
Package ‘polysat’
September 27, 2010

Version 1.0

Date 2010-09-27

Title Tools for Polyploid Microsatellite Analysis

Author Lindsay V. Clark <lvclark@ucdavis.edu>

Maintainer Lindsay V. Clark <lvclark@ucdavis.edu>

Depends combinat, methods

Suggests ade4, adegenet

Description polysat is a collection of tools to handle microsatellite data of any ploidy (and samples of
mixed ploidy) where allele copy number is not known in partially heterozygous genotypes. It can
import and export data in ABI GeneMapper, Structure, ATetra, Tetrasat/Tetra, GenoDive,
SPAGeDi, and binary presence/absence formats. It can calculate pairwise distances between
individuals using a stepwise mutation model or infinite alleles model. It can assist the user in
estimating the ploidy of samples, and lastly it can estimate allele frequencies in populations and
calculate pairwise Fst values based on those frequencies.

License GPL (>=2)

URL http://openwetware.org/wiki/Polysat

R topics documented:
Accessors . 2
Bruvo.distance . 6
calcFst . 7
deleteSamples . 9
deSilvaFreq . 10
editGenotypes . 13
estimatePloidy . 14
FCRinfo . 15
find.missing.gen . 16
genambig-class . 17
genambig.to.genbinary . 19
genbinary-class . 21
gendata-class . 24
isMissing . 27

1

http://openwetware.org/wiki/Polysat

2 Accessors

Lynch.distance . 28
meandist.from.array . 29
meandistance.matrix . 31
merge-methods . 32
read.ATetra . 34
read.GeneMapper . 35
read.GenoDive . 37
read.SPAGeDi . 38
read.Structure . 40
read.Tetrasat . 43
simgen . 44
simpleFreq . 45
testgenotypes . 46
viewGenotypes . 47
write.ATetra . 48
write.freq.SPAGeDi . 49
write.GeneMapper . 51
write.GenoDive . 53
write.SPAGeDi . 55
write.Structure . 56
write.Tetrasat . 59

Index 62

Accessors Accessor and Replacement Functions for "gendata" Objects

Description

The accessor functions return information that is contained, either directly or indirectly, in the
slots of a gendata object. The replacement functions alter information in one or more slots as
appropriate.

Usage

Samples(object, populations, ploidies)
Samples(object) <- value
Loci(object, usatnts)
Loci(object) <- value
PopInfo(object)
PopInfo(object) <- value
PopNames(object)
PopNames(object) <- value
PopNum(object, popname)
PopNum(object, popname) <- value
Ploidies(object)
Ploidies(object) <- value
Usatnts(object)
Usatnts(object) <- value
Description(object)
Description(object) <- value
Missing(object)

Accessors 3

Missing(object) <- value
Present(object)
Present(object) <- value
Absent(object)
Absent(object) <- value
Genotype(object, sample, locus)
Genotype(object, sample, locus) <- value
Genotypes(object, samples = Samples(object), loci = Loci(object))
Genotypes(object, samples = Samples(object), loci = Loci(object)) <- value

Arguments

object An object of the class gendata or one of its subclasses.

populations A character or numeric vector indicating from which populations to return sam-
ples. (optional)

ploidies A numeric vector indicating ploidies, if only samples with a certain ploidy
should be returned. (optional)

sample A character string or number indicating the name or number of the sample whose
genotype should be returned.

locus A character string or number indicating the name or number of the locus whose
genotype should be returned.

samples A character or numeric vector indicating samples for which to return genotypes.
(optional)

loci A character or numeric vector indicating loci for which to return genotypes.
(optional)

usatnts A numeric vector indicating microsatellite repeat lengths, where only loci of
those repeat lengths should be returned. (optional)

popname Chacter string or vector. The name(s) of the population(s) for which to retrieve
or replace the corresponding PopInfo number(s). The replacement function
should only be used for one population at a time.

value • For Samples: a character vector of sample names.
• For Loci: a character vector of locus names.
• For PopInfo: A numeric vector (integer or can be coerced to integer)

indicating the population identities of samples.
• For PopNames: A character vector indicating the names of populations.
• For PopNum: A number (integer or can be coerced to integer) that should

be the new population number associated with popname.
• For Ploidies: A numeric vector (integer or can be coerced to integer)

indicating the ploidy of each sample.
• For Usatnts: A numeric vector (integer or can be coerced to integer)

indicating the repeat type of each microsatellite locus. Dinucleotide repeats
should be represented with 2, trinucleotide repeat with 3, and so on. If
the alleles for a given locus are already stored in terms of repeat number
rather than fragment length in nucleotides, the Usatnts value for that
locus should be 1.

• For Description: A character string or character vector describing the
dataset.

• For Missing: A symbol (usually an integer) to be used to indicate missing
data.

4 Accessors

• For Present: A symbol (usually an integer) to be used to indicate the
presence of an allele.

• For Absent: A symbol (usually an integer) to be used to indicate the ab-
sence of an allele.

• For Genotype: a vector of alleles, if the object is of class genambig.
• For Genotypes: A list of vectors (genotypes), of the same dimension-

ality as c(length(samples), length(loci)), if the object is of
class genambig. If the object is of class genbinary, value should
be a matrix, with column names of the form "locus.allele". See
Genotypes<-,genbinary-method for more information.

Details

Samples<- and Loci<- can only be used to change sample and locus names, not to add or
remove samples and loci from the dataset.

For slots that require integer values, numerical values used in replacement functions will be coerced
to integers. The replacement functions also ensure that all slots remain properly indexed.

The Missing<- function finds any genotypes with the old missing data symbol and changes them
to the new missing data symbol, then assigns the new symbol to the slot that indicates what the
missing data symbol is. Present<- and Absent<- work similarly for the genbinary class.

The Genotype access and replacement functions deal with individual genotypes, which are vec-
tors in the genambig class. The Genotypes access and replacement functions deal with lists of
genotypes.

The PopInfo<- replacement function also adds elements to PopNames(object) if necessary
in order to have names for all of the populations. These will be of the form "Pop" followed by the
population number, and can be later edited using PopNames<-.

The PopNum<- replacement function first finds all samples in the population popname, and re-
places the number in PopInfo(object) for those samples with value. It then inserts NA into
the original PopNames slot that contained popname, and inserts popname into PopNames(object)[value].
If this results in two populations being merged into one, a message is printed to the console.

Value

PopInfo, PopNames, Missing, Description, Usatnts, Ploidies and Genotypes
simply return the contents of the slots of the same names. Samples and Loci return character
vectors taken from the names of other slots (Ploidies/PopInfo and Usatnts, respectively;
the initialization and replacement methods ensure that these slots are always named according to
samples and loci). PopNum returns an integer vector indicating the population number(s) of the
population(s) named in popname. Genotype returns a single genotype for a given sample and
locus, which is a vector whose exact form will depend on the class of object.

Author(s)

Lindsay V. Clark

See Also

deleteSamples, deleteLoci, viewGenotypes, editGenotypes, isMissing, estimatePloidy,
merge,gendata,gendata-method, gendata

Accessors 5

Examples

create a new genambig (subclass of gendata) object to manipulate
mygen <- new("genambig", samples=c("a", "b", "c"), loci=c("locG",
"locH"))

retrieve the sample and locus names
Samples(mygen)
Loci(mygen)

change some of the sample and locus names
Loci(mygen) <- c("lG", "lH")
Samples(mygen)[2] <- "b1"

describe the dataset
Description(mygen) <- "Example dataset for documentation."

name some populations and assign samples to them
PopNames(mygen) <- c("PopL", "PopK")
PopInfo(mygen) <- c(1,1,2)
now we can retrieve samples by population
Samples(mygen, populations="PopL")
we can also adjust the numbers if we want to make them
match another dataset
PopNum(mygen, "PopK") <- 3
PopNames(mygen)
PopInfo(mygen)
change the population identity of just one sample
PopInfo(mygen)["b1"] <- 3

indicate that both loci are dinucleotide repeats
Usatnts(mygen) <- c(2,2)

indicate that all samples are tetraploid
Ploidies(mygen) <- c(4,4,4)
or
Ploidies(mygen) <- rep(4, times = length(Samples(mygen)))
actually, one sample is triploid
Ploidies(mygen)["c"] <- 3
view ploidies
Ploidies(mygen)

view the genotype array as it currently is: filled with missing
values
Genotypes(mygen)
fill in the genotypes
Genotypes(mygen, loci="lG") <- list(c(120, 124, 130, 136), c(122, 120),

c(128, 130, 134))
Genotypes(mygen, loci="lH") <- list(c(200, 202, 210), c(206, 208, 210,

214),
c(208))

genotypes can also be edited or retrieved by sample
Genotypes(mygen, samples="a")
fix a single genotype
Genotype(mygen, "a", "lH") <- c(200, 204, 210)
retrieve a single genotype
Genotype(mygen, "c", "lG")

6 Bruvo.distance

change a genotype to being missing
Genotype(mygen, "c", "lH") <- Missing(mygen)
show the current missing data symbol
Missing(mygen)
an example of genotypes where one contains the missing data symbol
Genotypes(mygen, samples="c")
change the missing data symbol
Missing(mygen) <- as.integer(-1)
now look at the genotypes
Genotypes(mygen, samples="c")

Bruvo.distance Genetic Distance Metric of Bruvo et al.

Description

This function calculates the distance between two individuals at one microsatellite locus using a
method based on that of Bruvo et al. (2004).

Usage

Bruvo.distance(genotype1, genotype2, maxl=9, usatnt=2, missing=-9)

Arguments

genotype1 A vector of alleles for one individual at one locus. Allele length is in nucleotides
or repeat count. Each unique allele corresponds to one element in the vector, and
the vector is no longer than it needs to be to contain all unique alleles for this
individual at this locus.

genotype2 A vector of alleles for another individual at the same locus.

maxl If both individuals have more than this number of alleles at this locus, NA is
returned instead of a numerical distance.

usatnt Length of the repeat at this locus. For example usatnt=2 for dinucleotide
repeats, and usatnt=3 for trinucleotide repeats. If the alleles in genotype1
and genotype2 are expressed in repeat count instead of nucleotides, set usatnt=1.

missing A numerical value that, when in the first allele position, indicates missing data.
NA is returned if this value is found in either genotype.

Details

Since allele copy number is frequently unknown in polyploid microsatellite data, Bruvo et al. de-
veloped a measure of genetic distance similar to band-sharing indices used with dominant data, but
taking into account mutational distances between alleles. A matrix is created containing all differ-
ences in repeat count between the alleles of two individuals at one locus. These differences are then
geometrically transformed to reflect the probabilities of mutation from one allele to another. The
matrix is then searched to find the minimum sum if each allele from one individual is paired to one
allele from the other individual. This sum is divided by the number of alleles per individual.

If one genotype has more alleles than the other, ‘virtual alleles’ must be created so that both
genotypes are the same length. There are three options for the value of these virtual alleles, but

calcFst 7

Bruvo.distance only implements the simplest one, assuming that it is not known whether dif-
ferences in ploidy arose from genome addition or genome loss. Virtual alleles are set to infinity,
such that the geometric distance between any allele and a virtual allele is 1.

Value

A number ranging from 0 to 1, with 0 indicating identical genotypes, and 1 being a theoretical
maximum distance if all alleles from genotype1 differed by an infinite number of repeats from
all alleles in genotype2. NA is returned if both genotypes have more than maxl alleles or if
either genotype has the symbol for missing data as its first allele.

Note

The processing time is a function of the factorial of the number of alleles, since each possible
combination of allele pairs must be evaluated. For genotypes with a sufficiently large number of
alleles, it may be more efficient to estimate distances manually by creating the matrix in Excel
and visually picking out the shortest distances between alleles. This is the purpose of the maxl
argument. On my personal computer, if both genotypes had more than nine alleles, the calculation
could take an hour or more, and so this is the default limit. In this case, Bruvo.distance returns
NA.

Author(s)

Lindsay V. Clark

References

Bruvo, R., Michiels, N. K., D’Sousa, T. G., and Schulenberg, H. (2004) A simple method for
calculation of microsatellite genotypes irrespective of ploidy level. Molecular Ecology 13, 2101-
2106.

See Also

meandistance.matrix, Lynch.distance

Examples

Bruvo.distance(c(202,206,210,220),c(204,206,216,222))
Bruvo.distance(c(202,206,210,220),c(204,206,216,222),usatnt=4)
Bruvo.distance(c(202,206,210,220),c(204,206,222))
Bruvo.distance(c(202,206,210,220),c(204,206,216,222),maxl=3)
Bruvo.distance(c(202,206,210,220),c(-9))

calcFst Calculate Wright’s Pairwise FST

Description

Given a data frame of allele frequencies and population sizes, calcFst calculates a matrix of
pairwise Fst values.

8 calcFst

Usage

calcFst(freqs, pops = row.names(freqs), loci = unique(as.matrix(
as.data.frame(strsplit(names(freqs), split = ".", fixed = TRUE),
stringsAsFactors = FALSE))[1,]))

Arguments

freqs A data frame of allele frequencies and population sizes such as that produced
by simpleFreq or deSilvaFreq. Each population is in one row, and a
column called Genomes contains the relative size of each population. All other
columns contain allele frequencies. The names of these columns are the locus
name and allele name, separated by a period.

pops A character vector. Populations to analyze, which should be a subset of row.names(freqs).

loci A character vector indicating which loci to analyze. These should be a subset of
the locus names as used in the column names of freqs.

Details

calcFst works by calculating HS and HT for each locus for each pair of populations, then aver-
aging HS and HT across loci. FST is then calculated for each pair of populations as (HT-HS)/HT.

H values (expected heterozygosities for populations and combined populations) are calculated as
one minus the sum of all squared allele frequencies at a locus. To calculte HT, allele frequencies
between two populations are averaged before the calculation. To calculate HS, H values are aver-
aged after the calculation. In both cases, the averages are weighted by the relative sizes of the two
populations (as indicated by freqs$Genomes).

Value

A square matrix containing FST values. The rows and columns of the matrix are both named by
population.

Author(s)

Lindsay V. Clark

References

Nei, M. (1973) Analysis of gene diversity in subdivided populations. Proceedings of the National
Academy of Sciences of the United States of America 70, 3321–3323.

See Also

simpleFreq, deSilvaFreq

Examples

create a data set (typically done by reading files)
mygenotypes <- new("genambig", samples = paste("ind", 1:6, sep=""),

loci = c("loc1", "loc2"))
Genotypes(mygenotypes, loci = "loc1") <- list(c(206), c(208,210),

c(204,206,210),
c(196,198,202,208), c(196,200), c(198,200,202,204))

Genotypes(mygenotypes, loci = "loc2") <- list(c(130,134), c(138,140),

deleteSamples 9

c(130,136,140),
c(138), c(136,140), c(130,132,136))

PopInfo(mygenotypes) <- c(1,1,1,2,2,2)
Ploidies(mygenotypes) <- c(2,2,4,4,2,4)

calculate allele frequencies
myfreq <- simpleFreq(mygenotypes)

calculate pairwise FST
myfst <- calcFst(myfreq)

examine the results
myfst

deleteSamples Remove Samples or Loci from an Object

Description

These functions remove samples or loci from all relevant slots of an object.

Usage

deleteSamples(object, samples)
deleteLoci(object, loci)

Arguments

object An object containing the dataset of interest. Generally an object of some sub-
class of gendata.

samples A numerical or character vector of samples to be removed.

loci A numerical or character vector of loci to be removed.

Details

These are generic functions with methods for genambig, genbinary, and gendata objects.
The methods for the subclasses remove samples or loci from the @Genotypes slot, then pass
the object to the method for gendata, which removes samples or loci from the @PopInfo and
@Ploidies or @Usatnts slots, respectively. The @PopNames slot is left untouched even if an
entire population is deleted, in order to preserve the connection between the numbers in @PopInfo
and the names in @PopNames.

