defects. Cbx2 KO male mice present female gonads, while female Cbx2 KOs do not develop ovaries [139]. Interestingly, in humans, a female individual with a male karyotype was found to carry a germline inactivating mutation in the *CBX2* gene [140]. Single inactivation of Pcgf2 (Mel18) or Pcgf4 (Bmi1) are viable, but the born mice displayed homeotic transformation of axial skeleton and immune deficiency [141,142]. However, the combined inactivation of Pcgf2 and 4 causes embryonic lethality at E9.5. Considering the role of PRC1-PCGF2/4^{CBX} complex in the deposition of H2Aubq discussed in the previous section, this result raised the need to reconsider the role of H2Aubq deposition in the regulation of embryonic development [131].

PcGs also retain fundamental roles in adult tissue homeostasis. Early B cell development strictly depends on Ezh2 activity to regulate *Igh* gene rearrangement [143]. Similarly, mutant *Eed* null haematopoietic stem cells (HSCs) are not able to give rise to mature blood cells, inducing exhaustion of the adult HSC pools [144]. *Pcgf4* (*Bmi1*) is also needed for HSC maintenance via transcriptional repression of the *Ink4a/Arf* locus [145]. Cbx proteins tightly control HSC self-renewal and differentiation capabilities. *Cbx7* is present at high levels in HSCs and its overexpression can induce leukaemia. The *Cbx7* protein levels decrease through HSC differentiation in favour of *Cbx2/4/8* that, if aberrantly expressed in HSCs, induces stem cell exhaustion [146]. Adipocyte formation is impaired in the absence of PRC2 activity due to the failure in suppressing the Wnt signalling pathway [147]. PRC2 is also required for proper myogenesis where a high level of Ezh2 expression in precursor cells prevents the premature transcription of muscle specific genes that can activate myogenesis [148]. Similarly, epidermis formation from the basal layer of multipotent progenitors requires PRC2 mediated repression of *API* ensuring proper time-controlled activation of lineage specific genes [149].

The controversial role of PcGs in cancer

The role of PcGs in cancer is currently one of the most interesting topics that prompt an intense parallel work in drug discovery [150–152]. Despite the increasing attention on Polycomb proteins as potential therapeutic targets in cancer, the biological role of these proteins in tumours is becoming more and more controversial [153,154]. Of all results, the data related to the role of PcG haematological malignancies are puzzling [155,156]. While in adult haematopoiesis PRC2 activity clearly plays an essential role (i.e. *Eed* loss in the adult haematopoietic compartment results in long-term HSC exhaustion and pancytopenia [144]), inactivating mutations were found in *EED* and other PRC2 gene loci (i.e. *SUZ12*, *EZH2* and *JARID2*) in both myelodysplastic syndrome (MDS) and leukaemic patients [157–161]. Moreover, targeted *Ezh2* deletion in the haematopoietic compartment of adult mice resulted in the development of T-acute lymphoblastic leukaemias with an insurmountable range between 152 and 281 days after deletion [162]. Unexpectedly, a transgenic model that overexpressed *Ezh2* in the haematopoietic compartment also induced the development of MDS [163]. This was a direct effect on HSCs as the serial transplantation assays with transgenic HSCs mirrored the original MDS phenotype [163]. PRC2

activity was shown to be required for the development of MLL-AF9 acute myeloid leukaemias (AML) [164–166]; however, loss of PRC2 activity promoted the development of MDS and leukaemias induced by ASXL1 mutations [167]. Recently it has been shown that the loss of EZH2 activity promotes the development of MDS induced by RUNX mutations; although, it prevents MDS to further develop into AML, thus highlighting a ‘double-face’ role for PRC2 in haematopoietic malignancies [168].

The PRC1 role in leukaemia also presents a certain degree of controversy. While *Bmi1* is essential for AML1-ETO or PLZF-RAR α induced leukaemias [107,169], it is dispensable for MLL-AF9 driven leukaemogenesis. This is due to the specific ability of MLL-AF9 to activate *Hoxa7* and *Hoxa9* expression that can maintain the *Ink4a-Arf* locus repressed in the absence of *Bmi1* activity to promote leukaemia progression [169]. More recent reports showed that *Cbx8*, a known PRC1 subunit, is required for the development of MLL-AF9 driven leukaemias independently of *Ring1b* or *Bmi1* [170]. However, such effect is probably independent of *Ink4a/Arf* expression as loss of *Cbx8* expression fails to activate *Ink4a/Arf* transcription despite preventing leukaemogenesis [170]. To further complicate the role of *Cbx8* in the haematopoietic compartment, it has recently been shown that *Cbx8* overexpression in HSC and progenitors induces cell exhaustion and differentiation [146]. Understanding the CBX8 roles that are dependent or independent from PRC1 will certainly help to unravel the ambiguities on CBX8 function in cancer.

The role of *Cbx7* is also quite controversial. Differently from *Cbx8*, *Cbx7* is preferentially expressed among all the other Cbx proteins in HSCs and its overexpression leads to increased self-renewal, immature blast-like morphology and leukaemia development [146]. Different studies showed that *Cbx7* could act as an oncogene mainly by exerting its transcriptional repression on the *Ink4a/Arf* locus [171–173] while others demonstrated its tumour suppressive activity [134,174]. Although this could be explained by the different tissue ontologies presented in these studies, a general mechanism that distinguishes an oncogenic versus tumour suppressive role for *Cbx7* is still missing. More generally, the role of PcGs in regulating tumour growth is frequently associated with their ability to repress the *Ink4a/Arf* locus, a well-known, non-cell-type specific tumour suppressor and negative regulator of cell cycle progression [171,173,175–182]. Such general mechanism has been proposed for years as the principal way through which PcGs favour tumour cell proliferation. However, our group has

recently demonstrated that the genetic deletion of either PRC1 or PRC2 activities strongly impairs mouse embryonic fibroblast proliferation and transformation capabilities in an Ink4a/Arf-p53-pRb independent manner [41], further showing that PcGs can supervise DNA replication by directly localizing at sites of ongoing DNA replication [41]. This finding opens up the possibility of treating cancer with EZH2 inhibitors despite the functionality of the pRb and p53 pathway, which is inactivated in nearly all human tumours [183,184].

