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Abstract

We define the concept of dependence among multiple varialsies)
maximum entropy techniques and introduce a graphical ioot&d de-
note the dependencies. Direct inference of informationritic quan-
tities from data uncovers dependencies even in undersdmgtgmes
when the joint probability distribution cannot be relialgigtimated. The
method is tested on synthetic data. We anticipate it to bfilee infer-
ence of genetic circuits and other biological signalinguoeks.

1 Two problems

One of the most active fields in quantitative biology is tHeience of biological interaction
networks (e. g., protein or genetic regulatory networksifhigh throughput data such as
expression microarray$l[1] In these problems, one measures (simultaneous or serial)
values of expressions of genes under different conditiodsieats them as samples from
a joint probability distribution (PD). The goal is to infeha genetic network based on
statistical dependencies in this PD.

This involves a conceptual and a technical problem. Fitsprisingly, even now there is
still no agreement on what the dependence, the interadsiédma multivariate setting. In-
stead of a universal definition, standard statistical mashi, 8] have produced a multitude
of dependence concepts applicable in restricted contexts, as normal noise, binary, bi-
variate, or metric data, etc. Of these, the notiocafditional(in)dependence in the form
of Bayesian networkéBN) [] has proved to be very useful in biological applicais.
However, it is insufficient to deal with regulatory loops,tordistinguish independent vs.
cooperative regulation of a gene by others (see below)hEyrstatistical dependence is a
symmetric propertyl[4], while graphs of BNs are directedu3hto infer interaction net-
works, we must first carefully define what we mean by multateristatistical dependence.

The goal is to partition the overall statistical dependetteat is, the deviation of the joint
PD (JPD) from the product of its marginals, into contriban8drom interactions of different
kinds (among pairs of variables, triplets, etc.), and,dretet, from specific combinations
of variables within a kind. Many ideas have been suggesiehi, [Z], but the most natural

1The literature on reverse engineering biological netwatiegelops quickly, and we do not try
to provide a exhaustive bibliography. On the other hand;esthis paper focuses on fundamental
concepts of statistical dependence, a considerable &fisrbeen expended to make the relevant part
of the bibliography complete.
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approach is to quantify the new knowledge that comes frorkihgpat a complete JPD vs.
its approximations under various independence assungptior example, in contingency
tables analysis, one studies deviations of the number afrebd counts from their expec-
tations under such assumptionsi[7,18, 9,110, 11]. Such dismuss limited to categorical
data and, importantly, confounds the definition of dependemith sampling issues. In-
formation theoryl[12, 13] provides tools to treat continsand categorical data uniformly
[14,115] and to generalizes bivariate dependence measuresltivariate cases based on
distributions rather than counts. However, some suggéstednation theoretic measures
16,117,118, 19| 20, 21, 22, 23,124,125] 26] are not necessaoihnegative, or involve
averaging logarithms of fractional powers of PDs. Thus tb&ynot characterize sizes of
typical sets and have not become universally acceptededdsbne notices that the max-
imum entropy (MaxEnt) distribution$ [2/7,128] consistentmwéome marginals of the JPD
introduce no statistical interactions beyond those in @@ arginals. Thus the JPD can be
compared to its MaxEnt approximations to separate depeiekeincluded in the low order
statistics from those not present in therml[4, 23]. This apphocompletely characterizes
multivariate interactions for binary [2D,130] or exponahiB1] distributions. In general, it
led to a definition ofconnectednteractions of a given order, that is, the interactions tha
need, at least, the full set of marginals of this order to h@wad [32]. However, there
has been no successful attempt of defirdegendence among variab)éisat is, localizing
(connected) interaction to particular covariates.

The second, technical, problem emerges if we agree on theuresaof dependence. The
usual approach thenis to use the experimental data to €D in question and evaluate
these measures forit Unfortunately, the distributions may be severely undeysad.
To fight this, the field has focused on a simplistic approa&) IBl]: (a) assume some
dependence structure; (b) regularize the JPD consisteittiyit and learn it from the data;
(c) evaluate the quality of fit; (d) repeat until the depermestructure with the best fit
is found. Validity of such analysis is sensitive to the cleoid the regularization, and a
bad choice may lead to misestimation of dependencies. Aainferring a complicated
object (the JPD) in order to only find its simple property (tlegpendencies) is not a good
idea [35], and alirect estimation of dependencies without learning the JPD isspred?.