If your intent is to experiment with excluding samples or loci, it may be a better idea to create char-
acter vectors of samples and loci that you want to use and then use these vectors as the samples
and loci arguments for analysis or export functions.

Value

An object identical to object, but with the specified samples or loci removed.

10 deSilvaFreq

Note

These functions are somewhat redundant with the subscripting function "[", which also works
for all gendata objects. However, they may be more convenient depending on whether the user
prefers to specify the samples and loci to use or to exclude.

Author(s)

Lindsay V. Clark

See Also

Samples, Loci, merge,gendata,gendata-method

Examples

set up genambig object
mygen <- new("genambig", samples = c("ind1", "ind2", "ind3", "ind4"),

loci = c("locA", "locB", "locC", "locD"))

delete a sample
Samples(mygen)
mygen <- deleteSamples(mygen, "ind1")
Samples(mygen)

delete some loci
Loci(mygen)
mygen <- deleteLoci(mygen, c("locB", "locC"))
Loci(mygen)

deSilvaFreq Estimate Allele Frequencies with EM Algorithm

Description

This function uses the method of De Silva et al. (2005) to estimate allele frequencies under
polysomic inheritance with a known selfing rate.

Usage

deSilvaFreq(object, self, samples = Samples(object),
loci = Loci(object), initNull = 0.15,
initFreq = simpleFreq(object[samples, loci]),
tol = 1e-08)

Arguments

object A genambig or genbinary object containing the dataset of interest. Ploidies
must be filled in for samples. All ploidies for samples should be the same,
and this should be an even number. PopInfomust also be filled in for samples.

self A number between 1 and 0, indicating the rate of selfing.

samples An optional character vector indicating a subset of samples to use in the calcu-
lation.

deSilvaFreq 11

loci An optional character vector indicating a subset of loci for which to calculate
allele frequencies.

initNull A single value or numeric vector indicating initial frequencies to use for the null
allele at each locus.

initFreq A data frame containing allele frequencies (for non-null loci) to use for ini-
tialization. This needs to be in the same format as the output of simpleFreq
(which is similar to the format of the output of deSilvaFreq). By default, the
function will do a quick estimation of allele frequencies using simpleFreq
and then initialize the EM algorithm at these frequencies.

tol The tolerance level for determining when the results have converged. Where p2
and p1 are the current and previous vectors of allele frequencies, respectively,
the EM algorithm stops if sum(abs(p2-p1)/(p2+p1)) <= tol.

Details

Most of the SAS code from the supplementary material of De Silva et al. (2005) is translated
directly into the R code for this function. The SIMSAMPLE (or CreateRandomSample in the SAS
code) function is omitted so that the actual allelic phenotypes from the dataset can be used instead
of simulated phenotypes. deSilvaFreq loops through each locus and population, and in each
loop tallies the number of alleles and sets up matrices using GENLIST, PHENLIST, RANMUL,
SELFMAT, and CONVMAT as described in the paper. Frequencies of each allelic phenotype are
then tallied across all samples in that population with non-missing data at the locus. Initial allele
frequencies for that population and locus are then extraced from initFreq and adjusted according
to initNull. The EM iteration then begins for that population and locus, as described in the paper
(EXPECTATION, GPROBS, and MAXIMISATION).

Each repetition of the EM algorithm includes an expectation and maximization step. The expec-
tation step uses allele frequencies and the selfing rate to calculate expected genotype frequencies,
then uses observed phenotype frequencies and expected genotype frequencies to estimate genotype
frequencies for the population. The maximization step uses the estimated genotype frequencies to
calculate a new set of allele frequencies. The process is repeated until allele frequencies converge.

In addition to returning a data frame of allele frequencies, deSilvaFreq also prints to the console
the number of EM repetitions used for each population and locus. When each locus and each
population is begun, a message is printed to the console so that the user can monitor the progress of
the computation.

Value

A data frame containing the estimated allele frequencies. The row names are population names
from PopNames(object). The first column shows how many genomes each population has.
All other columns represent alleles (including one null allele per locus). These column names are
the locus name and allele name separated by a period.

Note

It is possible to exceed memory limits for R if a locus has too many alleles in a population (e.g. 15
alleles in a tetraploid if the memory limit is 1535 Mb, see memory.limit).

De Silva et al. mention that their estimation method could be extended to the case of disomic inheri-
tence. A method for disomic inheritence is not implemented here, as it would require knowledge of
which alleles belong to which isoloci.

De Silva et al. also suggest a means of estimating the selfing rate with a least-squares method.
Using the notation in the source code, this would be:

12 deSilvaFreq

lsq <- smatt %*% EP - rvec self <- as.vector((t(EP - rvec) %*% lsq)/(t(lsq)
%*% lsq))

However, in my experimentation with this calculation, it sometimes yields selfing rates greater than
one. For this reason, it is not implemented here.

Author(s)

Lindsay V. Clark

References

De Silva, H. N., Hall, A. J., Rikkerink, E., and Fraser, L. G. (2005) Estimation of allele frequencies
in polyploids under certain patterns of inheritance. Heredity 95, 327–334

See Also

simpleFreq, write.freq.SPAGeDi

Examples

create a dataset for this example
mygen <- new("genambig", samples=c(paste("A", 1:100, sep=""),

paste("B", 1:100, sep="")),
loci=c("loc1", "loc2"))

PopNames(mygen) <- c("PopA", "PopB")
PopInfo(mygen) <- c(rep(1, 100), rep(2, 100))
Ploidies(mygen) <- rep(4, 200)
Usatnts(mygen) <- c(2, 2)
Description(mygen) <- "An example for allele frequency calculation."

create some genotypes at random for this example
for(s in Samples(mygen)){

Genotype(mygen, s, "loc1") <- sample(seq(120, 140, by=2),
sample(1:4, 1))

}
for(s in Samples(mygen)){

Genotype(mygen, s, "loc2") <- sample(seq(130, 156, by=2),
sample(1:4, 1))

}
make one genotype missing
Genotype(mygen, "B4", "loc2") <- Missing(mygen)

view the dataset
summary(mygen)
viewGenotypes(mygen)

calculate the allele frequencies if the rate of selfing is 0.2
myfrequencies <- deSilvaFreq(mygen, self=0.2)

view the results
myfrequencies

editGenotypes 13

editGenotypes Edit Genotypes Using the Data Editor

Description

The genotypes from an object of one of the subclasses of gendata are converted to a data frame
(if necessary), then displayed in the data editor. After the user makes the desired edits and closes
the data editor window, the new genotypes are written to the gendata object and the object is
returned.

Usage

editGenotypes(object, maxalleles = max(Ploidies(object)),
samples = Samples(object), loci = Loci(object))

Arguments

object An object of the class genambig or genbinary. Contains the genotypes to
be edited.

maxalleles Numeric. The maximum number of alleles found in any given genotype. The
method for genambig requires this information in order to determine how
many columns to put in the data frame.

samples Character or numeric vector indicating which samples to edit.

loci Character or numeric vector indicating which loci to edit.

Details

The method for genambig lists sample and locus names in each row in order to identify the
genotypes. However, only the alleles themselves should be edited. NA values and duplicate alleles
in the data editor will be omitted from the genotype vectors that are written back to the genambig
object.

Value

An object identical to object but with edited genotypes.

Author(s)

Lindsay V. Clark

See Also

viewGenotypes, Genotype<-, Genotypes<-

Examples

set up "genambig" object to edit
mygen <- new("genambig", samples = c("a", "b", "c"),

loci = c("loc1", "loc2"))
Genotypes(mygen, loci="loc1") <- list(c(133, 139, 142),

c(130, 136, 139, 145),
c(136, 142))

14 estimatePloidy

Genotypes(mygen, loci="loc2") <- list(c(202, 204), Missing(mygen),
c(200, 206, 208))

Ploidies(mygen) <- rep(4, times = 3)

open up the data editor
mygen <- editGenotypes(mygen)

view the results of your edits
viewGenotypes(mygen)

estimatePloidy Estimate Ploidies Based on Allele Counts

Description

estimatePloidy calculates the maximum and mean number of unique alleles for each sample
across a given set of loci. These values are presented in a data editor, along with other pertinent
information, so that the user can then edit the ploidy values for the object.

Usage

estimatePloidy(object, extrainfo, samples = Samples(object),
loci = Loci(object))

Arguments

object The object containing genotype data, and to which ploidies will be written.

extrainfo A named or unnamed vector or data frame containing extra information (such
as morphological or flow cytometry data) to display in the data editor, to assist
with making decisions about ploidy. If unnamed, the vector (or the rows of the
data frame) is assumed to be in the same order as samples. An array can also
be given as an argument here, and will be coerced to a data frame.

samples A numeric or character vector indicating a subset of samples to evaluate.

loci A numeric or character vector indicating a subset of loci to use in the calculation
of mean and maximum allele number.

Details

estimatePloidy is a generic function with methods written for the genambig and genbinary
classes.

Population identities are displayed in the table only if more than one population identity is found in
the dataset. Likewise, the current ploidies of the dataset are only displayed if there is more than one
ploidy level already found in Ploidies(object).

Missing genotypes are ignored; maximum and mean allele counts are only calculted across geno-
types that are not missing. If all genotypes for a given sample are missing, NA is displayed in the
corresponding cells in the data editor.

The default values for new.ploidy are the maximum number of alleles per locus for each sample.

FCRinfo 15

Value

object is returned, with Ploidies(object) now equal to the values set in the new.ploidy
column of the data editor.

Author(s)

Lindsay V. Clark

See Also

genambig, genbinary, Ploidies

Examples

create a dataset for this example
mygen <- new("genambig", samples=c("a", "b", "c"),

loci=c("loc1", "loc2"))
Genotypes(mygen, loci="loc1") <- list(c(122, 126, 128), c(124, 130),

c(120, 122, 124))
Genotypes(mygen, loci="loc2") <- list(c(140, 148), c(144, 150), Missing(mygen))

estimate the ploidies
mygen <- estimatePloidy(mygen)

view the ploidies
Ploidies(mygen)

FCRinfo Additional Data on Rubus Samples

Description

For 20 Rubus samples, contains colors and symbols to use for plotting data.

Usage

data(FCRinfo)

Format

Data frame. FCRinfo$Plot.color contains character strings of the colors to be used to repre-
sent species groups. FCR.info$Plot.symbol contains integers to be passed to pch to desig-
nate the symbol used to represent each individual. These reflect chloroplast haplotypes.

Source

Clark and Jasieniuk, unpublished data

See Also

testgenotypes

16 find.missing.gen

find.missing.gen Find Missing Genotypes

Description

This function returns a data frame listing the locus and sample names of all genotypes with missing
data.

Usage

find.missing.gen(object, samples = Samples(object),
loci = Loci(object))

Arguments

object A genambig or genbinary object containing the genotypes of interest.

samples A character vector of all samples to be searched. Must be a subset of Samples(object).

loci A character vector of all loci to be searched. Must be a subset of Loci(object).

Value

A data frame with no row names. The first column is named “Locus” and the second column is
named “Sample”. Each row represents one missing genotype, and gives the locus and sample of
that genotype.

Author(s)

Lindsay V. Clark

See Also

isMissing

Examples

set up the genotype data
samples <- paste("ind", 1:4, sep="")
samples
loci <- paste("loc", 1:3, sep="")
loci
testgen <- new("genambig", samples = samples, loci = loci)
Genotypes(testgen, loci="loc1") <- list(c(-9), c(102,104),

c(100,106,108,110,114),
c(102,104,106,110,112))

Genotypes(testgen, loci="loc2") <- list(c(77,79,83), c(79,85), c(-9),
c(83,85,87,91))

Genotypes(testgen, loci="loc3") <- list(c(122,128), c(124,126,128,132),
c(120,126), c(124,128,130))

look up which samples*loci have missing genotypes
find.missing.gen(testgen)

genambig-class 17

genambig-class Class "genambig"

Description

Objects of this class store microsatellite datasets in which allele copy number is ambiguous. Geno-
types are stored as a two-dimensional list of vectors, each vector containing all unique alleles for a
given sample at a given locus. genambig is a subclass of gendata.

Objects from the Class

Objects can be created by calls of the form new("genambig", samples, loci, ...).
This automatically sets up a two-dimensional list in the Genotypes slot, with dimnames=list(samples,
loci). This array-list is initially populated with the missing data symbol. All other slots are given
initial values according to the initialize method for gendata. Data can then be inserted into
the slots using the replacement functions (see Accessors).

Slots

Genotypes: Object of class "array". The first dimension of the array represents and is named
by samples, while the second dimension represents and is named by loci. Each element of
the array can contain a vector. Each vector should contain each unique allele for the genotype
once. If an array element contains a vector of length 1 containing only the symbol that is in
the Missing slot, this indicates missing data for that sample and locus.

Description: Object of class "character". This stores a description of the dataset for the
user’s convenience.

Missing: Object of class "ANY". A symbol to be used to indicate missing data in the Genotypes
slot. This is the integer -9 by default.

Usatnts: Object of class "integer". A vector, named by loci. Each element indicates the
repeat type of the locus. 2 indicates dinucleotide repeats, 3 indicates trinucleotide repeats,
and so on. If the alleles stored in the Genotypes slot for a given locus are already written
in terms of repeat number, the Usatnts value for that locus should be 1. In other words,
all alleles for a locus can be divided by the number in Usatnts to give alleles expressed in
terms of relative repeat number.

Ploidies: Object of class "integer". A vector, named by samples. This stores the ploidy of
each sample. NA indicates unknown ploidy. See Ploidies<- and estimatePloidy for
ways to fill this slot.

PopInfo: Object of class "integer". A vector, named by samples, containing the population
identity of each sample.

PopNames: Object of class "character". A vector containing names for all populations. The
position of a population name in the vector indicates the integer used to represent that popu-
lation in PopInfo.

Extends

Class "gendata", directly.

18 genambig-class

Methods

For more information on any of these methods, see the help files of their respective generic func-
tions.

deleteLoci signature(object = "genambig"): Removes columns in the array in the
Genotypes slot corresponding to the locus names supplied, then passes the arguments to
the method for gendata.

deleteSamples signature(object = "genambig"): Removes rows in the array in the
Genotypes slot corresponding to the sample names supplied, then passes the arguments
to the method for gendata.

editGenotypes signature(object = "genambig"): Each vector in the Genotypes slot
is placed into the row of a data frame, along with the sample and locus name for this vector.
The data frame is then opened in the Data Editor so that the user can make changes. When the
Data Editor window is closed, vectors are extracted back out of the data frame and written to
the Genotypes slot.

estimatePloidy signature(object = "genambig"): Calculates the length of each geno-
type vector (excluding those with the missing data symbol), and creates a data frame showing
the maximum and mean number of alleles per locus for each sample. This data frame is then
opened in the Data Editor, where the user may edit ploidy levels. Once the Data Editor is
closed, the genambig object is returned with the new values written to the Ploidies slot.

Genotype signature(object = "genambig"): Retrieves a single genotype vector, as
specified by sample and locus arguments.

Genotype<- signature(object = "genambig"): Replaces a single genotype vector.

Genotypes signature(object = "genambig"): Retrieves a two-dimensional list of geno-
type vectors.

Genotypes<- signature(object = "genambig"): Replaces a one- or two-dimensional
list of genotype vectors.

initialize signature(.Object = "genambig"): When new is called to create a new genambig
object, the initialize method sets up a two dimensional list in the Genotypes slot in-
dexed by sample and locus, and fills this list with the missing data symbol. The initialize
method for gendata is then called.

isMissing signature(object = "genambig"): Given a set of samples and loci, each po-
sition in the array in the Genotypes slot is checked to see if it matches the missing data
value. A single Boolean value or an array of Boolean values is returned.

Loci<- signature(object = "genambig"): For changing the names of loci. The names
are changed in the second dimension of the array in the Genotypes slot, and then the
Loci<- method for gendata is called.