PcG inhibition is indeed becoming an attractive strategy for cancer treatment. An EZH2 inhibitor is currently in clinical trial (#NCT01897571) as single agent treatment for lymphomas and solid tumours. Lymphomas are clearly the best candidates for PcG inhibiting compounds as they are characterized by a strong expression of PcG subunits and by high PcG activity [5]. Furthermore EZH2 is frequently mutated in diffused large B cell lymphomas and in follicular lymphomas [185] at Y641 within its SET catalytic domain. Although initially these mutations were considered a loss of function (supporting a tumour suppressor activity for EZH2 also in lymphomas), later studies demonstrated that these mutations confer a gain of function towards the accumulation of H3K27me3 [48]. Indeed, EZH2 Y641 mutants are unable to generate mono- or di-methylated H3K27 *in vitro* (H3K27me1 or H3K27me2), but acquire enhanced activity on H3K27me2 to generate H3K27me3 [48,186]. Lymphomas expressing these mutations are addicted to the expression of EZH2 Y641 mutants and small molecules specific for EZH2 Y641 mutated forms were generated to kill specifically lymphoma cells that expressed these mutations [187–189]. The specific targeting of mutant EZH2 is very important since targeting wild-type EZH2 could have diffuse toxic effects. Ezh2 is essential for normal germinal centre (GC) formation [190,191] as well as for other physiological processes [10]. Studies aimed to investigate the oncogenic nature of EZH2 Y641 mutations showed that the activation of EZH2 Y641N in GC-B cells induced GC hyperplasia but was insufficient to generate lymphomas [191]. However, the ectopic expression of EZH2 Y641F cooperated with Bcl-2 in inducing diffused large B cell lymphomas in Bcl-2 overexpressing bone marrow transplanted cells [191]. The latter result suggests the existence of cooperating genetic events in which EZH2 Y641 mutations have a direct oncogenic effect. However, it still remains to be clarified if this oncogenic property can be recapitulated with specific mouse models and which are the molecular mechanisms behind the oncogenic activity of EZH2

Y641 mutations. Moreover, the EZH2 Y641N transgenic mouse consists of an extra copy of the *EZH2* gene that is expressed by an exogenous promoter resulting in an increased Ezh2 expression. It is therefore important to determine if the EZH2 Y641 mutations are directly inducing GC hyperplasia or if the simple EZH2 overexpression is *per se* sufficient to cause such phenotype. A comparison with a mouse model conditionally expressing a wild-type EZH2 extra allele or the generation of heterozygous EZH2 Y641 mutated mice will be required to clarify this issue.

Although EZH2 gain of function mutations in lymphomas positively support the proto-oncogenic role of PRC2, *Suz12* heterozygous mice have an increased clonogenicity of B cell lymphoid progenitors and accelerate Myc-induced lymphomagenesis [192]. Such putative tumour suppressive role has recently been proposed also in glioblastomas. PcGs were (a) reported to be general negative prognostic factors in glioblastomas [193], (b) shown to be essential for the maintenance of glioblastoma cancer stem cells [194,195] and (c) shown to be essential for gliomagenesis [196]. Nevertheless, H3K27M mutations were recently discovered as frequent somatic mutations in one H3.3 variant in diffuse intrinsic pontine paediatric gliomas (DIPG) [197,198]. Such mutation was more recently shown to inactivate the global PRC2 enzymatic activity both *in vitro* and directly in DIPG tumours [39,199]. Although the causative role of these mutations remains to be addressed, the global loss of PRC2 activity in them suggests an enigmatic theory that considers the PRC2 as an oncogene and its enzymatic activity as a tumour suppressor. A possible explanation that reconciles such paradox could reside in additional PRC2 non-histonic targets. Indeed, it was shown that Ezh2 is able to control glioblastoma stem-like cells by methylating Stat3 to promote its oncogenic functions [200]. Whether the H3K27M mutation also inhibits non-histonic PRC2 activity still remains to be determined. A tumour suppressive role for PRC2 also came from the recent report of loss of function mutations in the *Suz12* locus in peripheral nervous system (PNS) tumours that cooperate with *NFI* mutations. Importantly, genetic mouse models seem to partially recapitulate the human malignancy and the increased levels of H3K27ac to synthesize PRC2-deficient PNS tumours to the treatment with BET inhibitors (BET inhibitors target a family of BROMO domain proteins that bind to acetylated histone lysines) [201]. Overall, understanding the molecular mechanism by which PcG genetic alterations can contribute to cancer development will not only provide important knowl-

edge for disease treatment but will also generate invaluable information to better understand the biological roles and functions of these complicated yet fascinating proteins.

Acknowledgements

The work in Diego Pasini's laboratory was supported by AIRC, the Italian Association for Cancer Research, by the Italian Ministry of Health and by FUV, the Umberto Veronesi Foundation. AP's work was supported by an FIRC fellowship, the Italian Foundation for Cancer Research.

Author contributions

AS and AP wrote the manuscript. DP revised the manuscript. AS and DP made the figures.

References

- 1 Lewis EB (1978) A gene complex controlling segmentation in *Drosophila*. *Nature* **276**, 565–570.
- 2 van Lohuizen M, Verbeek S, Scheijen B, Wientjens E, van der Gulden H & Berns A (1991) Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. *Cell* **65**, 737–752.
- 3 Haupt Y, Alexander WS, Barri G, Klinken SP & Adams JM (1991) Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in E mu-myc transgenic mice. *Cell* **65**, 753–763.
- 4 Schumacher A & Magnuson T (1997) Murine Polycomb- and trithorax-group genes regulate homeotic pathways and beyond. *Trends Genet* **13**, 167–170.
- 5 Piunti A & Pasini D (2011) Epigenetic factors in cancer development: polycomb group proteins. *Future Oncol* **7**, 57–75.
- 6 Schwartz YB & Pirrotta V (2013) A new world of Polycombs: unexpected partnerships and emerging functions. *Nat Rev Genet* **14**, 853–864.
- 7 Gao Z, Zhang J, Bonasio R, Strino F, Sawai A, Parisi F, Kluger Y & Reinberg D (2012) PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. *Mol Cell* **45**, 344–356.
- 8 de Napoles M, Mermoud JE, Wakao R, Tang YA, Endoh M, Appanah R, Nesterova TB, Silva J, Otte AP, Vidal M *et al.* (2004) Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. *Dev Cell* **7**, 663–676.
- 9 Endoh M, Endo TA, Endoh T, Fujimura Y, Ohara O, Toyoda T, Otte AP, Okano M, Brockdorff N, Vidal M *et al.* (2008) Polycomb group proteins Ring1A/B are functionally linked to the core transcriptional regulatory circuitry to maintain ES cell identity. *Development* **135**, 1513–1524.
- 10 Margueron R & Reinberg D (2011) The Polycomb complex PRC2 and its mark in life. *Nature* **469**, 343–349.
- 11 Ferrari KJ, Scelfo A, Jammula S, Cuomo A, Barozzi I, Stutzer A, Fischle W, Bonaldi T & Pasini D (2014) Polycomb-dependent H3K27me1 and H3K27me2 regulate active transcription and enhancer fidelity. *Mol Cell* **53**, 49–62.
- 12 Cao R, Tsukada Y & Zhang Y (2005) Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. *Mol Cell* **20**, 845–854.
- 13 Elderkin S, Maertens GN, Endoh M, Mallery DL, Morrice N, Koseki H, Peters G, Brockdorff N & Hiom K (2007) A phosphorylated form of Mel-18 targets the Ring1B histone H2A ubiquitin ligase to chromatin. *Mol Cell* **28**, 107–120.
- 14 Pasini D, Bracken AP, Jensen MR, Lazzarini Denchi E & Helin K (2004) Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. *EMBO J* **23**, 4061–4071.
- 15 Cao R & Zhang Y (2004) SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex. *Mol Cell* **15**, 57–67.
- 16 Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS & Zhang Y (2002) Role of histone H3 lysine 27 methylation in Polycomb-group silencing. *Science* **298**, 1039–1043.
- 17 Orlando V & Paro R (1993) Mapping Polycomb-repressed domains in the bithorax complex using *in vivo* formaldehyde cross-linked chromatin. *Cell* **75**, 1187–1198.
- 18 Simon JA & Kingston RE (2013) Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. *Mol Cell* **49**, 808–824.
- 19 Laugesen A & Helin K (2014) Chromatin repressive complexes in stem cells, development, and cancer. *Cell Stem Cell* **14**, 735–751.
- 20 Mousavi K, Zare H, Wang AH & Sartorelli V (2012) Polycomb protein Ezh1 promotes RNA polymerase II elongation. *Mol Cell* **45**, 255–262.
- 21 Frangini A, Sjoberg M, Roman-Trufero M, Dharmalingam G, Haberle V, Bartke T, Lenhard B, Malumbres M, Vidal M & Dillon N (2013) The aurora B kinase and the polycomb protein ring1B combine to regulate active promoters in quiescent lymphocytes. *Mol Cell* **51**, 647–661.