From Shannon’s work [12] and its later developmelts [4, 32kwow that we have to look
at information theoretic quantities to measure dependeMemy of these are differences
of (marginal, conditional) entropies of the JPD. While eanvorks [4,19] relied on good
sampling, we now know that, at least under some conditiomsppy may be estimated
reliably even when inferences about details of the undegl{D are impossibfe Thus the
direct estimation of dependencies has a chance even forsarmdpled problems.

In this paper we deal with both the conceptual and the teahpioblem. First, expanding
on [4,132] (see alsa [39] for axiomatization), we systenaljccharacterize dependencies
among variables. Second, we apply direct entropy estimatiethods to undersampled
synthetic data to show that interactions can be uncoverenlievthat regime.

2\We deliberately remain vague about the identity of the dates. These can be the simultaneous
gene expressions, in which case there is a big leap betwéesming statistical dependencies and
reconstructing the network. These also can be the time thggpressions, or their whole time
courses, which makes the reconstruction easier, or songedftogether different.

3Direct estimation of the quantity of interest without théeimediate inference of the underlying
PD has been useful in various contexts, in particular fanedtng entropies [36, 37].

“The reader is referred th [38] andrieenem.com/ ilya/pages/NIPS03 for overviews.
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2 Definitions

Suppose we have a network bf covariatesX;,: = 1,..., M, (callednodesexpressions
or genejthat take random values respectively with the joint probabiliti?(x). The total
statistical dependence among the variables is given by tigtiinformation that is, the
Kullback—Leibler divergence between the JPD and the prioafitbe marginals [34, 39]

P(x
= %P(x)loggni%&i) = <1 H P > ZS (1)

where>’s represent summations for discrete and integration fatinoous variables re-
spectively, andS[X] := — 3 P(x) log, P(x) is the entropy ofP(z).

Following |32], we localize these bits of dependence tasttasl interactions of different
orders. If allm-way marginalspP(z;,, zi,, . . ., z;,, ), are known, then one finds an approx-
imation to the JPD that respects the marginals, but makedditi@nal assumptions about
the JPD. This is given by the MaxEnt, or minimum multiinformationglem [427] 32]:

P™ .= arg max {S[P'] — Z Z Ny viim (P _P’il...’im)}7 (2)

P’ {A
{ } i1 <<y Liy oo Ligm

where)’s are the Lagrange multipliers enforcing the marginal tists; different\’'s are
distinguished by their arguments. The arguments of alltions are listed in their lower
indices, e. g.P1 := P(z1). No indices means dependence on all variables, whda all,
but X;. Further, a distribution with lower indices is a marginalge P;5 := Z%ﬁ P

A solution of any MaxEnt problem with marginal constraintsta form of a product of
terms depending on the constrained variahles [40]. Inqdat, for Eq. [R),

I | A ) 3)
i1 <<y
R(lm)lm = ‘Pi]...ima v{ila MR zm}a (4)

where f’s, again distinguished by their arguments, are to be fouonhfthe constraints.
Note the Boltzmann machine or Markov network structure @ taxEnt distribution
[, 141]. In general, no analytical solution fgis exists. However, an algorithm called the
iterative proportional fitting procedur@PFP) [42], which iteratively adjusts a trial solution
to satisfy each of the constraints in turn, converges tortregolutioni[40].

Finding P(™) andP("~1) defines connected informatidn[32]

(m)
I(m)[P] = <1og2 %> ; (5)
M
> 1Py, (6)
m=2

We remind the readers that the Kullback-Leibler divergenc®kr[P||Q] =
> . P(x)log, P(x)/Q(x) is a natural information—theoretic measure of dissintyeretween PDs.
It is nonsymmetric, nonnegative, and it is zerofff= @ [13].

®In this, work we do not aim at mathematical rigor of the meagheoretic information theory.
In particular, we assume that all quantities of interesstefar all distributions considered.