Missing<- signature(object = "genambig"): For changing the missing data symbol.
All elements of the Genotypes array that match the current missing data symbol are changed
to the new missing data symbol. The Missing<- method for gendata is then called.

Samples<- signature(object = "genambig"): For changing the names of samples. The
names are changed in the first dimension of the array in the Genotypes slot, and then the
Samples<- method for gendata is called.

summary signature(object = "genambig"): Prints the dataset description (Description
slot) to the console as well as the number of missing genotypes, then calls the summary
method for gendata.

viewGenotypes signature(object = "genambig"): Prints a tab-delimited table of sam-
ples, loci, and genotype vectors to the console.

genambig.to.genbinary 19

"[" signature(x = "genambig", i = "ANY", j = "ANY"): For subscipting genambig
objects. Should be of the form mygenambig[mysamples, myloci]. Returns a genambig
object. The Genotypes slot is replaced by one containing only samples i and loci j. Like-
wise, the PopInfo and Ploidies slots are truncated to contain only samples i, and the
Usatnts slot is truncated to contain only loci j. Other slots are left unaltered.

merge signature(x = "genambig", y = "genambig"): Merges two genotypes ob-
jects together. See merge,genambig,genambig-method.

Author(s)

Lindsay V. Clark

See Also

gendata, Accessors, merge,genambig,genambig-method

Examples

display class definition
showClass("genambig")

create a genambig object
mygen <- new("genambig", samples=c("a", "b", "c", "d"),

loci=c("L1", "L2", "L3"))
add some genotypes
Genotypes(mygen)[,"L1"] <- list(c(133, 139, 145), c(142, 154),

c(130, 142, 148), Missing(mygen))
Genotypes(mygen, loci="L2") <- list(c(105, 109, 113), c(111, 117),

c(103, 115), c(105, 109, 113))
Genotypes(mygen, loci="L3") <- list(c(254, 258), Missing(mygen),

c(246, 250, 262), c(250, 258))

see a summary of the object
summary(mygen)
display some of the genotypes
viewGenotypes(mygen[c("a", "b", "c"),])

genambig.to.genbinary
Convert Between Genotype Object Classes

Description

These functions convert back and forth between the genambig and genbinary classes.

Usage

genambig.to.genbinary(object, samples = Samples(object),
loci = Loci(object))

genbinary.to.genambig(object, samples = Samples(object),
loci = Loci(object))

20 genambig.to.genbinary

Arguments

object The object containing the genetic dataset. A genambig object for genambig.to.genbinary,
or a genbinary object for genbinary.to.genambig.

samples An optional character vector indicating samples to include in the new object.

loci An optional character vector indicating loci to include in the new object.

Details

The slots Description, Ploidies, Usatnts, PopNames, and PopInfo are transferred as-
is from the old object to the new. The value in the Genotypes slot is converted from one format
to the other, with preservation of allele names.

Value

For genambig.to.genbinary: a genbinary object containing all of the data from object.
Missing, Present, and Absent are set at their default values.

For genbinary.to.genambig: a genambig object containing all of the data from object.
Missing is at the default value.

Author(s)

Lindsay V. Clark

See Also

genambig, genbinary

Examples

set up a genambig object for this example
mygen <- new("genambig", samples = c("A", "B", "C", "D"),

loci = c("locJ", "locK"))
PopNames(mygen) <- c("PopQ", "PopR")
PopInfo(mygen) <- c(1,1,2,2)
Usatnts(mygen) <- c(2,2)
Genotypes(mygen, loci="locJ") <- list(c(178, 184, 186), c(174,186),

c(182, 188, 190),
c(182, 184, 188))

Genotypes(mygen, loci="locK") <- list(c(133, 135, 141),
c(131, 135, 137, 143),
Missing(mygen), c(133, 137))

convert it to a genbinary object
mygenB <- genambig.to.genbinary(mygen)

check the results
viewGenotypes(mygenB)
viewGenotypes(mygen)
PopInfo(mygenB)

convert back to a genambig object
mygenA <- genbinary.to.genambig(mygenB)
viewGenotypes(mygenA)

genbinary-class 21

note: identical(mygen, mygenA) returns FALSE, because the alleles
origninally input are not stored as integers, while the alleles
produced by genbinary.to.genambig are integers.

genbinary-class Class "genbinary"

Description

This is a subclass of gendata that allows genotypes to be stored as a matrix indicating the presence
and absence of alleles.

Objects from the Class

Objects can be created by calls of the form new("genbinary", samples, loci, ...).
After objects are initialized with sample and locus names, data can be added to slots using the
replacement functions.

Slots

Genotypes: Object of class "matrix". Row names of the matrix are sample names. Each
column name is a locus name and an allele separated by a period (e.g. "loc1.124"); each
column represents on allele. The number of alleles per locus is not limited and can be ex-
panded even after entering initial data. Each element of the matrix must be equal to either
Present(object), Absent(object), or Missing(object). These symbols indi-
cate, respectively, that a sample has an allele, that a sample does not have an allele, or that
data for the sample at that locus are missing.

Present: Object of class "ANY". The integer 1 by default. This symbol is used in the Genotypes
slot to indicate the presence of an allele in a sample.

Absent: Object of class "ANY". The integer 0 by default. This symbol is used in the Genotypes
slot to indicate the absence of an allele in a sample.

Description: Object of class "character". A character string or vector describing the
dataset, for the convenience of the user.

Missing: Object of class "ANY". The integer -9 by default. This symbol is used in the Genotypes
slot to indicate that data are missing for a given sample and locus.

Usatnts: Object of class "integer". A vector, named by loci. This indicates the repeat length
of each locus. 2 indicates dinucleotide repeats, 3 indicates trinucleotide repeats, and so on.
If the alleles stored in the column names of the Genotypes slot for a given locus are al-
ready written in terms of repeat number, the Usatnts value for that locus should be 1. In
other words, all alleles for a locus can be divided by the number in Usatnts to give alleles
expressed in terms of relative repeat number.

Ploidies: Object of class "integer". A vector, named by samples. This indicates the ploidy
of each sample.

PopInfo: Object of class "integer". A vector, named by samples. This indicates the popula-
tion identity of each sample.

PopNames: Object of class "character". Names of each population. The position of the
population name in the vector corresponds to the number used to represent that population in
the PopInfo slot.

22 genbinary-class

Extends

Class "gendata", directly.

Methods

Absent signature(object = "genbinary"): Returns the symbol used to indicate that a
given allele is absent in a given sample.

Absent<- signature(object = "genbinary"): Changes the symbol used to indicate
that a given allele is absent in a given sample. The matrix in the Genotypes slot is searched
for the old symbol, which is replaced by the new. The new symbol is then written to the
Absent slot.

Genotype signature(object = "genbinary"): Returns a matrix containing the geno-
type for a given sample and locus (by a call to Genotypes).

Genotypes signature(object = "genbinary"): Returns the matrix stored in the Genotypes
slot, or a subset as specified by the samples and loci arguments.

Genotypes<- signature(object = "genbinary"): A method for adding or replacing
genotype data in the object. Note that allele columns cannot be removed from the ma-
trix in the Genotypes slot using this method, although an entire column could be filled
with zeros in order to effectively remove an allele from the dataset. If the order of rows in
value (the matrix containing values to be assigned to the Genotypes slot) is not identical
to Samples(object), the samples argument should be used to indicate row order. Row
names in value are ignored. The loci argument can be left at the default, even if only a
subset of loci are being assigned. Column names of value are important, and should be the
locus name and allele name separated by a period, as they are in the Genotypes slot. After
checking that the column name is valid, the method checks for whether the column name al-
ready exists or not in the Genotypes slot. If it does exist, data from that column are replaced
with data from value. If not, a column is added to the matrix in the Genotypes slot for
the new allele. If the column is new and data are not being written for samples, the method
automatically fills in Missing or Absent symbols for additional samples, depending on
whether or not data for the locus appear to be missing for the sample or not.

initialize signature(.Object = "genbinary"): Sets up a genbinary object when
new("genbinary") is called. If samples or loci arguments are missing, these are
filled in with dummy values ("ind1", "ind2", "loc1", "loc2"). The matrix is
then set up in the Genotypes slot. Sample names are used for row names, and there are zero
columns. The initialize method for gendata is then called.

Missing<- signature(object = "genbinary"): Replaces all elements in matrix in the
Genotypes slot containing the old Missing symbol with the new Missing symbol. The
method for gendata is then called to replace the value in the Missing slot.

Present signature(object = "genbinary"): Returns the symbol used to indicate that a
given allele is present in a given sample.

Present<- signature(object = "genbinary"): Changes the symbol used for indicating
that a given allele is present in a given sample. The symbol is first replaced in the Genotypes
slot, and then in the Present slot.

Samples<- signature(object = "genbinary"): Changes sample names in the dataset.
Changes the row names in the Genotypes slot, then calls the method for gendata to
change the names in the PopInfo and Ploidies slots.

Loci<- signature(object = "genbinary"): Changes locus names in the dataset. Re-
places the locus portion of the column names in the Genotypes slot, then calls the method
for gendata to change the names in the Usatnts slot.

genbinary-class 23

isMissing signature(object = "genbinary"): Returns Boolean values, by sample and
locus, indicating whether genotypes are missing. If there are any missing data symbols within
the genotype, it is considered missing.

summary signature(object = "genbinary"): Prints description of dataset and num-
ber of missing genotypes, then calls the method for gendata to print additional information.

editGenotypes signature(object = "genbinary"): Opens the genotype matrix in the
Data Editor for editing. Useful for making minor changes, although allele columns cannot be
added using this method.

viewGenotypes signature(object = "genbinary"): Prints the genotype matrix to the
console, one locus at a time.

deleteSamples signature(object = "genbinary"): Removes the specified samples from
the genotypes matrix, then calls the method for gendata.

deleteLoci signature(object = "genbinary"): Removes the specified loci from the
genotypes matrix, then calls the method for gendata.

"[" signature(x = "genbinary", i = "ANY", j = "ANY"): Subscripting method.
Returns a genbinary object with a subset of the samples and/or loci from x. Usage:
genobject[samples,loci].

estimatePloidy signature(object = "genbinary"): Creates a data frame of mean and
maximum number of alleles per sample, which is then opened in the Data Editor so that
the user can manually specify the ploidy of each sample. Ploidies are then written to the
Ploidies slot of the object.

merge signature(x = "genbinary", y = "genbinary"): Merges two genotype ob-
jects together. See merge,genbinary,genbinary-method.

Author(s)

Lindsay V. Clark

See Also

gendata, Accessors, genambig

Examples

show the class definition
showClass("genbinary")

create a genbinary object
mygen <- new("genbinary", samples = c("indA", "indB", "indC", "indD"),

loci = c("loc1", "loc2"))
Description(mygen) <- "Example genbinary object for the documentation."
Usatnts(mygen) <- c(2,3)
PopNames(mygen) <- c("Maine", "Indiana")
PopInfo(mygen) <- c(1,1,2,2)
Genotypes(mygen) <- matrix(c(1,1,0,0, 1,0,0,1, 0,0,1,1,

1,-9,1,0, 0,-9,0,1, 1,-9,0,1, 0,-9,1,1),
nrow=4, ncol=7, dimnames = list(NULL,
c("loc1.140", "loc1.144", "loc1.150",
"loc2.97", "loc2.100", "loc2.106", "loc2.109")))

view all of the data in the object
mygen

24 gendata-class

gendata-class Class "gendata"

Description

This is a superclass for other classes that contain population genetic datasets. It has slots for pop-
ulation information, ploidy, microsatellite repeat lengths, and a missing data symbol, but does not
have a slot to store genotypes. Sample and locus names are stored as the names of vectors in the
slots.

Objects from the Class

Objects can be created by calls of the form new("gendata", samples, loci, ...). The
missing data symbol will be set to -9 by default. The default initial value for PopNames is a char-
acter vector of length 0, and for Description is the string "Insert dataset description
here". For other slots, vectors filled with NA will be generated and will be named by samples (for
PopInfo and Ploidies) or loci (for Usatnts). The slots can then be edited using the methods
described below.

Note that in most cases you will want to instead create an object from one of gendata’s subclasses,
such as genambig.

Slots

Description: Object of class "character". One or more character strings to name or de-
scribe the dataset.

Missing: Object of class "ANY". A value to indicate missing data in the genotypes of the dataset.
-9 by default.

Usatnts: Object of class "integer". This vector must be named by locus names. Each ele-
ment should be the length of the microsatellite repeat for that locus, given in nucleotides. For
example, 2 would indicate a locus with dinucleotide repeats, and 3 would indicate a locus
with trinucleotide repeats. 1 should be used for mononucleotide repeats OR if alleles for that
locus are already expressed in terms of repeat number rather than nucleotides. To put it an-
other way, if you divided the number used to represent an allele by the corresponding number
in Usatnts (and rounded if necessary), the result would be the number of repeats (plus some
additional length for flanking regions).

Ploidies: Object of class "integer". This vector must be named by sample names. Each
element represents the ploidy of that sample. NA indicates unknown ploidy.

PopInfo: Object of class "integer". This vector also must be named by sample names. Each
element represents the number of the population to which each sample belongs.

PopNames: Object of class "character". An unnamed vector containing the name of each
population. If a number from PopInfo is used to index PopNames, it should find the
correct population name. For example, if the first element of PopNames is "ABC", then any
samples with 1 as their PopInfo value belong to population "ABC".

Methods

deleteLoci signature(object = "gendata"): Permanently remove loci from the dataset.
This removes elements from Usatnts.

gendata-class 25

deleteSamples signature(object = "gendata"): Permanently remove samples from the
dataset. This removes elements from PopInfo and Ploidies.

Description signature(object = "gendata"): Returns the character vector in the Description
slot.

Description<- signature(object = "gendata"): Assigns a new value to the character
vector in the Description slot.

initialize signature(.Object = "gendata"): This is called when the new("gendata")
function is used. A new gendata object is created with sample and locus names used to in-
dex the appropriate slots.

Loci signature(object = "gendata", usatnts = "missing"): Returns a char-
acter vector containing all locus names for the object. The method accomplishes this by
returning names(object@Usatnts).

Loci signature(object = "gendata", usatnts = "numeric"): Returns a char-
acter vector of all loci for a given set of repeat lengths. For example, if usatnts = 2 all
loci with dinucleotide repeats will be returned.

Loci<- signature(object = "gendata"): Assigns new names to loci in the dataset (changes
names(object@Usants). Should not be used for adding or removing loci.

Missing signature(object = "gendata"): Returns the missing data symbol from object@Missing.

Missing<- signature(object = "gendata"): Assigns a new value to object@Missing
(changes the missing data symbol).

Ploidies signature(object = "gendata"): Returns the ploidies of samples in the dataset
(object@Ploidies).

Ploidies<- signature(object = "gendata"): Assigns new values to ploidies of samples
in the dataset. The assigned values are coerced to integers by the method. Names in the
assigned vector are ignored; sample names already present in the gendata object are used
instead.

PopInfo signature(object = "gendata"): Returns the population numbers of samples
in the dataset (object@PopInfo).

PopInfo<- signature(object = "gendata"): Assigns new population numbers to sam-
ples in the dataset. The assigned values are coerced to integers by the method. Names in the
assigned vector are ignored; sample names already present in the gendata object are used
instead.

PopNames signature(object = "gendata"): Returns a character vector of population
names (object@PopNames).

PopNames<- signature(object = "gendata"): Assigns new names to populations.

PopNum signature(object = "gendata", popname="character"): Returns the
number corresponding to a population name.

PopNum<- signature(object = "gendata", popname = "character"): Changes
the population number for a given population name, merging it with an existing population of
that number if applicable.

Samples signature(object = "gendata", populations = "character", ploidies
= "missing"): Returns all sample names for a given set of population names.

Samples signature(object = "gendata", populations = "character", ploidies
= "numeric"): Returns all sample names for a given set of population names and ploidies.
Only samples that fit both criteria will be returned.