22 Tavares L, Dimitrova E, Oxley D, Webster J, Poot R, Demmers J, Bezstarost K, Taylor S, Ura H, Koide H *et al.* (2012) RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3. *Cell* **148**, 664–678.

23 Wu X, Johansen JV & Helin K (2013) Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. *Mol Cell* **49**, 1134–1146.

24 Pasini D, Cloos PA, Walfridsson J, Olsson L, Bukowski JP, Johansen JV, Bak M, Tommerup N, Rappaport J & Helin K (2010) JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells. *Nature* **464**, 306–310.

25 He J, Shen L, Wan M, Taranova O, Wu H & Zhang Y (2013) Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. *Nat Cell Biol* **15**, 373–384.

26 Sparmann A & van Lohuizen M (2006) Polycomb silencers control cell fate, development and cancer. *Nat Rev Cancer* **6**, 846–856.

27 Czernin B, Melfi R, McCabe D, Seitz V, Imhof A & Pirrotta V (2002) Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. *Cell* **111**, 185–196.

28 Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P & Reinberg D (2002) Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. *Genes Dev* **16**, 2893–2905.

29 Margueron R, Li G, Sarma K, Blais A, Zavadil J, Woodcock CL, Dynlach BD & Reinberg D (2008) Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms. *Mol Cell* **32**, 503–518.

30 Ketel CS, Andersen EF, Vargas ML, Suh J, Strome S & Simon JA (2005) Subunit contributions to histone methyltransferase activities of fly and worm polycomb group complexes. *Mol Cell Biol* **25**, 6857–6868.

31 Faust C, Schumacher A, Holdener B & Magnusson T (1995) The eed mutation disrupts anterior mesoderm production in mice. *Development* **121**, 273–285.

32 O'Carroll D, Erhardt S, Pagani M, Barton SC, Surani MA & Jenuwein T (2001) The polycomb-group gene Ezh2 is required for early mouse development. *Mol Cell Biol* **21**, 4330–4336.

33 Mohn F, Weber M, Rebhan M, Roloff TC, Richter J, Stadler MB, Bibel M & Schubeler D (2008) Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. *Mol Cell* **30**, 755–766.

34 Lee TI, Jenner RG, Boyer LA, Guenther MG, Levine SS, Kumar RM, Chevalier B, Johnstone SE, Cole MF, Isono K *et al.* (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. *Cell* **125**, 301–313.

35 Bracken AP, Dietrich N, Pasini D, Hansen KH & Helin K (2006) Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. *Genes Dev* **20**, 1123–1136.

36 Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK *et al.* (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. *Nature* **441**, 349–353.

37 Margueron R, Justin N, Ohno K, Sharpe ML, Son J, Drury WJ III, Voigt P, Martin SR, Taylor WR, De Marco V *et al.* (2009) Role of the polycomb protein EED in the propagation of repressive histone marks. *Nature* **461**, 762–767.

38 Hansen KH, Bracken AP, Pasini D, Dietrich N, Gehani SS, Monrad A, Rappaport J, Lerdrup M & Helin K (2008) A model for transmission of the H3K27me3 epigenetic mark. *Nat Cell Biol* **10**, 1291–1300.

39 Lewis PW, Muller MM, Koletsky MS, Cordero F, Lin S, Banaszynski LA, Garcia BA, Muir TW, Becher OJ & Allis CD (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. *Science* **340**, 857–861.

40 Van Aller GS, Pappalardi MB, Ott HM, Diaz E, Brandt M, Schwartz BJ, Miller WH, Dhanak D, McCabe MT, Verma SK *et al.* (2014) Long residence time inhibition of EZH2 in activated polycomb repressive complex 2. *ACS Chem Biol* **9**, 622–629.

41 Piunti A, Rossi A, Cerutti A, Albert M, Jammula S, Scelfo A, Cedrone L, Fragola G, Olsson L, Koseki H *et al.* (2014) Polycomb proteins control proliferation and transformation independently of cell cycle checkpoints by regulating DNA replication. *Nat Commun* **5**, 3649.

42 Ku M, Koche RP, Rheinbay E, Mendenhall EM, Endoh M, Mikkelsen TS, Presser A, Nusbaum C, Xie X, Chi AS *et al.* (2008) Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. *PLoS Genet* **4**, e1000242.

43 Kizer KO, Phatnani HP, Shibata Y, Hall H, Greenleaf AL & Strahl BD (2005) A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. *Mol Cell Biol* **25**, 3305–3316.

44 Li B, Howe L, Anderson S, Yates JR III & Workman JL (2003) The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase II. *J Biol Chem* **278**, 8897–8903.

45 Li J, Moazed D & Gygi SP (2002) Association of the histone methyltransferase Set2 with RNA polymerase II plays a role in transcription elongation. *J Biol Chem* **277**, 49383–49388.

46 Xiao T, Hall H, Kizer KO, Shibata Y, Hall MC, Borchers CH & Strahl BD (2003) Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. *Genes Dev* **17**, 654–663.

47 McCabe MT, Graves AP, Ganji G, Diaz E, Halsey WS, Jiang Y, Smitheman KN, Ott HM, Pappalardi MB, Allen KE *et al.* (2012) Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). *Proc Natl Acad Sci USA* **109**, 2989–2994.

48 Sneeringer CJ, Scott MP, Kuntz KW, Knutson SK, Pollock RM, Richon VM & Copeland RA (2010) Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. *Proc Natl Acad Sci USA* **107**, 20980–20985.

49 Tie F, Banerjee R, Stratton CA, Prasad-Sinha J, Stepanik V, Zlobin A, Diaz MO, Scacheri PC & Harte PJ (2009) CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. *Development* **136**, 3131–3141.

50 Kim H, Kang K & Kim J (2009) AEBP2 as a potential targeting protein for Polycomb Repression Complex PRC2. *Nucleic Acids Res* **37**, 2940–2950.

51 Sarma K, Margueron R, Ivanov A, Pirrotta V & Reinberg D (2008) Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. *Mol Cell Biol* **28**, 2718–2731.

