
Stand von letzter Woche

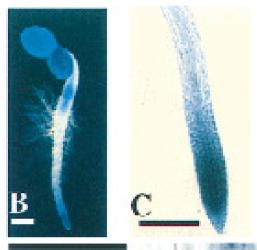
Repressor wird sehr schnell abgebaut → notwendig für Auxinantwort → evtl. Substrat für SCF

Identifikation des SCF-Ubiquitin-Ligase Komplexes

Ziel

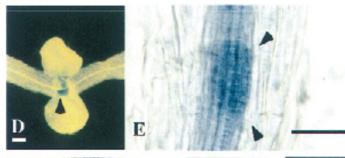
- Identifizierung von weiteren Bestandteilen des SCF-Komplexes
- Untersuchung einer möglichen Interaktion von TIR1 mit ASK1, ASK2 und AtCul1 zur Bildung eines SCF-Komplexes
- Untersuchung der Bedeutung verschiedener Bestandteile des SCF-Komplexes

Expression des TIR1-Gens


Wird TIR1 in sich teilendem Gewebe exprimiert?

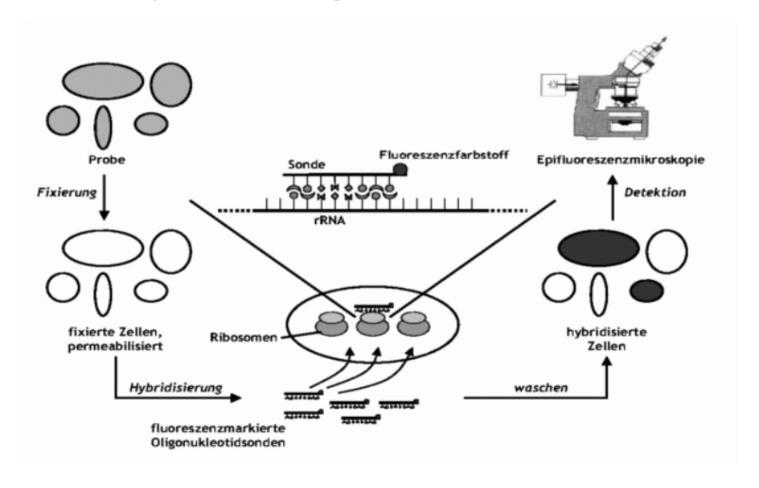
Methode	Southern Blot	Western Blot	Northern Blot
Was wird untersucht?	DNA	Protein	RNA
Ziel	Anzahl der Kopien eines Gens	Menge eines Proteins	Transkriptmenge
Aufreinigung			
Restriktionsverdau	Mit wahllos schneidenden Enzymen	Keine Restriktion	Keine Restriktion
Gel zur Auftrennung	Agarosegel	SDS-Page (Polyacrylamid)	Agarosegel
Gelbild	Schmier	Strake Banden durch besonders häufige Proteine	Primär rRNA sichtbar, da mRNA in viel geringeren Mengen
Methode	Markierung der Ziel- DNA mit komplementärer, markierter Sonde	Antikörpernachweis	Markierung der Ziel- RNA mit komplementärer, markierter Sonde

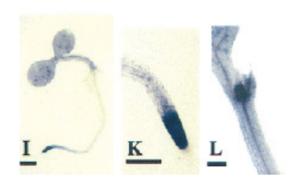
LOS LUCIOS LOTAS LOTAS LUCION EL SECUCIÓN EL SECUCIÓN


Northern blot:

 Markierung der TIR1-mRNA aus verschiedenen Geweben mit radioaktiver Sonde

Northern blot:


 Markierung der TIR1-mRNA aus verschiedenen Geweben mit radioaktiver Sonde



Gus-Färbung

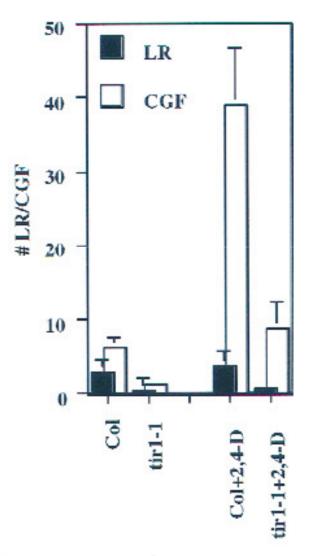
- Erzeugung eines Reportergens aus einem Fragment vor dem TIR1-Gen und einem
 ß-Galactosidasegen (gus)
- Anfärbung des gus-Reporters

In situ RNA – Hybridisierung:

Antisense-Sonde

In situ RNA-Hybridisierung:

- Stützung der Ergebnisse
- Komplementäre Sonde (Antisense) aus RNA bindet an die nachzuweisende Nukleinsäure (hier an TIR1-mRNA)


Sense-Kontrolle

→TIR wird v.a. in sich teilendem und wachsenden Gewebe exprimiert

TIR1 wirkt bei der frühen Seitenwurzelbildung

Spielt TIR1 bei der Bildung von Seitenwurzelmeristemen eine Rolle?

Spielt TIR1 bei der Bildung von Seitenwurzelmeristemen eine Rolle?

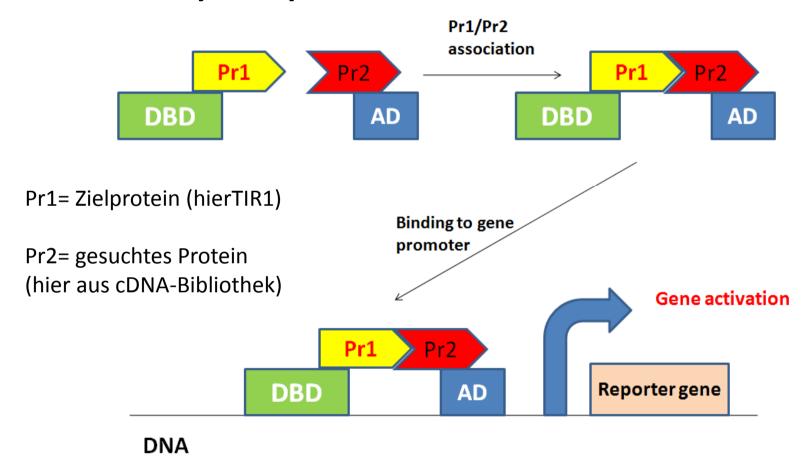
- Erzeugung eines cyc1At-gus Reporter in TIR1-Mutante und WT
- Behandlung mit Auxin
- → im Wt deutlich mehr Zellen kurz vor Teilung, als in TIR1-Mutante

→ TIR1 wirkt vor cyc1At-Expression und ist wahrscheinlich nötig für Seitenwurzelmeristembildung!

LR = Anzahl der Seitenwurzeln CGF = Menge des cyc1At-gus Reporters

Identifizierung von mit TIR1 intergierenden Proteinen

Yeast One-Hybrid System


 Aufklärung von Protein-DNA-Interaktion bzw. potentiellen DNA-bindenden Proteine für definierte DNA-Sequenz

Yeast Two-Hybrid System

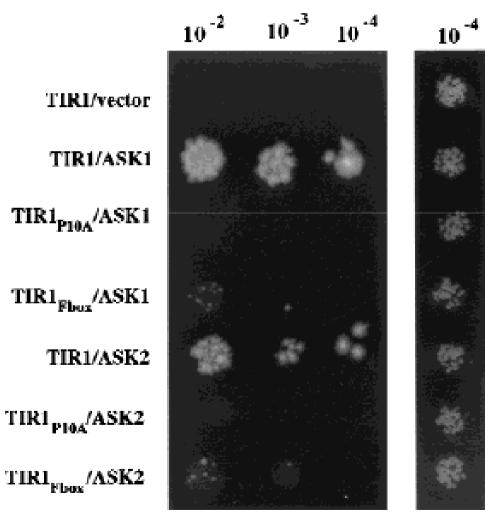
zur Aufklärung von Protein-Protein-Interaktionen