Samples signature(object = "gendata", populations = "missing", ploidies
= "missing"): Returns all sample names.

26 gendata-class

Samples signature(object = "gendata", populations = "missing", ploidies
= "numeric"): Returns all sample names for a given set of ploidies.

Samples signature(object = "gendata", populations = "numeric", ploidies
= "missing"): Returns all sample names for a given set of population numbers.

Samples signature(object = "gendata", populations = "numeric", ploidies
= "numeric"): Returns all sample names for a given set of population numbers and ploi-
dies. Only samples that fit both criteria will be returned.

Samples<- signature(object = "gendata"): Assigns new names to samples. This edits
both names(object@PopInfo) and names(object@Ploidies). It should not be
used for adding or removing samples from the dataset.

summary signature(object = "gendata"): Prints some informaton to the console, in-
cluding the numbers of samples, loci, and populations, the ploidies present, and the types of
microsatellite repeats present.

Usatnts signature(object = "gendata"): Returns microsatellite repeat lengths for loci
in the dataset (object@Usatnts).

Usatnts<- signature(object = "gendata"): Assigns new values to microsatellite re-
peat lengths of loci (object@Usatnts). The assigned values are coerced to integers by
the method. Names in the assigned vector are ignored; locus names already present in the
gendata object are used instead.

"[" signature(x = "gendata", i = "ANY", j = "ANY"): Subscripts the data by a
subset of samples and/or loci. Should be used in the format mygendata[mysamples,
myloci]. Returns a gendata object with PopInfo, Ploidies, and Usatnts trun-
cated to only contain the samples and loci listed in i and j, respectively. Description,
Missing, and PopNames are left unaltered.

merge signature(x = "gendata", y = "gendata"): Merges two genotype objects.
See merge,gendata,gendata-method.

Author(s)

Lindsay V. Clark

See Also

genambig, genbinary, Accessors

Examples

show class definition
showClass("gendata")

create an object of the class gendata
(in reality you would want to create an object belonging to one of the
subclasses, but the procedure is the same)
mygen <- new("gendata", samples = c("a", "b", "c"),

loci = c("loc1", "loc2"))
Description(mygen) <- "An example for the documentation"
Usatnts(mygen) <- c(2,3)
PopNames(mygen) <- c("PopV", "PopX")
PopInfo(mygen) <- c(2,1,2)
Ploidies(mygen) <- c(2,2,4)

view a summary of the object
summary(mygen)

isMissing 27

isMissing Determine Whether Genotypes Are Missing

Description

isMissing returns Boolean values indicating whether the genotypes for a given set of samples
and loci are missing from the dataset.

Usage

isMissing(object, samples = Samples(object), loci = Loci(object))

Arguments

object An object of one of the subclasses of gendata, containing the genotypes to be
tested.

samples A character or numeric vector indicating samples to be tested.

loci A character or numeric vector indicating loci to be tested.

Details

isMissing is a generic function with methods for genambig and genbinary objects.

For each genotype in a genambig object, the function evaluates and returns Genotype(object,
sample, locus)[1] == Missing(object). For a genbinary object, TRUE %in%
(Genotype(object, sample, locus) == Missing(object)) is returned for the geno-
type. If only one sample and locus are being evaluated, this is the Boolean value that is returned.
If multiple samples and/or loci are being evaluated, the function creates an array of Boolean values
and recursively calls itself to fill in the result for each element of the array.

Value

If both samples and loci are of length 1, a single Boolean value is returned, TRUE if the geno-
type is missing, and FALSE if it isn’t. Otherwise, the function returns a named array with samples in
the first dimension and loci in the second dimension, filled with Boolean values indicating whether
the genotype for each sample*locus combination is missing.

Author(s)

Lindsay V. Clark

See Also

Missing, Missing<-, Genotype, find.missing.gen

Examples

set up a genambig object for this example
mygen <- new("genambig", samples=c("a", "b"), loci=c("locD", "locE"))
Genotypes(mygen) <- array(list(c(122, 126), c(124, 128, 134),

Missing(mygen), c(156, 159)),
dim=c(2,2))

viewGenotypes(mygen)

28 Lynch.distance

test if some individual genotypes are missing
isMissing(mygen, "a", "locD")
isMissing(mygen, "a", "locE")

test an array of genotypes
isMissing(mygen, Samples(mygen), Loci(mygen))

Lynch.distance Calculate Band-Sharing Dissimilarity Between Genotypes

Description

Given two genotypes in the form of vectors of unique alleles, a dissimilarity is calculated as: 1 -
(number of alleles in common)/(average number of alleles per genotype).

Usage

Lynch.distance(genotype1, genotype2, usatnt = NA, missing = -9)

Arguments

genotype1 A vector containing all alleles for a particular sample and locus. Each allele is
only present once in the vector.

genotype2 A vector of the same form as genotype1, for another sample at the same
locus.

usatnt The microsatellite repeat length for this locus (ignored by the function).

missing The symbol used to indicate missing data in either genotype vector.

Details

Lynch (1990) defines a simple measure of similarity between DNA fingerprints. This is 2 times
the number of bands that two fingerprints have in common, divided by the total number of bands
that the two genotypes have. Lynch.distance returns a dissimilarity, which is 1 minus the
similarity.

Value

If the first element of either or both input genotypes is equal to missing, NA is returned.

Otherwise, a numerical value is returned. This is one minus the similarity. The similarity is calcu-
lated as the number of alleles that the two genotypes have in common divided by the mean length
of the two genotypes.

Author(s)

Lindsay V. Clark

References

Lynch, M. (1990) The similarity index and DNA fingerprinting. Molecular Biology and Evolution
7, 478-484.

meandist.from.array 29

See Also

Bruvo.distance, meandistance.matrix

Examples

Lynch.distance(c(100,102,104), c(100,104,108))
Lynch.distance(-9, c(102,104,110))
Lynch.distance(c(100), c(100,104,106))

meandist.from.array
Tools for Working With Pairwise Distance Arrays

Description

meandist.from.array produces a mean distance matrix from an array of pairwise distances
by locus, such as that produced by meandistance.matrix when all.distances=TRUE.
find.na.dist finds missing distances in such an array, and find.na.dist.not.missing
finds missing distances that aren’t the result of missing genotypes.

Usage

meandist.from.array(distarray, samples = dimnames(distarray)[[2]],
loci = dimnames(distarray)[[1]])

find.na.dist(distarray, samples = dimnames(distarray)[[2]],
loci = dimnames(distarray)[[1]])

find.na.dist.not.missing(object, distarray,
samples = dimnames(distarray)[[2]], loci = dimnames(distarray)[[1]])

Arguments

distarray A three-dimensional array of pairwise distances between samples, by locus.
Loci are represented in the first dimension, and samples are represented in the
second and third dimensions. Dimensions are named accordingly. Such an ar-
ray is the first element of the list produced by meandistance.matrix if
all.distances=TRUE.

samples Character vector. Samples to analyze.

loci Character vector. Loci to analyze.

object A genambig object. Typically the genotype object that was used to produce
distarray.

Details

find.na.dist.not.missing is primarily intended to locate distances that were not calcu-
lated by Bruvo.distance because both genotypes had too many alleles (more than maxl). The
user may wish to estimate these distances manually and fill them into the array, then recalculate the
mean matrix using meandist.from.array.

30 meandist.from.array

Value

meandist.from.array returns a matrix, with both rows and columns named by samples, of
distances averaged across loci.

find.na.dist and find.na.dist.not.missing both return data frames with three columns:
Locus, Sample1, and Sample2. Each row represents the index in the array of an element containing
NA.

Author(s)

Lindsay V. Clark

See Also

meandistance.matrix, Bruvo.distance, find.missing.gen

Examples

set up the genotype data
samples <- paste("ind", 1:4, sep="")
samples
loci <- paste("loc", 1:3, sep="")
loci
testgen <- new("genambig", samples=samples, loci=loci)
Genotypes(testgen, loci="loc1") <- list(c(-9), c(102,104),

c(100,106,108,110,114),
c(102,104,106,110,112))

Genotypes(testgen, loci="loc2") <- list(c(77,79,83), c(79,85), c(-9),
c(83,85,87,91))

Genotypes(testgen, loci="loc3") <- list(c(122,128), c(124,126,128,132),
c(120,126), c(124,128,130))

Usatnts(testgen) <- c(2,2,2)

look up which samples*loci have missing genotypes
find.missing.gen(testgen)

get the three-dimensional distance array and the mean of the array
gendist <- meandistance.matrix(testgen, distmetric=Bruvo.distance,

maxl=4, all.distances=TRUE)
look at the distances for loc1, where there is missing data and long genotypes
gendist[[1]]["loc1",,]

look up all missing distances in the array
find.na.dist(gendist[[1]])

look up just the missing distances that don't result from missing genotypes
find.na.dist.not.missing(testgen, gendist[[1]])

Copy the array to edit the new copy
newDistArray <- gendist[[1]]
calculate the distances that were NA from genotype lengths exceeding maxl
(in reality, if this were too computationally intensive you might estimate
it manually instead)
subDist <- Bruvo.distance(c(100,106,108,110,114), c(102,104,106,110,112))
subDist
insert this distance into the correct positions

meandistance.matrix 31

newDistArray["loc1","ind3","ind4"] <- subDist
newDistArray["loc1","ind4","ind3"] <- subDist
calculate the new mean distance matrix
newMeanMatrix <- meandist.from.array(newDistArray)
look at the difference between this matrix and the original.
newMeanMatrix
gendist[[2]]

meandistance.matrix
Mean Pairwise Distance Matrix

Description

Given a genambig object, meandistance.matrix produces a symmetrical matrix of pairwise
distances between samples, averaged across all loci. An array of all distances prior to averaging may
also be produced.

Usage

meandistance.matrix(object, samples = Samples(object),
loci = Loci(object), all.distances=FALSE,
distmetric = Bruvo.distance, progress = TRUE,
...)

Arguments

object A genambig object containing the genotypes to be analyzed. If distmetric
= Bruvo.distance, the Usatnts slot should be filled in.

samples A character vector of samples to be analyzed. These should be all or a subset of
the sample names used in object.

loci A character vector of loci to be analyzed. These should be all or a subset of the
loci names used in object.

all.distances
If FALSE, only the mean distance matrix will be returned. If TRUE, a list will
be returned containing an array of all distances by locus and sample as well as
the mean distance matrix.

distmetric The function to be used to calculate distances between genotypes. Bruvo.distance,
Lynch.distance, or a distance function written by the user.

progress If TRUE, loci and samples will be printed to the console as distances are calcu-
lated, so that the user can monitor the progress of the computation.

... Additional arguments (such as maxl) to pass to distmetric.

Details

Each distance for the three-dimensional array is calculated only once, to save computation time.
Since the array (and resulting mean matrix) is symmetrical, the distance is written to two positions
in the array at once.

32 merge-methods

Value

A symmetrical matrix containing pairwise distances between all samples, averaged across all loci.
Row and column names of the matrix will be the sample names provided in the samples argument.
If all.distances=TRUE, a list will be produced containing the above matrix as well as a three-
dimensional array containing all distances by locus and sample. The array is the first item in the
list, and the mean matrix is the second.

Author(s)

Lindsay V. Clark

See Also

Bruvo.distance, Lynch.distance, meandist.from.array

Examples

create a list of genotype data
mygendata <- new("genambig", samples = c("ind1","ind2","ind3","ind4"),

loci = c("locus1","locus2","locus3","locus4"))
Genotypes(mygendata) <-
array(list(c(124,128,138),c(122,130,140,142),c(122,132,136),c(122,134,140),

c(203,212,218),c(197,206,221),c(215),c(200,218),
c(140,144,148,150),c(-9),c(146,150),c(152,154,158),
c(233,236,280),c(-9),c(-9),c(-9)))

Usatnts(mygendata) <- c(2,3,2,1)

make index vectors of data to use
myloci <- c("locus1","locus2","locus3")
mysamples <- c("ind1","ind2","ind4")

calculate array and matrix
mymat <- meandistance.matrix(mygendata, mysamples, myloci,

all.distances=TRUE)
view the results
mymat[[1]]["locus1",,]
mymat[[1]]["locus2",,]
mymat[[1]]["locus3",,]
mymat[[2]]

merge-methods Merge Two Genotype Objects into One

Description

The generic function merge has methods defined in polysat to merge two genotype objects of
the same class. Each method has optional samples and loci arguments for specifying sub-
sets of samples and loci to be included in the merged object. Each method also has an optional
overwrite argument to specify which of the two objects should not be used in the case of con-
flicting data.

merge-methods 33

Usage

merge(x, y, ...)

Arguments

x One of the objects to be merged. For the methods defined for polysat this should
be of class "gendata" or one of its subclasses.

y The other object to be merged. Should be of the same class as x.

... Additional arguments specific to the method.

Methods

The methods for merge in polysat have four additional arguments: objectm, samples,
loci, overwrite.

The samples and loci arguments can specify, using character vectors, a subset of the samples
and loci found in x and y to write to the object that is returned.

If overwrite = "x", data from the second object will be used wherever there is contradicting
data. Likewise if overwrite = "y", data from the first object will be used wherever there is
contradicting data. If no overwrite argument is given, then any contradicting data between the
two objects will produce an error indicating where the contradicting data were found.

The objectm argument is primarily for internal use (most users will not need it). If this argument is
not provided, a new genotype object is created and data from x and y are written to it. If objectm
is provided, this is the object to which data will be written, and the object that will be returned.

signature(x = "genambig", y = "genambig") This method merges the genotype data
from x and y. If the missing data symbols differ between the objects, overwrite is used
to determine which missing data symbol to use, and all missing data symbols in the over-
written object are converted. If overwrite is not provided and the missing data symbols
differ between the objects, an error will be given. The genotypes are then filled in. If certain
sample*locus combinations do not exist in either object (x and y have different samples as
well as different loci), missing data symbols are left in these positions. Again, for genotypes,
overwrite determines which object to preferentially use for data and whether to give an
error if there is a disagreement.
The merge method for gendata is then called.

signature(x = "genbinary", y = "genbinary") This method also merges geno-
type data for x and y, then calls the method for gendata. Missing, Present, and
Absent are checked for consistency between objects similarly to what happens with Missing
in the genambig method. Genotypes are then written to the merged object, and consistency
between genotypes is checked.

signature(x = "gendata", y = "gendata") This method merges data about ploidy,
repeat length, and population identity, as well as writing one or both dataset descriptions to
the merged object.
The same population numbers can have different meanings in PopInfo(x) and PopInfo(y).
The unique PopNames are used instead to determine population identity, and the PopInfo
numbers are changed if necessary. Therefore, it is important for identical populations to be
named the same way in both objects, but not important for identical populations to have the
same number in both objects.

34 read.ATetra

read.ATetra Read File in ATetra Format

Description

Given a file formatted for the software ATetra, read.ATetra produces a genambig object con-
taining genotypes, population identities, population names, and a dataset description from the file.
All ploidies in the genambig object are automatically set to 4.

Usage

read.ATetra(infile)

Arguments

infile Character string. A file path to the file to be read.

Details

read.ATetra reads text files in the exact format specified by the ATetra documentation. Note
that this format only allows tetraploid data and that there can be no missing data.

Value

A genambig object as described above.

Author(s)

Lindsay V. Clark

References

http://www.vub.ac.be/APNA/ATetra_Manual-1-1.pdf

van Puyvelde, K., van Geert, A. and Triest, L. (2010) ATETRA, a new software program to ana-
lyze tetraploid microsatellite data: comparison with TETRA and TETRASAT. Molecular Ecology
Resources 10, 331-334.