52 Cao R, Wang H, He J, Erdjument-Bromage H, Tempst P & Zhang Y (2008) Role of hPHF1 in H3K27 methylation and Hox gene silencing. *Mol Cell Biol* **28**, 1862–1872.

53 Walker E, Chang WY, Hunkapiller J, Cagney G, Garcha K, Torchia J, Krogan NJ, Reiter JF & Stanford WL (2010) Polycomb-like 2 associates with PRC2 and regulates transcriptional networks during mouse embryonic stem cell self-renewal and differentiation. *Cell Stem Cell* **6**, 153–166.

54 Zhang Z, Jones A, Sun CW, Li C, Chang CW, Joo HY, Dai Q, Mysliwiec MR, Wu LC, Guo Y *et al.* (2011) PRC2 complexes with JARID2, MTF2, and esPRC2p48 in ES cells to modulate ES cell pluripotency and somatic cell reprogramming. *Stem Cells* **29**, 229–240.

55 Boulay G, Rosnoblet C, Guerardel C, Angrand PO & Leprince D (2011) Functional characterization of human Polycomb-like 3 isoforms identifies them as components of distinct EZH2 protein complexes. *Biochem J* **434**, 333–342.

56 Wang S, Robertson GP & Zhu J (2004) A novel human homologue of Drosophila polycomblike gene is up-regulated in multiple cancers. *Gene* **343**, 69–78.

57 Ballare C, Lange M, Lapinaite A, Martin GM, Morey L, Pascual G, Liefke R, Simon B, Shi Y, Gozani O *et al.* (2012) Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity. *Nat Struct Mol Biol* **19**, 1257–1265.

58 Brien GL, Gamero G, O'Connell DJ, Jerman E, Turner SA, Egan CM, Dunne EJ, Jurgens MC, Wynne K, Piao L *et al.* (2012) Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation. *Nat Struct Mol Biol* **19**, 1273–1281.

59 Li G, Margueron R, Ku M, Chambon P, Bernstein BE & Reinberg D (2010) Jarid2 and PRC2, partners in regulating gene expression. *Genes Dev* **24**, 368–380.

60 Landeira D, Sauer S, Poot R, Dvorkina M, Mazzarella L, Jorgensen HF, Pereira CF, Leleu M, Piccolo FM, Spivakov M *et al.* (2010) Jarid2 is a PRC2 component in embryonic stem cells required for multi-lineage differentiation and recruitment of PRC1 and RNA Polymerase II to developmental regulators. *Nat Cell Biol* **12**, 618–624.

61 Shen X, Kim W, Fujiwara Y, Simon MD, Liu Y, Mysliwiec MR, Yuan GC, Lee Y & Orkin SH (2009) Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells. *Cell* **139**, 1303–1314.

62 Peng JC, Valouev A, Swigut T, Zhang J, Zhao Y, Sidow A & Wysocka J (2009) Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. *Cell* **139**, 1290–1302.

63 Cao Q, Wang X, Zhao M, Yang R, Malik R, Qiao Y, Poliakov A, Yocum AK, Li Y, Chen W *et al.* (2014) The central role of EED in the orchestration of polycomb group complexes. *Nat Commun* **5**, 3127.

64 Vandamme J, Volkel P, Rosnoblet C, Le Faou P & Angrand PO (2011) Interaction proteomics analysis of polycomb proteins defines distinct PRC1 complexes in mammalian cells. *Mol Cell Proteomics* **10**, M110 002642.

65 Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS & Zhang Y (2004) Role of histone H2A ubiquitination in Polycomb silencing. *Nature* **431**, 873–878.

66 Levine SS, Weiss A, Erdjument-Bromage H, Shao Z, Tempst P & Kingston RE (2002) The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. *Mol Cell Biol* **22**, 6070–6078.

67 Morey L, Aloia L, Cozzuto L, Benitah SA & Di Croce L (2013) RYBP and Cbx7 define specific biological functions of polycomb complexes in mouse embryonic stem cells. *Cell Rep* **3**, 60–69.

68 Blackledge NP, Farcas AM, Kondo T, King HW, McGouran JF, Hanssen LL, Ito S, Cooper S, Kondo K, Koseki Y *et al.* (2014) Variant PRC1 complex-

dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. *Cell* **157**, 1445–1459.

69 Barrero MJ & Izpisua Belmonte JC (2013) Polycomb complex recruitment in pluripotent stem cells. *Nat Cell Biol* **15**, 348–350.

70 He J, Kallin EM, Tsukada Y & Zhang Y (2008) The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(INK4b). *Nat Struct Mol Biol* **15**, 1169–1175.

71 Blackledge NP, Zhou JC, Tolstorukov MY, Farca AM, Park PJ & Klose RJ (2010) CpG islands recruit a histone H3 lysine 36 demethylase. *Mol Cell* **38**, 179–190.

72 Trojer P, Cao AR, Gao Z, Li Y, Zhang J, Xu X, Li G, Losson R, Erdjument-Bromage H, Tempst P *et al.* (2011) L3MBTL2 protein acts in concert with Pcg protein-mediated monoubiquitination of H2A to establish a repressive chromatin structure. *Mol Cell* **42**, 438–450.

73 Qin J, Whyte WA, Anderssen E, Apostolou E, Chen HH, Akbarian S, Bronson RT, Hochedlinger K, Ramaswamy S, Young RA *et al.* (2012) The polycomb group protein L3mbtl2 assembles an atypical PRC1-family complex that is essential in pluripotent stem cells and early development. *Cell Stem Cell* **11**, 319–332.

74 Ang YS, Tsai SY, Lee DF, Monk J, Su J, Ratnakumar K, Ding J, Ge Y, Darr H, Chang B *et al.* (2011) Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. *Cell* **145**, 183–197.

75 Triev RC & Shilatifard A (2009) WDR5, a complexed protein. *Nat Struct Mol Biol* **16**, 678–680.

76 Amati B, Dalton S, Brooks MW, Littlewood TD, Evan GI & Land H (1992) Transcriptional activation by the human c-Myc oncoprotein in yeast requires interaction with Max. *Nature* **359**, 423–426.

77 Attwooll C, Oddi S, Cartwright P, Prosperini E, Agger K, Steensgaard P, Wagener C, Sardet C, Moroni MC & Helin K (2005) A novel repressive E2F6 complex containing the polycomb group protein, EPC1, that interacts with EZH2 in a proliferation-specific manner. *J Biol Chem* **280**, 1199–1208.

78 Ogawa H, Ishiguro K, Gaubatz S, Livingston DM & Nakatani Y (2002) A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. *Science* **296**, 1132–1136.

79 Hayakawa T & Nakayama J (2011) Physiological roles of class I HDAC complex and histone demethylase. *J Biomed Biotechnol* **2011**, 129383.

80 Sabin LR, Delas MJ & Hannon GJ (2013) Dogma derailed: the many influences of RNA on the genome. *Mol Cell* **49**, 783–794.

81 Lee JT, Davidow LS & Warshawsky D (1999) Tsix, a gene antisense to Xist at the X-inactivation centre. *Nat Genet* **21**, 400–404.

82 Zhao J, Sun BK, Erwin JA, Song JJ & Lee JT (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. *Science* **322**, 750–756.