All JPDs constrained by the same marginals are said to formeehEt class[[2]. For metric
variables and simple constraints, these classes are weikgt We know parametric forms for some
of them, can check if the constraints are compatible, arfteif determine the JPD uniquely.



which measures the amount of statistical interactionswateal for bym-way, but not by
m — 1-way marginals. This is similar to connected correlationdiions or cumulants.

In the same spirit, to determine if a particularway interaction contributes th we may
check if fixing the corresponding;, .. ;,, recovers any dependencies not already contained
in a reference MaxEnt distributio*(“1-*=) constrained by some other marginals. That
is, we define thénteraction multiinformation

Alinim) . <10g2 g*((;“;))> — JGreim) _ prCinein) )
whereQ(") is theinteraction MaxEnt distributiorsatisfying all constraints a*(*) and
additionally havingQEl'_)__im =P, 4, . 10) andI*(") are multinformations of)(*) and
Q*(*) respectively. By positivity of the Kullback—Leibler divggnce A(*) > 0. Thus if
A() > 0, accounting for the margind?;, ,; recovers more multinformation, and we
say that theorresponding interaction or dependence is present wisheet toQ*( ).

The problem is that\(*) depends on the choice ¢§*(*). To test the null hypothesis
of no dependencies, we must select the refergpiteé) that minimizes the interaction
information. This guarantees that interactions are aeckptly if they cannot be reduced
to some other statistical dependencies in the network. fiieg to Thm[1 (see Appendix),
such reference distribution is given by

Q*(il...im) — f% ...f%n’ f>0 (8)
Q;k(“...lm) = Py, Vk=1...m. 9

This Q*(*) preserves all marginals of the original JPD except thosgitkialve all m co—
variates being examined for an interaction. This is sintitathe Type Il Sum of Squares
ANOVA for testing significance of predictors. In fact, sinfk;, is equal toy? asymp-
totically, the similarity is not accidental. Dependencéi by this choice 0Q*(*) is a
generalization of the conditional dependemdéh the rest of the network as a condition.

The interaction PD, which additionally preserves the jstatistics ofX;,,..., X;,,, but
nothing extra, is
QUir—im) = fo - fy firoim, F20 (10)
QY = Py, Ve=1...m, (11)
Qi = Puin 42

Using such@ and Q* in Eq. {@) definesrreducible m—way interactions (dependencies)
among particulam variables. We denote these dependencies graphically laseaxgning
from the variables and meeting at an-edge vertex, see Fifll 1. This graphical notation
generalizes BNs ani [32], were the only goal was to densteay interactions among all
combinations of co-variates simultaneously.

3 Examples and properties

We consider a few examples faf = 3 (largerM is analyzed similarly). First, a regulatory
cascade, or a Markov chaiX; — X5 — X3, P(21, 22,23) = P(x1)P(z2|z1) P(23]22).
Looking for X; X, dependence, we have(1?) = I[X;, X3] + I[X2, X3] < 1012 =
I[X4, X2] + I[ X2, X3], where the inequality is due to the information processiragjual-
ity, and the bound is reached only in special cases. ThusX, are (generically) depen-
dent. Similarly,X,, X3 are dependent; but*('3) = 0, andX,, X5 are not (even though



their marginal mutual information, induced by other intgi@ns, is not zero). Checking
for the triplet interactions, we find*('?3) = I[X;, Xy + I[Xo, X3] = 11?3, thus no
such dependencies are present. If now inst€adegulatesX; and X3, one sees that the
dependence structure is the same. Both networks correspainel graph in Fidd1(a).

A more interesting case is wheX,
X3 regulate X5, jointly. Here many @

pOSS|b|I|t|es exist, not all of them
realizable in terms of BN modeling.
First, consider independent regula{q)

tion: to predict X2, one does not

need to know the values oX; and

X3 simultaneously,P(zs|z1,23) = @

fi2fos, €. Q. P(xa]xy,z3) O<

eXP[ a(x 2—581) —b(x 2—383

(this corresponds toOR and AND

gates|[3P2], to the Lac—repressor [43]

and to all regulatory models based

on independent binding of transcrip-Figure 1: Examples of dependencies fidr= 3
tion factors to the DNA [[44]). If

Py3 = P, P, then the dependency structure is again as in[fig. 1(a). afitition there
is a regulationX; — X3, so thatP;3 # P, Ps, thenA(3) = Dy [P]|Q*(13)] > 0, and
AU23) — (. The dependency graph now has a loop in it, as in[fig. 1(b).