See Also

write.ATetra, read.Tetrasat, read.GeneMapper, read.Structure, read.GenoDive,
read.SPAGeDi

Examples

create a file to be read
(this would normally be done in a text editor or with ATetra's Excel template)
cat("TIT,Sample Rubus Data for ATetra", "LOC,1,CBA15",
"POP,1,1,Commonwealth", "IND,1,1,1,CMW1,197,208,211,213",
"IND,1,1,2,CMW2,197,207,211,212", "IND,1,1,3,CMW3,197,208,212,219",
"IND,1,1,4,CMW4,197,208,212,219", "IND,1,1,5,CMW5,197,208,211,212",
"POP,1,2,Fall Creek Lake", "IND,1,2,6,FCR4,197,207,211,212",
"IND,1,2,7,FCR7,197,208,212,218", "IND,1,2,8,FCR14,197,207,212,218",
"IND,1,2,9,FCR15,197,208,211,212", "IND,1,2,10,FCR16,197,208,211,212",

http://www.vub.ac.be/APNA/ATetra_Manual-1-1.pdf

read.GeneMapper 35

"IND,1,2,11,FCR17,197,207,212,218","LOC,2,CBA23","POP,2,1,Commonwealth",
"IND,2,1,1,CMW1,98,100,106,125","IND,2,1,2,CMW2,98,125,,",
"IND,2,1,3,CMW3,98,126,,","IND,2,1,4,CMW4,98,106,119,127",
"IND,2,1,5,CMW5,98,106,125,","POP,2,2,Fall Creek Lake",
"IND,2,2,6,FCR4,98,125,,","IND,2,2,7,FCR7,98,106,126,",
"IND,2,2,8,FCR14,98,127,,","IND,2,2,9,FCR15,98,108,117,",
"IND,2,2,10,FCR16,98,125,,","IND,2,2,11,FCR17,98,126,,","END",
file = "atetraexample.txt", sep = "\n")

Read the file and examine the data
exampledata <- read.ATetra("atetraexample.txt")
summary(exampledata)
PopNames(exampledata)
viewGenotypes(exampledata)

read.GeneMapper Read GeneMapper Genotypes Tables

Description

Given a vector of filepaths to tab-delimited text files containing genotype data in the ABI GeneMap-
per Genotypes Table format, read.GeneMapper produces a genambig object containing the
genotype data.

Usage

read.GeneMapper(infiles)

Arguments

infiles A character vector of paths to the files to be read.

Details

read.GeneMapper can read the genotypes tables that are exported by the Applied Biosystems
GeneMapper software. The only alterations to the files that the user may have to make are 1) delete
any rows with missing data or fill in -9 in the first allele slot for that row, 2) make sure that all
allele names are numeric representations of fragment length (no question marks or dashes), and 3)
put sample names into the Sample Name column, if the names that you wish to use in analysis are
not already there. Each file should have the standard header row produced by the software. If any
sample has more than one genotype listed for a given locus, only the last genotype listed will be
used.

The file format is simple enough that the user can easily create files manually if GeneMapper is
not the software used in allele calling. The files are tab-delimited text files. There should be a
header row with column names. The column labeled “Sample Name” should contain the names of
the samples, and the column labeled “Marker” should contain the names of the loci. You can have
as many or as few columns as needed to contain the alleles, and each of these columns should be
labeled “Allele X” where X is a number unique to each column. Row labels and any other columns
are ignored. For any given sample, each allele is listed only once and is given as an integer that is
the length of the fragment in nucleotides. Alleles are separated by tabs. If you have more allele
columns than alleles for any given sample, leave the extra cells blank so that read.table will
read them as NA. Example data files in this format are included in the package.

36 read.GeneMapper

read.GeneMapper will read all of your data at once. It takes as its first argument a character
vector containing paths to all of the files to be read. How the data are distributed over these files
does not matter. The function finds all unique sample names and all unique markers across all the
files, and automatically puts a missing data symbol into the list if a particular sample and locus
combination is not found. Rows in which all allele cells are blank should NOT be included in the
input files; either delete these rows or put the missing data symbol into the first allele cell.

Sample and locus names must be consistent within and across the files. The object that is produced
is indexed by these names.

Value

A genambig object containing genotypes from the files, stored as vectors of unique alleles in its
Genotypes slot. Other slots are left at the default values.

Note

A ‘subscript out of bounds’ error may mean that a sample name or marker was left blank in one of
the input files.

Author(s)

Lindsay V. Clark

References

http://www.appliedbiosystems.com/genemapper

See Also

genambig, read.Structure, read.GenoDive, read.SPAGeDi, read.Tetrasat, read.ATetra,
write.GeneMapper

Examples

create a table of data
gentable <- data.frame(Sample.Name=rep(c("ind1","ind2","ind3"),2),

Marker=rep(c("loc1","loc2"), each=3),
Allele.1=c(202,200,204,133,133,130),
Allele.2=c(206,202,208,136,142,136),
Allele.3=c(NA,208,212,145,148,NA),
Allele.4=c(NA,216,NA,151,157,NA)
)

create a file (inspect this file in a text editor or spreadsheet
software to see the required format)
write.table(gentable, file="readGMtest.txt", quote=FALSE, sep="\t",

na="", row.names=FALSE, col.names=TRUE)

read the file
mygenotypes <- read.GeneMapper("readGMtest.txt")

inspect the results
viewGenotypes(mygenotypes)

http://www.appliedbiosystems.com/genemapper

read.GenoDive 37

read.GenoDive Import Genotype Data from GenoDive File

Description

read.GenoDive takes a text file in the format for the software GenoDive and produces a genambig
object.

Usage

read.GenoDive(infile)

Arguments

infile A character string. The path to the file to be read.

Details

GenoDive is a Mac-only program for population genetic analysis that allows for polyploid data.
read.GenoDive imports data from text files formatted for this program.

The first line of the file is a comment line, which is written to the Description slot of the
genambig object. On the second line, separated by tabs, are the number of individuals, number of
populations, number of loci, maximum ploidy (ignored), and number of digits used to code alleles.

The following lines contain the names of populations, which are written to the PopNames slot
of the genambig object. After that is a header line for the genotype data. This line contains,
separated by tabs, column headers for populations, clones (optional), and individuals, followed by
the name of each locus. The locus names for the genotype object are derived from this line.

Each individual is on one line following the genotype header line. Separated by tabs are the pop-
ulation number, the clone number (optional), the individual name (used as the sample name in the
output) and the genotypes at each locus. Alleles at one locus are concatenated together in one string
without any characters to separate them. Each allele must have the same number of digits, although
leading zeros can be omitted.

If the only alleles listed for a particular individual and locus are zeros, this is interpreted by read.GenoDive
as missing data, and Missing(object) (the default, -9) is written in that genotype slot in the
genambig object. GenoDive allows for a genotype to be partially missing but polysat does not;
therefore, if an allele is coded as zero but other alleles are recorded for that sample and locus, the
output genotype will just contain the alleles that are present, with the zeros thrown out.

Value

A genambig object containing the data from the file.

Author(s)

Lindsay V. Clark

References

Meirmans, P. G. and Van Tienderen, P. H. (2004) GENOTYPE and GENODIVE: two programs for
the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes 4, 792-794.

http://www.bentleydrummer.nl/software/software/GenoDive.html

http://www.bentleydrummer.nl/software/software/GenoDive.html

38 read.SPAGeDi

See Also

read.GeneMapper, write.GenoDive, read.Tetrasat, read.ATetra, read.Structure,
read.SPAGeDi

Examples

create data file (normally done in a text editor or spreadsheet software)
cat(c("example comment line", "5\t2\t2\t3\t2", "pop1", "pop2",

"pop\tind\tloc1\tloc2", "1\tJohn\t102\t1214",
"1\tPaul\t202\t0", "2\tGeorge\t101\t121213",
"2\tRingo\t10304\t131414","1\tYoko\t10303\t120014"),

file = "genodiveExample.txt", sep = "\n")

import file data
exampledata <- read.GenoDive("genodiveExample.txt")

view data
summary(exampledata)
viewGenotypes(exampledata)
exampledata

read.SPAGeDi Read Genotypes in SPAGeDi Format

Description

read.SPAGeDi can read a text file formatted for the SPAGeDi software and return a genambig
object, as well as optionally returning a data frame of spatial coordinates. The genambig object
includes genotypes, ploidies, and population identities (from the category column, if present) from
the file.

Usage

read.SPAGeDi(infile, allelesep = "/", returnspatcoord = FALSE)

Arguments

infile A character string indicating the path of the file to read.

allelesep The character that is used to delimit alleles within genotypes, or "" if alleles
have a fixed number of digits and are not delimited by any character. Other
examples shown in section 3.2.1 of the SPAGeDi 1.3 manual include "/", " ",
", ", ".", and "--".

returnspatcoord
Boolean. Indicates whether a data frame should be returned containing the spa-
tial coordinates columns.

read.SPAGeDi 39

Details

SPAGeDi offers a lot of flexibility in how data files are formatted. read.SPAGeDi accomodates
most of that flexibility. The primary exception is that alleles must be delimited in the same way
across all genotypes, as specified by allelesep. Comment lines beginning with //, as well as
blank lines, are ignored by read.SPAGeDi just as they are by SPAGeDi.

read.SPAGeDi is not designed to read dominant data (see section 3.2.2 of the SPAGeDi 1.3
manual). However, see genbinary.to.genambig for a way to read this type of data after
some simple manipulation in a spreadsheet program.

The first line of a SPAGeDi file contains information that is used by read.SPAGeDi. The ploidy
as specified in the 6th position of the first line is ignored, and is instead calculated by counting
alleles for each individual (including zeros on the right, but not the left, side of the genotype). The
number of digits specified in the 5th position of the first line is only used if allelesep="". All
other values in the first line are important for the function.

If the only alleles found for a particular individual and locus are zeros, the genotype is interpreted
as missing. Otherwise, zeros on the left side of a genotype are ignored, and zeros on the right side
of a genotype are used in calculating the ploidy but are not included in the genotype object that
is returned. If allelesep="", read.SPAGeDi checks that the number of characters in the
genotype can be evenly divided by the number of digits per allele. If not, zeros are added to the left
of the genotype string before splitting it into alleles.

Value

Under the default where returnspatcoord=FALSE, a genambig object is returned. Alleles
are formatted as integers. The Ploidies slot is filled in according to the number of alleles per
genotype, ignoring zeros on the left. If the first line of the file indicates that there are more than
zero categories, the category column is used to fill in the PopNames and PopInfo slots.

Otherwise, a list is returned:

SpatCoord A data frame of spatial coordinates, unchanged from the file. The format of each
column is determined under the default read.table settings. Row names are
individual names from the file. Column names are the same as in the file.

Dataset A genambig object as described above.

Author(s)

Lindsay V. Clark

References

http://ebe.ulb.ac.be/ebe/Software_files/manual_SPAGeDi_1-3.pdf

Hardy, O. J. and Vekemans, X. (2002) SPAGeDi: a versatile computer program to analyse spatial
genetic structure at the individual or population levels. Molecular Ecology Notes 2, 618-620.

See Also

write.SPAGeDi, genbinary.to.genambig, read.table, read.GeneMapper, read.GenoDive,
read.Structure, read.ATetra, read.Tetrasat

http://ebe.ulb.ac.be/ebe/Software_files/manual_SPAGeDi_1-3.pdf

40 read.Structure

Examples

create a file to read (usually done with spreadsheet software or a
text editor):
cat("// here's a comment line at the beginning of the file",
"5\t0\t-2\t2\t2\t4",
"4\t5\t10\t50\t100",
"Ind\tLat\tLong\tloc1\tloc2",
"ind1\t39.5\t-120.8\t00003133\t00004040",
"ind2\t39.5\t-120.8\t3537\t4246",
"ind3\t42.6\t-121.1\t5083332\t40414500",
"ind4\t38.2\t-120.3\t00000000\t41430000",
"ind5\t38.2\t-120.3\t00053137\t00414200",
"END",
sep="\n", file="SpagInputExample.txt")

display the file
cat(readLines("SpagInputExample.txt"), sep="\n")

read the file
mydata <- read.SPAGeDi("SpagInputExample.txt", allelesep = "",
returnspatcoord = TRUE)

view the data
mydata
viewGenotypes(mydata[[2]])

read.Structure Read Genotypes and Other Data from a Structure File

Description

read.Structure creates a genambig object by reading a text file formatted for the software
Structure. Ploidies and PopInfo (if available) are also written to the object, and data from
additional columns can optionally be extracted as well.

Usage

read.Structure(infile, ploidy, missingin = -9, sep = "\t",
markernames = TRUE, labels = TRUE, extrarows = 1,
popinfocol = 1, extracols = 1, getexcols = FALSE)

Arguments

infile Character string. The file path to be read.

ploidy Integer. The ploidy of the file, i.e. how many rows there are for each individual.

missingin The symbol used to represent missing data in the Structure file.

sep The character used to delimit the fields of the Structure file (tab by default).

markernames Boolean, indicating whether the file has a header containing marker names.

labels Boolean, indicating whether the file has a column containing sample names.

read.Structure 41

extrarows Integer. The number of extra rows that the file has, not counting marker names.
This could include rows for recessive alleles, inter-marker distances, or phase
information.

popinfocol Integer. The column number (after the labels column, if present) where the data
to be used for PopInfo are stored. Can be NA to indicate that PopInfo should
not be extracted from the file.

extracols Integer. The number of extra columns that the file has, not counting sample
names (labels) but counting the column to be used for PopInfo. This could
include PopData, PopFlag, LocData, Phenotype, or any other extra columns.

getexcols Boolean, indicating whether the function should return the data from any extra
columns.

Details

The current version of read.Structure does not support the ONEROWPERIND option in
the file format. Each locus must only have one column. If your data are in ONEROWPERIND
format, it should be fairly simple to manipulate it in a spreadsheet program so that it can be read by
read.GeneMapper instead.

read.Structure uses read.table to initially read the file into a data frame, then extracts
information from the data frame. Because of this, any header rows (particularly the one containing
marker names) should have leading tabs (or spaces if sep=" ") so that the marker names align
correctly with their corresponding genotypes. You should be able to open the file in a spreadsheet
program and have everything align correctly.

If the file does not contain sample names, set labels=FALSE. The samples will be numbered
instead, and if you like you can use the Samples<- function to edit the sample names of the
genotype object after import. Likewise, if markernames=FALSE, the loci will be numbered
automatically by the column names that read.table creates, but these can also be edited after
the fact.

Value

If getexcols=FALSE, the function returns only a genambig object.

If getexcols=TRUE, the function returns a list with two elements. The first, named ExtraCol,
is a data frame, where the row names are the sample names and each column is one of the extra
columns from the file (but with each sample only once instead of being repeated ploidy number
of times). The second element is named Dataset and is the genotype object described above.

Author(s)

Lindsay V. Clark

References

http://pritch.bsd.uchicago.edu/structure_software/release_versions/
v2.3.3/structure_doc.pdf

Hubisz, M. J., Falush, D., Stephens, M. and Pritchard, J. K. (2009) Inferring weak population
structure with the assistance of sample group information. Molecular Ecology Resources 9, 1322-
1332.