83 da Rocha ST, Boeva V, Escamilla-Del-Arenal M, Ancelin K, Granier C, Matias NR, Sanulli S, Chow J, Schulz E, Picard C *et al.* (2014) Jarid2 Is Implicated in the Initial Xist-Induced Targeting of PRC2 to the Inactive X Chromosome. *Mol Cell* **53**, 301–316.

84 Bernstein E, Duncan EM, Masui O, Gil J, Heard E & Allis CD (2006) Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. *Mol Cell Biol* **26**, 2560–2569.

85 Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E *et al.* (2007) Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. *Cell* **129**, 1311–1323.

86 Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E & Chang HY (2010) Long noncoding RNA as modular scaffold of histone modification complexes. *Science* **329**, 689–693.

87 Schorderet P & Duboule D (2011) Structural and functional differences in the long non-coding RNA hotair in mouse and human. *PLoS Genet* **7**, e1002071.

88 Yap KL, Li S, Munoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ & Zhou MM (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. *Mol Cell* **38**, 662–674.

89 Zhao J, Ohsumi TK, Kung JT, Ogawa Y, Grau DJ, Sarma K, Song JJ, Kingston RE, Borowsky M & Lee JT (2010) Genome-wide identification of polycomb-associated RNAs by RIP-seq. *Mol Cell* **40**, 939–953.

90 Davidovich C, Zheng L, Goodrich KJ & Cech TR (2013) Promiscuous RNA binding by Polycomb repressive complex 2. *Nat Struct Mol Biol* **20**, 1250–1257.

91 Kanhere A, Viiri K, Araujo CC, Rasaiyah J, Bouwman RD, Whyte WA, Pereira CF, Brookes E, Walker K, Bell GW *et al.* (2010) Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. *Mol Cell* **38**, 675–688.

92 Kaneko S, Son J, Shen SS, Reinberg D & Bonasio R (2013) PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells. *Nat Struct Mol Biol* **20**, 1258–U275.

93 Kaneko S, Bonasio R, Saldana-Meyer R, Yoshida T, Son J, Nishino K, Umezawa A & Reinberg D (2014) Interactions between JARID2 and Noncoding RNAs

Regulate PRC2 Recruitment to Chromatin. *Mol Cell* **53**, 290–300.

94 Busturia A & Bienz M (1993) Silencers in abdominal-B, a homeotic *Drosophila* gene. *EMBO J* **12**, 1415–1425.

95 Mohd-Sarip A, Cleard F, Mishra RK, Karch F & Verrijzer CP (2005) Synergistic recognition of an epigenetic DNA element by Pleiohomeotic and a Polycomb core complex. *Genes Dev* **19**, 1755–1760.

96 Sengupta AK, Kuhrs A & Muller J (2004) General transcriptional silencing by a Polycomb response element in *Drosophila*. *Development* **131**, 1959–1965.

97 Schwartz YB, Kahn TG, Nix DA, Li XY, Bourgon R, Biggin M & Pirrotta V (2006) Genome-wide analysis of Polycomb targets in *Drosophila melanogaster*. *Nat Genet* **38**, 700–705.

98 Tolhuis B, de Wit E, Muijres I, Teunissen H, Talhout W, van Steensel B & van Lohuizen M (2006) Genome-wide profiling of PRC1 and PRC2 Polycomb chromatin binding in *Drosophila melanogaster*. *Nat Genet* **38**, 694–699.

99 Vella P, Barozzi I, Cuomo A, Bonaldi T & Pasini D (2012) Yin Yang 1 extends the Myc-related transcription factors network in embryonic stem cells. *Nucleic Acids Res* **40**, 3403–3418.

100 Hoskins RA, Landolin JM, Brown JB, Sandler JE, Takahashi H, Lassmann T, Yu C, Booth BW, Zhang D, Wan KH *et al.* (2011) Genome-wide analysis of promoter architecture in *Drosophila melanogaster*. *Genome Res* **21**, 182–192.

101 Klose RJ, Cooper S, Farcas AM, Blackledge NP & Brockdorff N (2013) Chromatin sampling—an emerging perspective on targeting polycomb repressor proteins. *PLoS Genet* **9**, e1003717.

102 Dietrich N, Lerdrup M, Landt E, Agrawal-Singh S, Bak M, Tommerup N, Rappsilber J, Sodersten E & Hansen K (2012) REST-mediated recruitment of polycomb repressor complexes in mammalian cells. *PLoS Genet* **8**, e1002494.

103 Ren X & Kerppola TK (2011) REST interacts with Cbx proteins and regulates polycomb repressive complex 1 occupancy at RE1 elements. *Mol Cell Biol* **31**, 2100–2110.

104 Yu M, Mazor T, Huang H, Huang HT, Kathrein KL, Woo AJ, Chouinard CR, Labadorf A, Akie TE, Moran TB *et al.* (2012) Direct recruitment of polycomb repressive complex 1 to chromatin by core binding transcription factors. *Mol Cell* **45**, 330–343.

105 Herranz N, Pasini D, Diaz VM, Franci C, Gutierrez A, Dave N, Escriva M, Hernandez-Munoz I, Di Croce L, Helin K *et al.* (2008) Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. *Mol Cell Biol* **28**, 4772–4781.

106 Villa R, Pasini D, Gutierrez A, Morey L, Occhionorelli M, Vire E, Nomdedeu JF, Jenuwein T, Pelicci PG, Minucci S *et al.* (2007) Role of the polycomb repressive complex 2 in acute promyelocytic leukemia. *Cancer Cell* **11**, 513–525.

107 Boukarabila H, Saurin AJ, Batsche E, Mossadegh N, van Lohuizen M, Otte AP, Pradel J, Muchardt C, Sieweke M & Duprez E (2009) The PRC1 Polycomb group complex interacts with PLZF/RARA to mediate leukemic transformation. *Genes Dev* **23**, 1195–1206.

108 Riising EM, Comet I, Leblanc B, Wu X, Johansen JV & Helin K (2014) Gene silencing triggers polycomb repressive complex 2 recruitment to CpG Islands genome wide. *Mol Cell* **55**, 347–60.

109 Jermann P, Hoerner L, Burger L & Schubeler D (2014) Short sequences can efficiently recruit histone H3 lysine 27 trimethylation in the absence of enhancer activity and DNA methylation. *Proc Natl Acad Sci USA* **111**, E3415–21.

110 Cooper S, Dienstbier M, Hassan R, Schermelleh L, Sharif J, Blackledge NP, De Marco V, Elderkin S, Koseki H, Klose R *et al.* (2014) Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment. *Cell Rep* **7**, 1456–1470.

111 Levine SS, King IF & Kingston RE (2004) Division of labor in polycomb group repression. *Trends Biochem Sci* **29**, 478–485.

112 Fischle W, Wang Y, Jacobs SA, Kim Y, Allis CD & Khorasanizadeh S (2003) Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. *Genes Dev* **17**, 1870–1881.

113 Min J, Zhang Y & Xu RM (2003) Structural basis for specific binding of Polycomb chromodomain to histone H3 methylated at Lys 27. *Genes Dev* **17**, 1823–1828.