Further, in the joint regulation case one may consider a awiafizableP;3 with all
pairwise marginals factorizable. An example is K@Rgate [32,.43] (we were un-
able to construct an explicit, normalized example for awntius variables). In this case,
Vi, j, IV = 0. AU23) > 0, and the dependence structure is as in Bg. 1(c). Com-
binations of two- and three—way dependencies are also lpedsiig.[A(d—f), etc.]; for
example, an explicit construction for the case (ePiss o« exp|—a(xrs — x371)%| P Ps.
Such higher order dependencies are uncommon in physicehwisually deals with low
order interactions among many variables (for example, theitionian for a spin system

is H = — Zij Jijoi0;; thus the JPD of spins has no interactions of onder> 2). In
contrast, combinatorial regulation in genetics requimssiering higher order models.

While such detailed classification is overwhelming for &g, some general statements
may be proven for our choice ¢J*, Q. In particular, similar to Eq[{6), we have

I[P] > 3 Alsubset (13)
all subsets of X; }

Here the inequality is the result of our conservative apgindga identification of dependen-
cies. To prove it, we order ath—way dependencies in an arbitrary way. We then evaluate
the interaction information for the first dependency with”—1) as the reference distri-
bution, and take the interaction PD for each dependencyeasethrence PD for the next
one. Summing alin—way interactions give&™), and summing over results inf[P] [cf.

Eq. [@)]. On the other hand, according to THINAL, ) evaluated this way is not smaller
than the one with the references Hg. (8). This proves theainequality.

For M = 3, an interesting illustration of EqL{IL3) Bi25 = P 6(x1 — x2) §(z2 — x3).
We correctlyidentify all interactions as reducible (all's are zero). However, to account
for the multiinformation in this PD, (any) two pairwise inéetions must be invoked. The
degeneracy is lifted if, for example, noise breaks the symnanongX's.

Finally, we note another interesting property of our defimit For continuous;, the
presence of interactions does not depend on (nonsingefaajameterizations of variables
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Figure 2: Inferring regulatory networks froid samples. We used the NSB[36] method to
estimate the entropies (with error bars) of the JPD and itgimals directly. The method
does not work forQ*(123). Thus IPFP was applied to the counts and the enti®py?>)

of the solution was evaluated and extrapolated fa¥ — 0 following Strong et al.l[46] to
account for the sample size dependent bias. The statistitalfor each sample sizZ€ was
determined by bootstrapping, and the resulting extrajomiagrror was used fofS*(123),
This approach works since the MaxEnt constraints, likedtins€Eg. [2), are linear in the
unknown JPDP, making the biases o§[P] and $*(123) behave similarly. FinallyA(")
were calculated as the differences of the appropriate giespandi?A( ") as the sums of
squares of the entropy errors. (a) Network in Hig.1(a). ®oldft of the vertical dotted
line, N ~ 3000 > 25" « K ~ 125000, the sample size corrections are reliable, and
all entropies are known well. There is evidence only ¥rX, and X, X3 interactions,
just as it should be. For small@f, the method of Strong et al. fails, but NSB works until
N ~ 21/25[F] ~ 60. For pairwise interactions, we may replag€'2®) by S[P] (denoted
by smaller markers on the plot) and, sinE€®) stays zero nonetheless, afd;, X»] +
I[X,, X3] = I[P], we still recover the interactions correctly. (b) NetworkFig.[d(b).
Again, to the left of the line)N ~ 700 2> 25" all entropies are determined reliably,
and there is evidence for all three pairwise interaction,rfmi for the triplet interaction.
To the right of the line, NSB still works, but now we cannotetisangle the loop from
the three—way dependence without estimatitigh?®). (c) Network in Fig[L(f). Only the
regimeN 2> 25°"* ~ 5000 is shown. The evidence for all three pairwise interactions
and for the triplet interaction is barely significant for $hvd but grows fast.

that do not mix themy; — y;(z;) (seel[2] for a discussion of importance of this):
APz, ... za)] = AU [Py, yar))- (14)

This is true since such transformations do not change faetwn properties of the Max-
Ent distributions, and the Jacobians cancel in the definitibA( ). Note that, while the
definition is reparameterization invariant, inference wftributions cannot be done in a
covariant wayl|[45]. The invariance vanishes if instead®ainly a sample from it is given.