Falush, D., Stephens, M. and Pritchard, J. K. (2007) Inferences of population structure using multi-
locus genotype data: dominant markers and null alleles. Molecular Ecology Notes 7, 574-578.

http://pritch.bsd.uchicago.edu/structure_software/release_versions/v2.3.3/structure_doc.pdf
http://pritch.bsd.uchicago.edu/structure_software/release_versions/v2.3.3/structure_doc.pdf

42 read.Structure

See Also

write.Structure, read.GeneMapper, read.Tetrasat, read.ATetra, read.GenoDive,
read.SPAGeDi

Examples

create a file to read (normally done in a text editor or spreadsheet
software)
cat("\t\tRhCBA15\tRhCBA23\tRhCBA28\tRhCBA14\tRUB126\tRUB262\tRhCBA6\tRUB26",

"\t\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
"WIN1B\t1\t197\t98\t152\t170\t136\t208\t151\t99",
"WIN1B\t1\t208\t106\t174\t180\t166\t208\t164\t99",
"WIN1B\t1\t211\t98\t182\t187\t184\t208\t174\t99",
"WIN1B\t1\t212\t98\t193\t170\t203\t208\t151\t99",
"WIN1B\t1\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
"WIN1B\t1\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
"WIN1B\t1\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
"WIN1B\t1\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
"MCD1\t2\t208\t100\t138\t160\t127\t202\t151\t124",
"MCD1\t2\t208\t102\t153\t168\t138\t207\t151\t134",
"MCD1\t2\t208\t106\t157\t180\t162\t211\t151\t137",
"MCD1\t2\t208\t110\t159\t187\t127\t215\t151\t124",
"MCD1\t2\t208\t114\t168\t160\t127\t224\t151\t124",
"MCD1\t2\t208\t124\t193\t160\t127\t228\t151\t124",
"MCD1\t2\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
"MCD1\t2\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
"MCD2\t2\t208\t98\t138\t160\t136\t202\t150\t120",
"MCD2\t2\t208\t102\t144\t174\t145\t214\t150\t132",
"MCD2\t2\t208\t105\t148\t178\t136\t217\t150\t135",
"MCD2\t2\t208\t114\t151\t184\t136\t227\t150\t120",
"MCD2\t2\t208\t98\t155\t160\t136\t202\t150\t120",
"MCD2\t2\t208\t98\t157\t160\t136\t202\t150\t120",
"MCD2\t2\t208\t98\t163\t160\t136\t202\t150\t120",
"MCD2\t2\t208\t98\t138\t160\t136\t202\t150\t120",
"MCD3\t2\t197\t100\t172\t170\t159\t213\t174\t134",
"MCD3\t2\t197\t106\t174\t178\t193\t213\t176\t132",
"MCD3\t2\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
"MCD3\t2\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
"MCD3\t2\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
"MCD3\t2\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
"MCD3\t2\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
"MCD3\t2\t-9\t-9\t-9\t-9\t-9\t-9\t-9\t-9",
sep="\n",file="structtest.txt")

view the file
cat(readLines("structtest.txt"), sep="\n")

read the structure file into genotypes and populations
testdata <- read.Structure("structtest.txt", ploidy=8)

examine the results
testdata

read.Tetrasat 43

read.Tetrasat Read Data from a TETRASAT Input File

Description

Given a file containing genotypes in the TETRASAT format, read.Tetrasat produces a genambig
object containing genotypes and population identities from the file.

Usage

read.Tetrasat(infile)

Arguments

infile A character string of the file path to be read.

Details

read.Tetrasat reads text files that are in the exact format specified by the software TETRASAT
and TETRA (see references for more information). This is similar to the file format for GenePop
but allows for up to four alleles per locus. All alleles must be coded by two digits. Another
difference between the TETRASAT and GenePop formats is that in TETRASAT the sample name
and genotypes are not separated by a comma, because the columns of data have fixed widths.

Since TETRASAT files also contain information about which samples belong to which populations,
this information is put into the PopInfo slot of the genambig object. Population names are not
taken from the file. The Ploidies slot is filled with the number 4, because all individuals should
be tetraploid. The first line of the file is put into the Description slot.

Value

A genambig object containing data from the file.

Author(s)

Lindsay V. Clark

References

http://markwith.freehomepage.com/tetrasat.html

Markwith, S. H., Stewart, D. J. and Dyer, J. L. (2006) TETRASAT: a program for the population
analysis of allotetraploid microsatellite data. Molecular Ecology Notes 6, 586-589.

http://ecology.bnu.edu.cn/zhangdy/TETRA/TETRA.htm

Liao, W. J., Zhu, B. R., Zeng, Y. F. and Zhang, D. Y. (2008) TETRA: an improved program for
population genetic analysis of allotetraploid microsatellite data. Molecular Ecology Resources 8,
1260-1262.

See Also

read.GeneMapper, write.Tetrasat, read.ATetra, read.GenoDive, read.Structure,
read.SPAGeDi

http://markwith.freehomepage.com/tetrasat.html
http://ecology.bnu.edu.cn/zhangdy/TETRA/TETRA.htm

44 simgen

Examples

Not run:
example from the Tetrasat website
mydata <- read.Tetrasat("http://markwith.freehomepage.com/sample.txt")
summary(mydata)
viewGenotypes(mydata, loci="A1_Gtype")

End(Not run)

example with defined data:
cat("Sample Data", "A1_Gtype", "A10_Gtype", "B1_Gtype", "D7_Gtype",
"D9_Gtype", "D12_Gtype", "Pop",
"BCRHE 1 0406 04040404 0208 02020202 03030303 0710",
"BCRHE 10 0406 04040404 07070707 02020202 0304 0710",
"BCRHE 2 04040404 04040404 0708 02020202 010305 0710",
"BCRHE 3 04040404 04040404 02020202 0203 03030303 0809",
"BCRHE 4 04040404 04040404 0608 0203 03030303 070910",
"BCRHE 5 04040404 04040404 0208 02020202 03030303 050710",
"BCRHE 6 0304 04040404 0207 02020202 03030303 07070707",
"BCRHE 7 0406 04040404 0708 02020202 03030303 07070707",
"BCRHE 8 0304 04040404 0203 0203 03030303 0709",
"BCRHE 9 0406 04040404 0708 02020202 03030303 0710",
"Pop",
"BR 1 0406 04040404 05050505 02020202 03030303 1012",
"BR 10 030406 04040404 0607 02020202 03030303 1011",
"BR 2 030406 04040404 07070707 02020202 03030303 09090909",
"BR 3 010304 04040404 07070707 02020202 03030303 09090909",
"BR 4 030406 04040404 07070707 0203 03030303 10101010",
"BR 5 030406 04040404 07070707 02020202 03030303 10101010",
"BR 6 0406 04040404 0507 0203 03030303 10101010",
"BR 7 0304 04040404 0809 02020202 03030303 070910",
"BR 8 030406 04040404 07070707 02020202 03030303 070910",
"BR 9 0406 04040404 07070707 02020202 03030303 07070707",
sep="\n", file="TetrasatExample.txt")
mydata2 <- read.Tetrasat("TetrasatExample.txt")

summary(mydata2)
viewGenotypes(mydata2, loci="B1_Gtype")

simgen Randomly Generated Data for Learning polysat

Description

genambig object containing simulated data from three populations with 100 individuals each, at
three loci. Individuals are a random mixture of diploids and tetraploids. Genotypes were generated
according to pre-set allele frequencies.

Usage

data(simgen)

simpleFreq 45

Format

A genambig object with data in the Genotypes, PopInfo, PopNames, Ploidies and
Usatnts slots. This is saved as an .RData file. simgen was created using the code found in
the “simgen.R” file in the “extdata” directory of the polysat package installation. This code may be
useful for inspiration on how to create a simulated dataset.

Source

simulated data

See Also

testgenotypes, genambig

simpleFreq Simple Allele Frequency Estimator

Description

Given genetic data, allele frequencies by population are calculated. This estimation method assumes
polysomic inheritance. For genotypes with allele copy number ambiguity, all alleles are assumed
to have an equal chance of being present in multiple copies. This function is best used to generate
initial values for more complex allele frequency estimation methods.

Usage

simpleFreq(object, samples = Samples(object), loci = Loci(object))

Arguments

object A genbinary or genambig object containing genotype data. No NA values
are allowed for PopInfo(object)[samples] or Ploidies(object)[samples].
(Population identity and ploidy are needed for allele frequency calculation.)

samples An optional character vector of samples to include in the calculation.

loci An optional character vector of loci to include in the calculation.

Details

If object is of class genambig, it is converted to a genbinary object before allele frequency
calculations take place. Everything else being equal, the function will work more quickly if it is
supplied with a genbinary object.

For each sample*locus, a conversion factor is generated that is the ploidy of the sample as specified
in Ploidies(object) divided by the number of alleles that the sample has at that locus. Each
allele is then considered to be present in as many copies as the conversion factor (note that this is
not necessarily an integer). The number of copies of an allele is totaled for the population and is
divided by the total number of genomes in the population (minus missing data at the locus) in order
to calculate allele frequency.

A major assumption of this calculation method is that each allele in a partially heterozygous geno-
type has an equal chance of being present in more than one copy. This is almost never true, because
common alleles in a population are more likely to be partially homozygous in an individual. The

46 testgenotypes

result is that the frequency of common alleles is underestimated and the frequency of rare alleles
is overestimated. Also note that the level of inbreeding in the population has an effect on the rela-
tionship between genotype frequencies and allele frequencies, but is not taken into account in this
calculation.

Value

Data frame, where each population is in one row. The first column is called Genomes and contains
the number of genomes in each population. Each remaining column contains frequencies for one
allele. Columns are named by locus and allele, separated by a period. Row names are taken from
PopNames(object).

Author(s)

Lindsay V. Clark

See Also

genbinary, genambig

Examples

create a data set for this example
mygen <- new("genambig", samples = paste("ind", 1:6, sep=""),

loci = c("loc1", "loc2"))
Genotypes(mygen, loci="loc1") <- list(c(206),c(208,210),c(204,206,210),

c(196,198,202,208),c(196,200),c(198,200,202,204))
Genotypes(mygen, loci="loc2") <- list(c(130,134),c(138,140),c(130,136,140),

c(138),c(136,140),c(130,132,136))
PopInfo(mygen) <- c(1,1,1,2,2,2)
Ploidies(mygen) <- c(2,2,4,4,2,4)

calculate allele frequencies
myfreq <- simpleFreq(mygen)

look at the results
myfreq

testgenotypes Rubus Genotype Data for Learning polysat

Description

genambig object containing alleles of 20 Rubus samples at three microsatellite loci.

Usage

data(testgenotypes)

Format

A genambig object with data in the Genotypes, PopInfo, PopNames, and Usatnts slots.
This is saved as a .RData file. Population identities are used here to indicate two different species.

viewGenotypes 47

Source

Clark and Jasieniuk, unpublished data

See Also

FCRinfo, simgen, genambig

viewGenotypes Print Genotypes to the Console

Description

viewGenotypes prints a tab-delimited table of samples, loci, and alleles to the console so that
genotypes can be easily viewed.

Usage

viewGenotypes(object, samples = Samples(object), loci = Loci(object))

Arguments

object An object of one of the gendata subclasses, containing genotypes to be viewed.

samples A numerical or character vector indicating which samples to display.

loci A numerical or character vector indicating which loci to display.

Details

viewGenotypes is a generic function with methods for genambig and genbinary objects.

For a genambig object, a header line indicating sample, locus, and allele columns is printed.
Genotypes are printed below this. Genotypes are ordered first by locus and second by sample.

For a genbinary object, the presence/absence matrix is printed, organized by locus. After the
matrix for one locus is printed, a blank line is inserted and the matrix for the next locus is printed.

Value

No value is returned.

Author(s)

Lindsay V. Clark

See Also

Genotypes

48 write.ATetra

Examples

create a dataset for this example
mygen <- new("genambig", samples=c("ind1", "ind2", "ind3", "ind4"),

loci=c("locA", "locB"))
Genotypes(mygen) <- array(list(c(98, 104, 108), c(100, 104, 110, 114),

c(102, 108, 110), Missing(mygen),
c(132, 135), c(138, 141, 147),
c(135, 141, 144), c(129, 150)),

dim=c(4,2))

view the genotypes
viewGenotypes(mygen)

write.ATetra Write Genotypes in ATetra Format

Description

write.ATetra uses genotype and population information contained in a genambig object to
create a text file of genotypes in the ATetra format.

Usage

write.ATetra(object, samples = Samples(object),
loci = Loci(object), file = "")

Arguments

object A genambig object containing the dataset of interest. Genotypes, population
identities, population names, and the dataset description are used for creating
the file. Ploidies must be set to 4.

samples A character vector of samples to write to the file. This is a subset of Samples(object).

loci A character vector of loci to write to the file. This is a subset of Loci(object).

file A character string indicating the path and name to which to write the file.

Details

Note that missing data are not allowed in ATetra, although write.ATetra will still process
missing data. When it does so, it leaves all alleles blank in the file for that particular sample and
locus, and also prints a warning indicating which sample and locus had missing data.

Value

A file is written but no value is returned.

Author(s)

Lindsay V. Clark

write.freq.SPAGeDi 49

References

http://www.vub.ac.be/APNA/ATetra_Manual-1-1.pdf

van Puyvelde, K., van Geert, A. and Triest, L. (2010) ATETRA, a new software program to ana-
lyze tetraploid microsatellite data: comparison with TETRA and TETRASAT. Molecular Ecology
Resources 10, 331-334.

See Also

read.ATetra, write.Tetrasat, write.GeneMapper

Examples

set up sample data (usually done by reading files)
mysamples <- c("ind1", "ind2", "ind3", "ind4")
myloci <- c("loc1", "loc2")
mygendata <- new("genambig", samples=mysamples, loci=myloci)
Genotypes(mygendata, loci="loc1") <- list(c(202,204), c(204),

c(200,206,208,212),
c(198,204,208))

Genotypes(mygendata, loci="loc2") <- list(c(78,81,84),
c(75,90,93,96,99),
c(87), c(-9))

PopInfo(mygendata) <- c(1,2,1,2)
PopNames(mygendata) <- c("this pop", "that pop")
Ploidies(mygendata) <- c(4,4,4,4)
Description(mygendata) <- "Example for write.ATetra."

write an ATetra file
write.ATetra(mygendata, file="atetratest.txt")

view the file
cat(readLines("atetratest.txt"),sep="\n")

write.freq.SPAGeDi Create a File of Allele Frequencies for SPAGeDi

Description

A table of allele frequencies such as that produced by simpleFreq or deSilvaFreq is used to
calculate average allele frequencies for the entire dataset. These are then written in a format that
can be read by the software SPAGeDi.

Usage

write.freq.SPAGeDi(freqs, usatnts, file = "", digits = 2,
pops = row.names(freqs),

loci = unique(as.matrix(as.data.frame(strsplit(names(freqs), split =
".", fixed = TRUE), stringsAsFactors = FALSE))[1,]))

http://www.vub.ac.be/APNA/ATetra_Manual-1-1.pdf

50 write.freq.SPAGeDi

Arguments

freqs A data frame of population sizes and allele frequencies, such as that produced
by simpleFreq or deSilvaFreq. Populations are in rows, and alleles are
in columns. The first column is called “Genomes” and contains the sizes of the
populations in number of genomes. All other columns contain allele frequen-
cies. The column names for these should be the locus and allele separated by a
period.

usatnts An integer vector containing the lengths of the microsatellite repeats for the
loci in the table. In most cases, if object is the "gendata" object used
to generate freqs, then you should set usatnts = Usatnts(object).
This is needed to convert allele names in the same way that write.SPAGeDi
converts allele names.

file The name of the file to write.
digits The number of digits to use to represent each allele. This should be the same as

that used in write.SPAGeDi, so that allele names are consistent between the
two files.

pops An optional character vector indicating a subset of populations from the table to
use in calculating mean allele frequencies.

loci An optional character vector indicating a subset of loci to write to the file.

Details

For some calculations of inter-individual relatedness and kinship coefficients, SPAGeDi can read a
file of allele frequencies to use in the calculation. write.freq.SPAGeDi puts allele frequencies
from polysat into this format.

A weighted average of allele frequencies is calculated across all populations (or those specified
by pops). The average is weighted by population size as specified in the “Genomes” column of
freqs.

Allele names are converted to match those produced by write.SPAGeDi. Alleles are divided by
the numbers in usatnts in order to convert fragment length in nucleotides to repeat numbers. If
necessary, 10^(digits-1) is repeatedly subtracted from all alleles until they can be represented
using the right number of digits.

The file produced is tab-delimited and contains two columns per locus. The first column contains
the locus name followed by all allele names, and the second column contains the number of alleles
followed by the allele frequencies.