114 Wysocka J, Swigut T, Milne TA, Dou Y, Zhang X, Burlingame AL, Roeder RG, Brivanlou AH & Allis CD (2005) WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. *Cell* **121**, 859–872.

115 Farcas AM, Blackledge NP, Sudbery I, Long HK, McGouran JF, Rose NR, Lee S, Sims D, Cerase A, Sheahan TW *et al.* (2012) KDM2B links the Polycomb Repressive Complex 1 (PRC1) to recognition of CpG islands. *eLife* **1**, e00205.

116 Kalb R, Latwiel S, Baymaz HI, Jansen PW, Muller CW, Vermeulen M & Muller J (2014) Histone H2A monoubiquitination promotes histone H3 methylation in Polycomb repression. *Nat Struct Mol Biol* **21**, 569–571.

117 Francis NJ, Kingston RE & Woodcock CL (2004) Chromatin compaction by a polycomb group protein complex. *Science* **306**, 1574–1577.

118 Bantignies F, Roure V, Comet I, Leblanc B, Schuettengruber B, Bonnet J, Tixier V, Mas A & Cavalli G (2011) Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila. *Cell* **144**, 214–226.

119 Endoh M, Endo TA, Endoh T, Isono K, Sharif J, Ohara O, Toyoda T, Ito T, Eskeland R, Bickmore WA *et al.* (2012) Histone H2A mono-ubiquitination is a crucial step to mediate PRC1-dependent repression of developmental genes to maintain ES cell identity. *PLoS Genet* **8**, e1002774.

120 Francis NJ, Saurin AJ, Shao Z & Kingston RE (2001) Reconstitution of a functional core polycomb repressive complex. *Mol Cell* **8**, 545–556.

121 Yuan W, Wu T, Fu H, Dai C, Wu H, Liu N, Li X, Xu M, Zhang Z, Niu T *et al.* (2012) Dense chromatin activates Polycomb repressive complex 2 to regulate H3 lysine 27 methylation. *Science* **337**, 971–975.

122 Breiling A, Turner BM, Bianchi ME & Orlando V (2001) General transcription factors bind promoters repressed by Polycomb group proteins. *Nature* **412**, 651–655.

123 Min IM, Waterfall JJ, Core LJ, Munroe RJ, Schimenti J & Lis JT (2011) Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells. *Genes Dev* **25**, 742–754.

124 Brookes E, de Santiago I, Hebenstreit D, Morris KJ, Carroll T, Xie SQ, Stock JK, Heidemann M, Eick D, Nozaki N *et al.* (2012) Polycomb associates genome-wide with a specific RNA polymerase II variant, and regulates metabolic genes in ESCs. *Cell Stem Cell* **10**, 157–170.

125 Stock JK, Giadrossi S, Casanova M, Brookes E, Vidal M, Koseki H, Brockdorff N, Fisher AG & Pombo A (2007) Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. *Nat Cell Biol* **9**, 1428–1435.

126 Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG *et al.* (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. *Cell* **122**, 947–956.

127 Chamberlain SJ, Yee D & Magnuson T (2008) Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency. *Stem Cells* **26**, 1496–1505.

128 Pasini D, Bracken AP, Hansen JB, Capillo M & Helin K (2007) The polycomb group protein Suz12 is required for embryonic stem cell differentiation. *Mol Cell Biol* **27**, 3769–3779.

129 Posfai E, Kunzmann R, Brochard V, Salvaing J, Cabuy E, Roloff TC, Liu Z, Tardat M, van Lohuizen M, Vidal M *et al.* (2012) Polycomb function during oogenesis is required for mouse embryonic development. *Genes Dev* **26**, 920–932.

130 Shen X, Liu Y, Hsu YJ, Fujiwara Y, Kim J, Mao X, Yuan GC & Orkin SH (2008) EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency. *Mol Cell* **32**, 491–502.

131 Akasaka T, van Lohuizen M, van der Lugt N, Mizutani-Koseki Y, Kanno M, Taniguchi M, Vidal M, Alkema M, Berns A & Koseki H (2001) Mice doubly deficient for the Polycomb Group genes Mel18 and Bmil reveal synergy and requirement for maintenance but not initiation of Hox gene expression. *Development* **128**, 1587–1597.

132 Morey L, Pascual G, Cozzuto L, Roma G, Wutz A, Benitah SA & Di Croce L (2012) Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells. *Cell Stem Cell* **10**, 47–62.

133 O’Loughlin A, Munoz-Cabello AM, Gaspar-Maia A, Wu HA, Banito A, Kunowska N, Racek T, Pemberton HN, Beolchi P, Lavial F *et al.* (2012) MicroRNA regulation of Cbx7 mediates a switch of Polycomb orthologs during ESC differentiation. *Cell Stem Cell* **10**, 33–46.

134 Forzati F, Federico A, Pallante P, Abbate A, Esposito F, Malapelle U, Sepe R, Palma G, Troncone G, Scarfo M *et al.* (2012) CBX7 is a tumor suppressor in mice and humans. *J Clin Investig* **122**, 612–623.

135 Bracken AP & Helin K (2009) Polycomb group proteins: navigators of lineage pathways led astray in cancer. *Nat Rev Cancer* **9**, 773–784.

136 Wang S, He F, Xiong W, Gu S, Liu H, Zhang T, Yu X & Chen Y (2007) Polycomb-like-2-deficient mice exhibit normal left-right asymmetry. *Dev Dyn* **236**, 853–861.

137 Voncken JW, Roelen BA, Roefs M, de Vries S, Verhoeven E, Marino S, Deschamps J & van Lohuizen M (2003) Rnf2 (Ring1b) deficiency causes gastrulation arrest and cell cycle inhibition. *Proc Natl Acad Sci USA* **100**, 2468–2473.

138 Hisada K, Sanchez C, Endo TA, Endoh M, Roman-Trufer M, Sharif J, Koseki H & Vidal M (2012) RYBP represses endogenous retroviruses and preimplantation- and germ line-specific genes in mouse embryonic stem cells. *Mol Cell Biol* **32**, 1139–1149.

139 Katoh-Fukui Y, Tsuchiya R, Shiroishi T, Nakahara Y, Hashimoto N, Noguchi K & Higashinakagawa T (1998) Male-to-female sex reversal in M33 mutant mice. *Nature* **393**, 688–692.

140 Koren A & McCarroll SA (2014) Random replication of the inactive X chromosome. *Genome Res* **24**, 64–69.

141 Akasaka T, Kanno M, Balling R, Mieza MA, Taniguchi M & Koseki H (1996) A role for mel-18, a

Polycomb group-related vertebrate gene, during the anterior-posterior specification of the axial skeleton. *Development* **122**, 1513–1522.

142 van der Lugt NM, Domen J, Linders K, van Roon M, Robanus-Maandag E, te Riele H, van der Valk M, Deschamps J, Sofroniew M, van Lohuizen M *et al.* (1994) Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. *Genes Dev* **8**, 757–769.