4 Inferring networks from data

A big advantage of our definition of statistical dependesaieterms of the MaxEnt ap-
proximations is that it can be applied even when the undegl{iDs are undersampled,
and the corresponding factorizations cannot be readilgmesl. ForK, the cardinality
of a variablé, larger than the number of samples, we cannot estimate the PDs reli-
ably, but entropic quantities, and, therefore, the intévas are inferable(some progress

8In genomics, continuous expression levels are routinalgrdtized into three states: up, down,
and baseline. Thus we decided to focus on the discrete cagewnof its relevance and concep-



is possible even fo?V ~ v/K). To show this, we used Dirichlet priors_[36] to gener-
ate random probability distributions with different indetion structuresM = 3, and
with marginal cardinalitied<; ~ 50. We generated random samples of different sizes,
N = 50...125000 from these distributions and tested the quality of infeeeatthe de-
pendencies as a function 8f. To measure it, we used tlegidencdor some dependency,
EC) = AC)/5AC)  wheredA() is the statistical error of the interaction multiinforma-
tion. If EC) is large, the dependency is present. According to[Big. Jpgreecovery is
possible forN <« K = K, K, K3 with few assumptiorsbout the form of the PDs.

With modern entropy estimation techniques [36], our appinaaill work even for severely
undersampled JPD. The bottleneck is the estimation of tharmen entropy consistent
with the marginals, which currently requires substanta@ahpling of the marginals_[46].
This is encouraging, since they may be well sampled whenRBeid not. However, it is
still essential to develop techniques to infer maximumaitrs directly. Further, the inter-
action information is the difference of entropies. It mayseall when its error, which is

a quadratic sum of the entropy errors, is large. This leadsitertainties about dependen-
cies even for reliably estimated entropies, see the sWa#lgion in Fig[2(c). Therefore, a
method that directly estimate’s will be preferred over another entropy—based technique.
Finally, as in Fig[L(a), variables may have nonzero mutoahi{gher order) information
and no direct interactions. Thus, Xy was unobserved, we would have inferred a depen-
dence betweeX; and X5. Similarly, spurious higher order interactions may alseeye.
Our method, just like most other assumption—free methodgy,fail for hidden variables.

For genomic applications, the number of different expmssneasurements i¥ < 100,
and it is not nearly enough to estimafés and to infer the full interaction network of,
say,M = 6000 genes in a yeast. However, for ternary discretization ofesgions, with
the Strong et al. entropy estimation, one will not find sigaifit evidence fof ("™ beyond
m* ~ logg N ~ 4 (or somewhat larger if PDs are far from being uniform). Thee can
replaceP by P("") in Eq. (8) and study interactions up to the orderwith respect to this
JPD. It is possible that most interactions in genomes araaf bow orders. Additionally,
if methods like NSBI[36] are developed for MaxEnt analysise should be able to push
for m* ~ 2logs N ~ 8, and this is the primary goal of our future work.

In summary, we have formalized the concept of multivariaeahdence, suggested a way
to infer dependencies from data, tested the suggestionaersaimpled synthetic examples,
and hinted at possible applications to genomic research.

Appendix

Theorem 1 Let {C} be a set of noncontradictory marginal constraints a@fl be the
MaxEnt distributions satisfying these constraints. FartHet Cy, and C; be additional
constraints (possibly included iiC}), and Q°, Q¢!, and Q“°! be the MaxEnt PDs
satisfying{C'} U Cy, {C} U C1, and{C} U C U C} respectively. Then

QCOI QCI
<1032 900 < ( logy q° ) (15)
where the averaging is performed ovgf'°!.

Intuitively, this says that the interaction multiinforrmais depend on the order in which
the interactions are considered. Dependency bits will bewtted for by the first marginal

able to explain them, attributing less bits to later constsa At present, this theorem has
been extensively tested by numerical simulations, butrstihains a conjecture.

tual simplicity. Measuring dependencies for continuousaldes follows a similar route, with the
estimation of entropies performed by one of the many methedswed in|[38].
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