Value

A file is written but no value is returned.

Note

SPAGeDi can already estimate allele frequencies in a way that is identical to that of simpleFreq.
Therefore, if you have allele frequencies produced by simpleFreq, there is not much sense in
exporting them to SPAGeDi. deSilvaFreq, however, is a more advanced and accurate allele
frequency estimation than what is available in SPAGeDi v1.3. write.freq.SPAGeDi exists
primarily to export allele frequencies from deSilvaFreq.

Author(s)

Lindsay V. Clark

write.GeneMapper 51

References

http://ebe.ulb.ac.be/ebe/Software_files/manual_SPAGeDi_1-3.pdf

Hardy, O. J. and Vekemans, X. (2002) SPAGeDi: a versatile computer program to analyse spatial
genetic structure at the individual or population levels. Molecular Ecology Notes 2, 618-620.

See Also

write.SPAGeDi, deSilvaFreq

Examples

set up a genambig object to use in this example
mygen <- new("genambig", samples=c(paste("G", 1:30, sep=""),

paste("R", 1:50, sep="")),
loci=c("afrY", "ggP"))

PopNames(mygen) <- c("G", "R")
PopInfo(mygen) <- c(rep(1, 30), rep(2, 50))
Ploidies(mygen) <- rep(4, 80)
Usatnts(mygen) <- c(2, 2)

randomly create genotypes according to pre-set allele frequencies
for(s in Samples(mygen, populations=1)){

Genotype(mygen, s, "afrY") <-
unique(sample(c(140, 142, 146, 150, 152), 4, TRUE,

c(.30, .12, .26, .08, .24)))
Genotype(mygen, s, "ggP") <-

unique(sample(c(210, 214, 218, 220, 222), 4, TRUE,
c(.21, .13, .27, .07, .32)))

}
for(s in Samples(mygen, populations=2)){

Genotype(mygen, s, "afrY") <-
unique(sample(c(140, 142, 144, 150, 152), 4, TRUE,

c(.05, .26, .17, .33, .19)))
Genotype(mygen, s, "ggP") <-

unique(sample(c(212, 214, 220, 222, 224), 4, TRUE,
c(.14, .04, .36, .20, .26)))

}

write a SPAGeDi file
write.SPAGeDi(mygen, file="SPAGdataFreqExample.txt")

calculate allele frequenies
myfreq <- deSilvaFreq(mygen, self = 0.05)

write allele frequencies file
write.freq.SPAGeDi(myfreq, usatnts=Usatnts(mygen), file="SPAGfreqExample.txt")

write.GeneMapper Write Genotypes to a Table Similarly to ABI GeneMapper

http://ebe.ulb.ac.be/ebe/Software_files/manual_SPAGeDi_1-3.pdf

52 write.GeneMapper

Description

Given a genambig object, write.GeneMapper writes a text file of a table containing columns
for sample name, locus, and alleles.

Usage

write.GeneMapper(object, file = "", samples = Samples(object),
loci = Loci(object))

Arguments

object A genambig object containing genotype data to write to the file. The Ploidies
slot is used for determining how many allele columns to make.

file Character string. The path to which to write the file.

samples Character vector. Samples to write to the file. This should be a subset of
Samples(object).

loci Character vector. Loci to write to the file. This should be a subset of Loci(object).

Details

Although I do not know of any population genetic software that will read this data format directly,
the ABI GeneMapper Genotypes Table format is a convenient way for the user to store microsatellite
genotype data and view it in a text editor or spreadsheet software. Each row contains the sample
name, locus name, and alleles separated by tabs.

The number of allele columns needed is detected by the maximum value of Ploidies(object)[samples].
The function will add additional columns if it encounters genotypes with more than this number of
alleles.

write.GeneMapper handles missing data in a very simple way, in that it writes the missing data
symbol directly to the table as though it were an allele. If you want missing data to be represented
differently in the table, you can open it in spreadsheet software and use find/replace or conditional
formatting to locate missing data.

The file that is produced can be read back into R directly by read.GeneMapper, and therefore
may be a convenient way to backup genotype data for future analysis and manipulation in polysat.
(save can also be used to backup an R object more directly, including population and other in-
formation.) This can also enable the user to edit genotype data in spreadsheet software, if the
editGenotypes function is not sufficient.

Value

A file is written but no value is returned.

Author(s)

Lindsay V. Clark

References

http://www.appliedbiosystems.com/genemapper

http://www.appliedbiosystems.com/genemapper

write.GenoDive 53

See Also

read.GeneMapper, write.Structure, write.GenoDive, write.Tetrasat, write.ATetra,
write.SPAGeDi, editGenotypes

Examples

create a genotype object (usually done by reading a file)
mysamples <- c("ind1", "ind2", "ind3", "ind4")
myloci <- c("loc1", "loc2")
mygendata <- new("genambig", samples=mysamples, loci=myloci)
Genotypes(mygendata, loci="loc1") <- list(c(202,204), c(204),

c(200,206,208,212),
c(198,204,208))

Genotypes(mygendata, loci="loc2") <- list(c(78,81,84),
c(75,90,93,96,99),
c(87), c(-9))

Ploidies(mygendata) <- c(6,6,6,6)

write a GeneMapper file
write.GeneMapper(mygendata, "exampleGMoutput.txt")

view the file with read.table
read.table("exampleGMoutput.txt", sep="\t", header=TRUE)

write.GenoDive Write a File in GenoDive Format

Description

write.GenoDive uses data from a genambig object to create a file formatted for the software
GenoDive.

Usage

write.GenoDive(object, digits = 2, file = "",
samples = Samples(object), loci = Loci(object))

Arguments

object A genambig object containing genotypes, ploidies, population identities, mi-
crosatellite repeat lengths, and description for the dataset of interest.

digits An integer indicating how many digits to use to represent each allele (usually 2
or 3).

file A character string of the file path to which to write.

samples A character vector of samples to include in the file. A subset of Samples(object).

loci A character vector of loci to include in the file. A subset of Loci(object).

54 write.GenoDive

Details

The number of individuals, number of populations, number of loci, and maximum ploidy of the
sample are calculated automatically and entered in the second line of the file. If the maximum
ploidy needs to be reduced by random removal of alleles, it is possible to do this in the software
GenoDive after importing the data. The genambig object should not have individuals with more
alleles than the highest ploidy level listed in its Ploidies slot.

Several steps happen in order to convert alleles to the right format. First, all instances of the
missing data symbol are replaced with zero. Alleles are then divided by the numbers provided in
Usatnts(object) (and rounded down if necessary) in order to convert them from nucleotides
to repeat numbers. If the alleles are still too big to be represented by the number of digits specified,
write.GenoDive repeatedly subtracts a number (10^(digits-1); 10 if digits=2) from
all alleles at a locus until the alleles are small enough. Alleles are then converted to characters, and
a leading zero is added to an allele if it does not have enough digits. These alleles are concatenated
at each locus so that each sample*locus genotype is an uninterrupted string of numbers.

Value

A file is written but no value is returned.

Author(s)

Lindsay V. Clark

References

Meirmans, P. G. and Van Tienderen P. H. (2004) GENOTYPE and GENODIVE: two programs for
the analysis of genetic diversity of asexual organisms. Molecular Ecology Notes 4, 792-794.

http://www.bentleydrummer.nl/software/software/GenoDive.html

See Also

read.GenoDive, write.Structure, write.ATetra, write.Tetrasat, write.GeneMapper,
write.SPAGeDi

Examples

set up the genotype object (usually done by reading a file)
mysamples <- c("Mal", "Inara", "Kaylee", "Simon", "River", "Zoe",

"Wash", "Jayne", "Book")
myloci <- c("loc1", "loc2")
mygendata <- new("genambig", samples=mysamples, loci=myloci)
Genotypes(mygendata, loci="loc1") <- list(c(304,306), c(302,310),

c(306), c(312,314),
c(312,314), c(308,310), c(312), c(302,308,310), c(-9))

Genotypes(mygendata, loci="loc2") <- list(c(118,133), c(121,130),
c(122,139), c(124,133),

c(118,124), c(121,127), c(124,136), c(124,127,136), c(121,130))
Usatnts(mygendata) <- c(2,3)
PopNames(mygendata) <- c("Core","Outer Rim")
PopInfo(mygendata) <- c(2,1,2,1,1,2,2,2,1)
Ploidies(mygendata) <- c(2,2,2,2,2,2,2,3,2)
Description(mygendata) <- "Serenity crew"

write files (use file="" to write to the console instead)

http://www.bentleydrummer.nl/software/software/GenoDive.html

write.SPAGeDi 55

write.GenoDive(mygendata, digits=2, file="testGenoDive2.txt")
write.GenoDive(mygendata, digits=3, file="testGenoDive3.txt")

write.SPAGeDi Write Genotypes in SPAGeDi Format

Description

write.SPAGeDi uses data contained in a genambig object to create a file that can be read by
the software SPAGeDi. The user controls how the genotypes are formatted, and can provide a data
frame of spatial coordinates for each sample.

Usage

write.SPAGeDi(object, samples = Samples(object),
loci = Loci(object), allelesep = "/",
digits = 2, file = "",
spatcoord = data.frame(X = rep(1, length(samples)),

Y = rep(1, length(samples)),
row.names = samples))

Arguments

object A genambig object containing genotypes, ploidies, population identities, and
microsatellite repeat lengths for the dataset of interest.

samples Character vector. Samples to write to the file. Must be a subset of Samples(object).

loci Character vector. Loci to write to the file. Must be a subset of Loci(object).

allelesep The character that will be used to separate alleles within a genotype. If each
allele should instead be a fixed number of digits, with no characters to delimit
alleles, set allelesep = "".

digits Integer. The number of digits used to represent each allele.

file A character string indicating the path to which the file should be written.

spatcoord Data frame. Spatial coordinates of each sample. Column names are used for
column names in the file. Row names indicate sample, or if absent it is assumed
that the rows are in the same order as samples.

Details

The Categories column of the SPAGeDi file that is produced contains information from the PopNames
and PopInfo slots of object; the population name for each sample is written to the column.

The first line of the file contains the number of individuals, number of categories, number of spa-
tial coordinates, number of loci, number of digits for coding alleles, and maximum ploidy, and is
generated automatically from the data provided.

The function does not write distance intervals to the file, but instead writes 0 to the second line.

All alleles for a given locus are divided by the Usatnts value for that locus, after all missing data
symbols have been replaced with zeros. If necessary, a multiple of 10 is subtracted from all alleles
at a locus in order to get the alleles down to the right number of digits.

If a genotype has fewer alleles than the Ploidies value for that sample, zeros are added up to
the ploidy. If the genotype has more alleles than the ploidy, a random subset of alleles is used and

56 write.Structure

a warning is printed. If the genotype has only one allele (is fully heterozygous), then that allele is
replicated to the ploidy of the individual. Genotypes are then concatenated into strings, delimited
by allelesep. If allelesep="", leading zeros are first added to alleles as necessary to make
them the right number of digits.

Value

A file is written but no value is returned.

Author(s)

Lindsay V. Clark

References

http://ebe.ulb.ac.be/ebe/Software_files/manual_SPAGeDi_1-3.pdf

Hardy, O. J. and Vekemans, X. (2002) SPAGeDi: a versatile computer program to analyse spatial
genetic structure at the individual or population levels. Molecular Ecology Notes 2, 618-620.

See Also

read.SPAGeDi, write.freq.SPAGeDi, write.GenoDive, write.Structure, write.GeneMapper,
write.ATetra, write.Tetrasat

Examples

set up data to write (usually read from a file)
mygendata <- new("genambig", samples = c("ind1","ind2","ind3","ind4"),

loci = c("loc1", "loc2"))
Genotypes(mygendata, samples="ind1") <- list(c(102,106,108),c(207,210))
Genotypes(mygendata, samples="ind2") <- list(c(104),c(204,210))
Genotypes(mygendata, samples="ind3") <- list(c(100,102,108),c(201,213))
Genotypes(mygendata, samples="ind4") <- list(c(102,112),c(-9))
Ploidies(mygendata) <- c(3,2,2,2)
Usatnts(mygendata) <- c(2,3)
PopNames(mygendata) <- c("A", "B")
PopInfo(mygendata) <- c(1,1,2,2)
myspatcoord <- data.frame(X=c(27,29,24,30), Y=c(44,41,45,46),

row.names=c("ind1","ind2","ind3","ind4"))

write a file
write.SPAGeDi(mygendata, spatcoord = myspatcoord,

file="SpagOutExample.txt")

write.Structure Write Genotypes in Structure 2.3 Format

Description

Given a dataset stored in a genambig object, write.Structure produces a text file of the
genotypes in a format readable by Structure 2.2 and higher. The user specifies the overall ploidy of
the file, while the ploidy of each sample is extracted from the genambig object. PopInfo and
other data can optionally be written to the file as well.

http://ebe.ulb.ac.be/ebe/Software_files/manual_SPAGeDi_1-3.pdf

write.Structure 57

Usage

write.Structure(object, ploidy, file="",
samples = Samples(object), loci = Loci(object),
writepopinfo = TRUE, extracols = NULL,
missingout = -9)

Arguments

object A genambig object containing the data to write to the file. There must be non-
NA values of Ploidies (and PopInfo if writepopinfo == TRUE) for
samples.

ploidy PLOIDY for Structure, i.e. how many rows per individual to write.

file A character string specifying where the file should be written.

samples An optional character vector listing the names of samples to be written to the
file.

loci An optional character vector listing the names of the loci to be written to the file.

writepopinfo TRUE or FALSE, indicating whether to write values from the PopInfo slot of
object to the file.

extracols An array, with the first dimension names corresponding to samples, of Pop-
Data, PopFlag, LocData, Phenotype, or other values to be included in the extra
columns in the file.

missingout The number used to indicate missing data.

Details

Structure 2.2 and higher can process autopolyploid microsatellite data, although 2.3.3 or higher is
recommended for its improvements on polyploid handling. The input format of Structure requires
that each locus take up one column and that each individual take up as many rows as the parameter
PLOIDY. Because of the multiple rows per sample, each sample name must be duplicated, as well as
any population, location, or phenotype data. Partially heterozygous genotypes also must have one
arbitrary allele duplicated up to the ploidy of the sample, and samples that have a lower ploidy than
that used in the file (for mixed polyploid data sets) must have a missing data symbol inserted to fill
in the extra rows. Additionally, if some samples have more alleles than PLOIDY (if you are using
a lower PLOIDY to save processing time, or if there are extra alleles from scoring errors), some
alleles must be randomly removed from the data. write.Structure performs this duplication,
insertion, and random deletion of data.

The sample names from samples will be used as row names in the Structure file. Each sample
name should only be in the vector samples once, because write.Structure will duplicate
the sample names a number of times as dictated by ploidy.

In writing genotypes to the file, write.Structure compares the number of alleles in the geno-
type, the ploidy of the sample as stored in Ploidies, and the ploidy of the file as stored in
ploidy, and does one of six things (for a given sample x and locus loc):

1) If Ploidies(object)[x] is greater than or equal to ploidy, and length(Genotype(object,
x, loc)) is equal to ploidy, the genotype data are used as is.

2) If Ploidies(object)[x] is greater than or equal to ploidy, and length(Genotype(object,
x, loc)) is less than ploidy, the first allele is duplicated as many times as necessary for there
to be as many alleles as ploidy.

58 write.Structure

3) If Ploidies(object)[x] is greater than or equal to ploidy, and length(Genotype(object,
x, loc)) is greater than ploidy, a random sample of the alleles, without replacement, is used
as the genotype.

4) If Ploidies(object)[x] is less than ploidy, and length(Genotype(object, x,
loc)) is equal to Ploidies(object)[x], the genotype data are used as is and missing data
symbols are inserted in the extra rows.