143 Su IH, Basavaraj A, Krutchinsky AN, Hobert O, Ullrich A, Chait BT & Tarakhovsky A (2003) Ezh2 controls B cell development through histone H3 methylation and IgH rearrangement. *Nat Immunol* **4**, 124–131.

144 Xie H, Xu J, Hsu JH, Nguyen M, Fujiwara Y, Peng C & Orkin SH (2014) Polycomb repressive complex 2 regulates normal hematopoietic stem cell function in a developmental-stage-specific manner. *Cell Stem Cell* **14**, 68–80.

145 Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ & Clarke MF (2003) Bmi-1 is required for maintenance of adult self-renewing hematopoietic stem cells. *Nature* **423**, 302–305.

146 Klauke K, Radulovic V, Broekhuis M, Weersing E, Zwart E, Olthof S, Ritsema M, Bruggeman S, Wu X, Helin K *et al.* (2013) Polycomb Cbx family members mediate the balance between hematopoietic stem cell self-renewal and differentiation. *Nat Cell Biol* **15**, 353–362.

147 Wang L, Jin Q, Lee JE, Su IH & Ge K (2010) Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. *Proc Natl Acad Sci USA* **107**, 7317–7322.

148 Caretti G, Di Padova M, Micales B, Lyons GE & Sartorelli V (2004) The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. *Genes Dev* **18**, 2627–2638.

149 Ezhkova E, Pasolli HA, Parker JS, Stokes N, Su IH, Hannon G, Tarakhovsky A & Fuchs E (2009) Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. *Cell* **136**, 1122–1135.

150 Helin K & Dhanak D (2013) Chromatin proteins and modifications as drug targets. *Nature* **502**, 480–488.

151 Baylin SB & Jones PA (2011) A decade of exploring the cancer epigenome - biological and translational implications. *Nat Rev Cancer* **11**, 726–734.

152 Prinjha R & Tarakhovsky A (2013) Chromatin targeting drugs in cancer and immunity. *Genes Dev* **27**, 1731–1738.

153 Mochizuki-Kashio M, Wendt GR & Iwama A (2012) Tumor suppressor function of the polycomb group genes. *Cell Cycle* **11**, 2043–2044.

154 Hock H (2012) A complex Polycomb issue: the two faces of EZH2 in cancer. *Genes Dev* **26**, 751–755.

155 Lund K, Adams PD & Copland M (2014) EZH2 in normal and malignant hematopoiesis. *Leukemia* **28**, 44–49.

156 Xu F & Li X (2012) The role of histone methyltransferase EZH2 in myelodysplastic syndromes. *Expert Rev Hematol* **5**, 177–185.

157 Score J, Hidalgo-Curtis C, Jones AV, Winkelmann N, Skinner A, Ward D, Zoi K, Ernst T, Stegelmann F, Dohner K *et al.* (2012) Inactivation of polycomb repressive complex 2 components in myeloproliferative and myelodysplastic/myeloproliferative neoplasms. *Blood* **119**, 1208–1213.

158 Puda A, Milosevic JD, Berg T, Klampfl T, Harutyunyan AS, Gisslinger B, Rumi E, Pietra D, Malcovati L, Elena C *et al.* (2012) Frequent deletions of JARID2 in leukemic transformation of chronic myeloid malignancies. *Am J Hematol* **87**, 245–250.

159 Ueda T, Sanada M, Matsui H, Yamasaki N, Honda ZI, Shih LY, Mori H, Inaba T, Ogawa S & Honda H (2012) EED mutants impair polycomb repressive complex 2 in myelodysplastic syndrome and related neoplasms. *Leukemia* **26**, 2557–2560.

160 Ntziachristos P, Tsirigos A, Van Vlierberghe P, Nedjic J, Trimarchi T, Flaherty MS, Ferres-Marco D, da Ros V, Tang Z, Siegle J *et al.* (2012) Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. *Nat Med* **18**, 298–301.

161 Zhang J, Ding L, Holmfeldt L, Wu G, Heatley SL, Payne-Turner D, Easton J, Chen X, Wang J, Rusch M *et al.* (2012) The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. *Nature* **481**, 157–163.

162 Simon C, Chagraoui J, Krosl J, Gendron P, Wilhelm B, Lemieux S, Boucher G, Chagnon P, Drouin S, Lambert R *et al.* (2012) A key role for EZH2 and associated genes in mouse and human adult T-cell acute leukemia. *Genes Dev* **26**, 651–656.

163 Herrera-Merchan A, Arranz L, Ligos JM, de Molina A, Dominguez O & Gonzalez S (2012) Ectopic expression of the histone methyltransferase Ezh2 in hematopoietic stem cells causes myeloproliferative disease. *Nat Commun* **3**, 623.

164 Neff T, Sinha AU, Kluk MJ, Zhu N, Khattab MH, Stein L, Xie H, Orkin SH & Armstrong SA (2012) Polycomb repressive complex 2 is required for MLL-AF9 leukemia. *Proc Natl Acad Sci USA* **109**, 5028–5033.

165 Kim W, Bird GH, Neff T, Guo G, Kerenyi MA, Walensky LD & Orkin SH (2013) Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer. *Nat Chem Biol* **9**, 643–650.

166 Shi J, Wang E, Zuber J, Rappaport A, Taylor M, Johns C, Lowe SW & Vakoc CR (2013) The

Polycomb complex PRC2 supports aberrant self-renewal in a mouse model of MLL-AF9;Nras(G12D) acute myeloid leukemia. *Oncogene* **32**, 930–938.

167 Abdel-Wahab O, Adli M, LaFave LM, Gao J, Hricik T, Shih AH, Pandey S, Patel JP, Chung YR, Koche R *et al.* (2012) ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. *Cancer Cell* **22**, 180–193.

168 Sashida G, Harada H, Matsui H, Oshima M, Yui M, Harada Y, Tanaka S, Mochizuki-Kashio M, Wang C, Saraya A *et al.* (2014) Ezh2 loss promotes development of myelodysplastic syndrome but attenuates its predisposition to leukaemic transformation. *Nat Commun* **5**, 4177.

169 Smith LL, Yeung J, Zeisig BB, Popov N, Huijbers I, Barnes J, Wilson AJ, Taskesen E, Delwel R, Gil J *et al.* (2011) Functional crosstalk between Bmi1 and MLL/Hoxa9 axis in establishment of normal hematopoietic and leukemic stem cells. *Cell Stem Cell* **8**, 649–662.

170 Tan J, Jones M, Koseki H, Nakayama M, Muntean AG, Maillard I & Hess JL (2011) CBX8, a polycomb group protein, is essential for MLL-AF9-induced leukemogenesis. *Cancer Cell* **20**, 563–575.

171 Gil J, Bernard D, Martinez D & Beach D (2004) Polycomb CBX7 has a unifying role in cellular lifespan. *Nat Cell Biol* **6**, 67–72.

172 Bernard D, Martinez-Leal JF, Rizzo S, Martinez D, Hudson D, Visakorpi T, Peters G, Carnero A, Beach D & Gil J (2005) CBX7 controls the growth of normal and tumor-derived prostate cells by repressing the Ink4a/Arf locus. *Oncogene* **24**, 5543–5551.

173 Scott CL, Gil J, Hernando E, Teruya-Feldstein J, Narita M, Martinez D, Visakorpi T, Mu D, Cordon-Cardo C, Peters G *et al.* (2007) Role of the chromobox protein CBX7 in lymphomagenesis. *Proc Natl Acad Sci USA* **104**, 5389–5394.

174 Gargiulo G, Cesaroni M, Serresi M, de Vries N, Hulsman D, Bruggeman SW, Lancini C & van Lohuizen M (2013) In vivo RNAi screen for BMI1 targets identifies TGF-beta/BMP-ER stress pathways as key regulators of neural- and malignant glioma-stem cell homeostasis. *Cancer Cell* **23**, 660–676.

175 Yang MH, Hsu DS, Wang HW, Wang HJ, Lan HY, Yang WH, Huang CH, Kao SY, Tzeng CH, Tai SK *et al.* (2010) Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. *Nat Cell Biol* **12**, 982–992.

176 Nacerddine K, Beaudry JB, Ginjala V, Westerman B, Mattioli F, Song JY, van der Poel H, Ponz OB, Pritchard C, Cornelissen-Steijger P *et al.* (2012) Akt-mediated phosphorylation of Bmi1 modulates its oncogenic potential, E3 ligase activity, and DNA damage repair activity in mouse prostate cancer. *J Clin Invest* **122**, 1920–1932.

177 Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A & van Lohuizen M (1999) Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. *Genes Dev* **13**, 2678–2690.

178 Jacobs JJ, Kieboom K, Marino S, DePinho RA & van Lohuizen M (1999) The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. *Nature* **397**, 164–168.

179 Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, Theilgaard-Monch K, Minucci S, Porse BT, Marine JC *et al.* (2007) The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. *Genes Dev* **21**, 525–530.

180 Dietrich N, Bracken AP, Trinh E, Scherling CK, Koseki H, Rappaport J, Helin K & Hansen KH (2007) Bypass of senescence by the polycomb group protein CBX8 through direct binding to the INK4A-ARF locus. *EMBO J* **26**, 1637–1648.

181 Smith KS, Chanda SK, Lingbeek M, Ross DT, Botstein D, van Lohuizen M & Cleary ML (2003) Bmi-1 regulation of INK4A-ARF is a downstream requirement for transformation of hematopoietic progenitors by E2a-Pbx1. *Mol Cell* **12**, 393–400.

182 Mallen-St Clair J, Soydaner-Azeloglu R, Lee KE, Taylor L, Livanos A, Pylayeva-Gupta Y, Miller G, Margueron R, Reinberg D & Bar-Sagi D (2012) EZH2 couples pancreatic regeneration to neoplastic progression. *Genes Dev* **26**, 439–444.

183 Serrano M (2000) The INK4a/ARF locus in murine tumorigenesis. *Carcinogenesis* **21**, 865–869.

184 Dawson MA & Kouzarides T (2012) Cancer epigenetics: from mechanism to therapy. *Cell* **150**, 12–27.

185 Morin RD, Johnson NA, Severson TM, Mungall AJ, An J, Goya R, Paul JE, Boyle M, Woolcock BW, Kuchenbauer F *et al.* (2010) Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. *Nat Genet* **42**, 181–185.

186 Yap DB, Chu J, Berg T, Schapira M, Cheng SW, Moradian A, Morin RD, Mungall AJ, Meissner B, Boyle M *et al.* (2011) Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. *Blood* **117**, 2451–2459.

187 Knutson SK, Wigle TJ, Warholic NM, Sneeringer CJ, Allain CJ, Klaus CR, Sacks JD, Raimondi A, Majer CR, Song J *et al.* (2012) A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. *Nat Chem Biol* **8**, 890–896.

188 McCabe MT, Ott HM, Ganji G, Korenchuk S, Thompson C, Van Aller GS, Liu Y, Graves AP, Della

Pietra A III, Diaz E *et al.* (2012) EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. *Nature* **492**, 108–112.

189 Qi W, Chan H, Teng L, Li L, Chuai S, Zhang R, Zeng J, Li M, Fan H, Lin Y *et al.* (2012) Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. *Proc Natl Acad Sci USA* **109**, 21360–21365.

190 Caganova M, Carrisi C, Varano G, Mainoldi F, Zanardi F, Germain PL, George L, Alberghini F, Ferrarini L, Talukder AK *et al.* (2013) Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. *J Clin Investig* **123**, 5009–5022.

191 Beguelin W, Popovic R, Teater M, Jiang Y, Bunting KL, Rosen M, Shen H, Yang SN, Wang L, Ezponda T *et al.* (2013) EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. *Cancer Cell* **23**, 677–692.

192 Lee SC, Phipson B, Hyland CD, Leong HS, Allan RS, Lun A, Hilton DJ, Nutt SL, Blewitt ME, Smyth GK *et al.* (2013) Polycomb repressive complex 2 (PRC2) suppresses Emu-myc lymphoma. *Blood* **122**, 2654–2663.

193 Crea F, Hurt EM & Farrar WL (2010) Clinical significance of Polycomb gene expression in brain tumors. *Mol Cancer* **9**, 265.

194 Abdouh M, Facchino S, Chatoo W, Balasingam V, Ferreira J & Bernier G (2009) BMI1 sustains human glioblastoma multiforme stem cell renewal. *J Neurosci* **29**, 8884–8896.

195 Suva ML, Riggi N, Janiszewska M, Radovanovic I, Provero P, Stehle JC, Baumer K, Le Bitoux MA, Marino D, Cironi L *et al.* (2009) EZH2 is essential for glioblastoma cancer stem cell maintenance. *Cancer Res* **69**, 9211–9218.

196 Bruggeman SW, Hulsman D, Tanger E, Buckle T, Blom M, Zevenhoven J, van Tellingen O & van Lohuizen M (2007) Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. *Cancer Cell* **12**, 328–341.

197 Wu G, Broniscer A, McEachron TA, Lu C, Paugh BS, Becksfort J, Qu C, Ding L, Huether R, Parker M *et al.*; St. Jude Children's Research Hospital-Washington University Pediatric Cancer Genome Project (2012) Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. *Nat Genet* **44**, 251–253.

198 Schwartzenbacher J, Korshunov A, Liu XY, Jones DT, Pfaff E, Jacob K, Sturm D, Fontebasso AM, Quang DA, Tonjes M *et al.* (2012) Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. *Nature* **482**, 226–231.

199 Chan KM, Fang D, Gan H, Hashizume R, Yu C, Schroeder M, Gupta N, Mueller S, James CD, Jenkins R *et al.* (2013) The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression. *Genes Dev* **27**, 985–990.

200 Kim E, Kim M, Woo DH, Shin Y, Shin J, Chang N, Oh YT, Kim H, Rheey J, Nakano I *et al.* (2013) Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. *Cancer Cell* **23**, 839–852.

201 De Raedt T, Beert E, Pasmant E, Luscan A, Brems H, Ortonne N, Helin K, Hornick JL, Mautner V, Kehrer-Sawatzki H *et al.* (2014) PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4-based therapies. *Nature* **514**, 247–251.