5) If Ploidies(object)[x] is less than ploidy, and length(Genotype(object, x,
loc)) is less than Ploidies(object)[x], the first allele is duplicated as many times as
necessary for there to be as many alleles as Ploidies(object)[x], and missing data symbols
are inserted in the extra rows.

6) If Ploidies(object)[x] is less than ploidy, and length(Genotype(object, x,
loc)) is greater than Ploidies(object)[x], a random sample, without replacement, of
Ploidies(object)[x] alleles is used, and missing data symbols are inserted in the extra rows.
(Alleles are removed even though there is room for them in the file.)

Two of the header rows that are optional for Structure are written by write.Structure. These
are ‘Marker Names’, containing the names of loci supplied in gendata, and ‘Recessive Alleles’,
which contains the missing data symbol once for each locus. This indicates to the program that all
alleles are codominant with copy number ambiguity.

The output file requires a few small modifications, done in a text editor or spreadsheet software, in
order to be read by Structure. In the upper left corner the words “rowlabel” and “missing” should
be deleted. Likewise the first and second rows for any non-locus columns should be deleted if
the extracols argument was used and/or if writepopinfo == TRUE. These should include
“PopInfo” and the second dimension names used in extracols, and zeros, respectively.

Value

No value is returned, but instead a file is written at the path specified.

Note

If extracols is a character array, make sure none of the elements contain white space.

Author(s)

Lindsay V. Clark

References

http://pritch.bsd.uchicago.edu/structure_software/release_versions/
v2.3.3/structure_doc.pdf

Hubisz, M. J., Falush, D., Stephens, M. and Pritchard, J. K. (2009) Inferring weak population
structure with the assistance of sample group information. Molecular Ecology Resources 9, 1322-
1332.

Falush, D., Stephens, M. and Pritchard, J. K. (2007) Inferences of population structure using multi-
locus genotype data: dominant markers and null alleles. Molecular Ecology Notes 7, 574-578.

See Also

read.Structure, write.GeneMapper, write.GenoDive, write.SPAGeDi, write.ATetra,
write.Tetrasat

http://pritch.bsd.uchicago.edu/structure_software/release_versions/v2.3.3/structure_doc.pdf
http://pritch.bsd.uchicago.edu/structure_software/release_versions/v2.3.3/structure_doc.pdf

write.Tetrasat 59

Examples

input genotype data (this is usually done by reading a file)
mygendata <- new("genambig", samples = c("ind1","ind2","ind3",

"ind4","ind5","ind6"),
loci = c("locus1","locus2"))

Genotypes(mygendata) <- array(list(c(100,102,106,108,114,118),c(102,110),
c(98,100,104,108,110,112,116),c(102,106,112,118),
c(104,108,110),c(-9),
c(204),c(206,208,210,212,220,224,226),
c(202,206,208,212,214,218),c(200,204,206,208,212),
c(-9),c(202,206)),

dim=c(6,2))
Ploidies(mygendata) <- c(6,6,6,4,4,4)
Note that some of the above genotypes have more or fewer alleles than
the ploidy of the sample.

create a vector of sample names to be used. Note that this excludes
ind6.
mysamples <- c("ind1","ind2","ind3","ind4","ind5")

Create an array containing data for additional columns to be written
to the file. You might also prefer to just read this and the ploidies
in from a file.
myexcols <- array(data=c(1,2,1,2,1,1,1,0,0,0),dim=c(5,2),

dimnames=list(mysamples, c("PopData","PopFlag")))

Write the Structure file, with six rows per individual.
Since outfile="", the data will be written to the console instead of a file.
write.Structure(mygendata, 6, "", samples = mysamples, writepopinfo = FALSE,

extracols = myexcols)

write.Tetrasat Write Genotype Data in Tetrasat Format

Description

Given a genambig object, write.Tetrasat creates a file that can be read by the software
Tetrasat and Tetra.

Usage

write.Tetrasat(object, samples = Samples(object),
loci = Loci(object), file = "")

Arguments

object A genambig object containing the dataset of interest. Genotypes, population
identities, microsatellite repeat lengths, and the dataset description of object
are used by the function.

samples A character vector of samples to write to the file. Should be a subset of Samples(object).

loci A character vector of loci to write to the file. Should be a subset of Loci(object).

file A character string indicating the file to which to write.

60 write.Tetrasat

Details

Tetrasat files are space-delimited text files in which all alleles at a locus are concatenated into a
string eight characters long. Population names or numbers are not used in the file, but samples are
ordered by population, with the line “Pop” delimiting populations.

write.Tetrasat divides each allele by the length of the repeat and rounds down in order to
convert alleles to repeat numbers. If necessary, it subtracts a multiple of 10 from all alleles at a
locus to make all allele values less than 100, or puts a zero in front of the number if it only has one
digit. If the individual is fully homozygous at a locus, the single allele is repeated four times. If any
genotype has more than four alleles, write.Tetrasat picks a random sample of four alleles
without replacement, and prints a warning. Missing data are represented by blank spaces.

Sample names should be a maximum of 20 characters long in order for the file to be read correctly
by Tetrasat or Tetra.

Value

A file is written but no value is returned.

Author(s)

Lindsay V. Clark

References

http://markwith.freehomepage.com/tetrasat.html

Markwith, S. H., Stewart, D. J. and Dyer, J. L. (2006) TETRASAT: a program for the population
analysis of allotetraploid microsatellite data. Molecular Ecology Notes 6, 586-589.

http://ecology.bnu.edu.cn/zhangdy/TETRA/TETRA.htm

Liao, W. J., Zhu, B. R., Zeng, Y. F. and Zhang, D. Y. (2008) TETRA: an improved program for
population genetic analysis of allotetraploid microsatellite data. Molecular Ecology Resources 8,
1260-1262.

See Also

read.Tetrasat, write.GeneMapper, write.ATetra,

Examples

set up sample data (usually done by reading files)
mysamples <- c("ind1", "ind2", "ind3", "ind4")
myloci <- c("loc1", "loc2")
mygendata <- new("genambig", samples = mysamples, loci = myloci)
Usatnts(mygendata) <- c(2, 3)
Genotypes(mygendata, loci="loc1") <- list(c(202,204), c(204),

c(200,206,208,212),
c(198,204,208))

Genotypes(mygendata, loci="loc2") <- list(c(78,81,84),
c(75,90,93,96,99),
c(87), c(-9))

PopInfo(mygendata) <- c(1,2,1,2)
Description(mygendata) <- "An example for write.Tetrasat."
Ploidies(mygendata) <- c(4,4,4,4)

write a Tetrasat file

http://markwith.freehomepage.com/tetrasat.html
http://ecology.bnu.edu.cn/zhangdy/TETRA/TETRA.htm

write.Tetrasat 61

write.Tetrasat(mygendata, file="tetrasattest.txt")

view the file
cat(readLines("tetrasattest.txt"),sep="\n")

Index

∗Topic NA
meandist.from.array, 28

∗Topic arith
Bruvo.distance, 5
calcFst, 7
estimatePloidy, 13
Lynch.distance, 27
meandist.from.array, 28
meandistance.matrix, 30
simpleFreq, 44

∗Topic array
calcFst, 7
deSilvaFreq, 9
meandist.from.array, 28
meandistance.matrix, 30
write.freq.SPAGeDi, 48

∗Topic classes
genambig-class, 16
genbinary-class, 20
gendata-class, 23

∗Topic datasets
FCRinfo, 14
simgen, 43
testgenotypes, 45

∗Topic file
read.ATetra, 33
read.GeneMapper, 34
read.GenoDive, 36
read.SPAGeDi, 37
read.Structure, 39
read.Tetrasat, 42
write.ATetra, 47
write.freq.SPAGeDi, 48
write.GeneMapper, 50
write.GenoDive, 52
write.SPAGeDi, 54
write.Structure, 55
write.Tetrasat, 58

∗Topic iteration
deSilvaFreq, 9

∗Topic manip
deleteSamples, 8
editGenotypes, 12

find.missing.gen, 15
genambig.to.genbinary, 19
isMissing, 26
merge-methods, 32

∗Topic methods
Accessors, 1
estimatePloidy, 13
merge-methods, 32

∗Topic print
viewGenotypes, 46

[,genambig-method
(genambig-class), 16

[,genbinary-method
(genbinary-class), 20

[,gendata-method (gendata-class),
23

Absent (Accessors), 1
Absent,genbinary-method

(genbinary-class), 20
Absent<- (Accessors), 1
Absent<-,genbinary-method

(genbinary-class), 20
Accessors, 1, 16, 18, 22, 25

Bruvo.distance, 5, 28, 29, 31

calcFst, 7

deleteLoci, 4
deleteLoci (deleteSamples), 8
deleteLoci,genambig-method

(genambig-class), 16
deleteLoci,genbinary-method

(genbinary-class), 20
deleteLoci,gendata-method

(gendata-class), 23
deleteSamples, 4, 8
deleteSamples,genambig-method

(genambig-class), 16
deleteSamples,genbinary-method

(genbinary-class), 20
deleteSamples,gendata-method

(gendata-class), 23

62

INDEX 63

Description (Accessors), 1
Description,gendata-method

(gendata-class), 23
Description<- (Accessors), 1
Description<-,gendata-method

(gendata-class), 23
deSilvaFreq, 8, 9, 50

editGenotypes, 4, 12, 52
editGenotypes,genambig-method

(genambig-class), 16
editGenotypes,genbinary-method

(genbinary-class), 20
estimatePloidy, 4, 13, 17
estimatePloidy,genambig-method

(genambig-class), 16
estimatePloidy,genbinary-method

(genbinary-class), 20

FCRinfo, 14, 46
find.missing.gen, 15, 27, 29
find.na.dist

(meandist.from.array), 28

genambig, 14, 19, 22, 25, 35, 44–46
genambig-class, 16
genambig.to.genbinary, 19
genbinary, 14, 19, 25, 45
genbinary-class, 20
genbinary.to.genambig, 39
genbinary.to.genambig

(genambig.to.genbinary), 19
gendata, 4, 17, 18, 21, 22
gendata-class, 23
Genotype, 27
Genotype (Accessors), 1
Genotype,genambig-method

(genambig-class), 16
Genotype,genbinary-method

(genbinary-class), 20
Genotype<- (Accessors), 1
Genotype<-,genambig-method

(genambig-class), 16
Genotype<-, 13
Genotypes, 46
Genotypes (Accessors), 1
Genotypes,genambig-method

(genambig-class), 16
Genotypes,genbinary-method

(genbinary-class), 20
Genotypes<- (Accessors), 1
Genotypes<-,genambig-method

(genambig-class), 16

Genotypes<-,genbinary-method
(genbinary-class), 20

Genotypes<-, 13
Genotypes<-,genbinary-method, 3

initialize,genambig-method
(genambig-class), 16

initialize,genbinary-method
(genbinary-class), 20

initialize,gendata-method
(gendata-class), 23

isMissing, 4, 15, 26
isMissing,genambig-method

(genambig-class), 16
isMissing,genbinary-method

(genbinary-class), 20

Loci, 9
Loci (Accessors), 1
Loci,gendata,missing-method

(gendata-class), 23
Loci,gendata,numeric-method

(gendata-class), 23
Loci<- (Accessors), 1
Loci<-,genambig-method

(genambig-class), 16
Loci<-,genbinary-method

(genbinary-class), 20
Loci<-,gendata-method

(gendata-class), 23
Lynch.distance, 6, 27, 31

meandist.from.array, 28, 31
meandistance.matrix, 6, 28, 29, 30
merge (merge-methods), 32
merge,genambig,genambig-method,

18
merge,genambig,genambig-method

(merge-methods), 32
merge,genbinary,genbinary-

method,
22

merge,genbinary,genbinary-method
(merge-methods), 32

merge,gendata,gendata-method, 4,
9, 25

merge,gendata,gendata-method
(merge-methods), 32

merge-methods, 32
Missing, 27
Missing (Accessors), 1
Missing,gendata-method

(gendata-class), 23

64 INDEX

Missing<- (Accessors), 1
Missing<-,genambig-method

(genambig-class), 16
Missing<-,genbinary-method

(genbinary-class), 20
Missing<-,gendata-method

(gendata-class), 23
Missing<-, 27

Ploidies, 14
Ploidies (Accessors), 1
Ploidies,gendata-method

(gendata-class), 23
Ploidies<- (Accessors), 1
Ploidies<-,gendata-method

(gendata-class), 23
Ploidies<-, 17
PopInfo (Accessors), 1
PopInfo,gendata-method

(gendata-class), 23
PopInfo<- (Accessors), 1
PopInfo<-,gendata-method

(gendata-class), 23
PopNames (Accessors), 1
PopNames,gendata-method

(gendata-class), 23
PopNames<- (Accessors), 1
PopNames<-,gendata-method

(gendata-class), 23
PopNum (Accessors), 1
PopNum,gendata,character-method

(gendata-class), 23
PopNum<- (Accessors), 1
PopNum<-,gendata,character-method

(gendata-class), 23
Present (Accessors), 1
Present,genbinary-method

(genbinary-class), 20
Present<- (Accessors), 1
Present<-,genbinary-method

(genbinary-class), 20

read.ATetra, 33, 35, 37, 39, 41, 43, 48
read.GeneMapper, 34, 34, 37, 39, 41, 43,

52
read.GenoDive, 34, 35, 36, 39, 41, 43, 53
read.SPAGeDi, 34, 35, 37, 37, 41, 43, 55
read.Structure, 34, 35, 37, 39, 39, 43, 57
read.table, 39
read.Tetrasat, 34, 35, 37, 39, 41, 42, 59

Samples, 9
Samples (Accessors), 1

Samples,gendata,character,missing-method
(gendata-class), 23

Samples,gendata,character,numeric-method
(gendata-class), 23

Samples,gendata,missing,missing-method
(gendata-class), 23

Samples,gendata,missing,numeric-method
(gendata-class), 23

Samples,gendata,numeric,missing-method
(gendata-class), 23

Samples,gendata,numeric,numeric-method
(gendata-class), 23

Samples<- (Accessors), 1
Samples<-,genambig-method

(genambig-class), 16
Samples<-,genbinary-method

(genbinary-class), 20
Samples<-,gendata-method

(gendata-class), 23
simgen, 43, 46
simpleFreq, 8, 10, 11, 44
summary,genambig-method

(genambig-class), 16
summary,genbinary-method

(genbinary-class), 20
summary,gendata-method

(gendata-class), 23

testgenotypes, 15, 44, 45

Usatnts (Accessors), 1
Usatnts,gendata-method

(gendata-class), 23
Usatnts<- (Accessors), 1
Usatnts<-,gendata-method

(gendata-class), 23

viewGenotypes, 4, 13, 46
viewGenotypes,genambig-method

(genambig-class), 16
viewGenotypes,genbinary-method

(genbinary-class), 20

write.ATetra, 34, 47, 52, 53, 55, 57, 59
write.freq.SPAGeDi, 11, 48, 55
write.GeneMapper, 35, 48, 50, 53, 55, 57,

59
write.GenoDive, 37, 52, 52, 55, 57
write.SPAGeDi, 39, 50, 52, 53, 54, 57
write.Structure, 41, 52, 53, 55, 55
write.Tetrasat, 43, 48, 52, 53, 55, 57, 58

	Accessors
	Bruvo.distance
	calcFst
	deleteSamples
	deSilvaFreq
	editGenotypes
	estimatePloidy
	FCRinfo
	find.missing.gen
	genambig-class
	genambig.to.genbinary
	genbinary-class
	gendata-class
	isMissing
	Lynch.distance
	meandist.from.array
	meandistance.matrix
	merge-methods
	read.ATetra
	read.GeneMapper
	read.GenoDive
	read.SPAGeDi
	read.Structure
	read.Tetrasat
	simgen
	simpleFreq
	testgenotypes
	viewGenotypes
	write.ATetra
	write.freq.SPAGeDi
	write.GeneMapper
	write.GenoDive
	write.SPAGeDi
	write.Structure
	write.Tetrasat
	Index