Identifizierung von mit TIR1 intergierenden Proteinen

Yeast Two-Hybrid System:

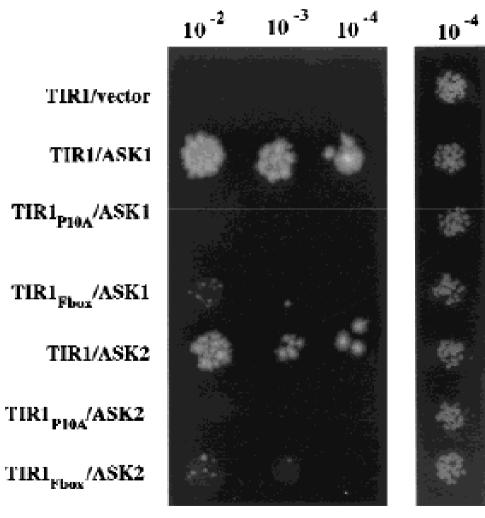
Quelle:

http://www.specmetcrime.com/yeast%20two%20hybrid%20approach%20.gif


Identifizierung von mit TIR1 intergierenden Proteinen

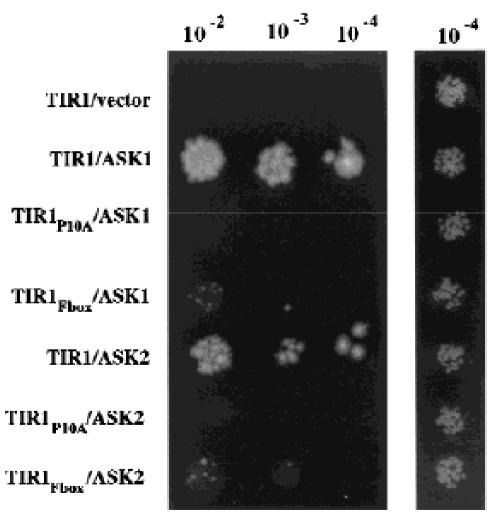
Yeast Two-Hybrid System:

- TIR1 mit DBD und cDNA (aus Arabidopsis-Bibliothek) mit AD in Hefestamm transformiert, der kein Histidin herstellen kann
- Isolierung und Sequenzierung von Proteinen aus wachsenden Kolonien, welche His produzieren
- Isolierung von ASK1 und ASK2, stark homolog zu SKP1 (=Teil des SCF-Komplexes in Hefe und Säuger)


→TIR1 bindet an etwas, das Teil eines SCF-Komplexes ist!

Wird die Interaktion von TIR1 mit ASK1 und ASK2 durch die F-Box in TIR1 vermittelt?

Yeast Two-Hybrid assay

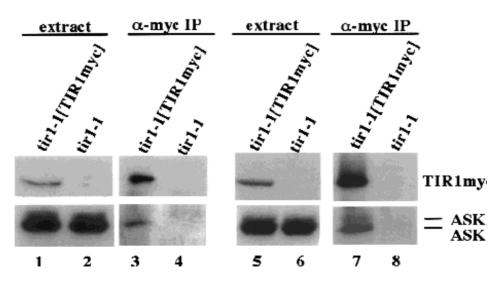

Wird die Interaktion von TIR1 mit ASK1 und ASK2 durch die F-Box in TIR1 vermittelt?

- bei F-Box-Mutante keine Interaktion
- →F-Box notwendig

Yeast Two-Hybrid assay

Wird die Interaktion von TIR1 mit ASK1 und ASK2 durch die F-Box in TIR1 vermittelt?

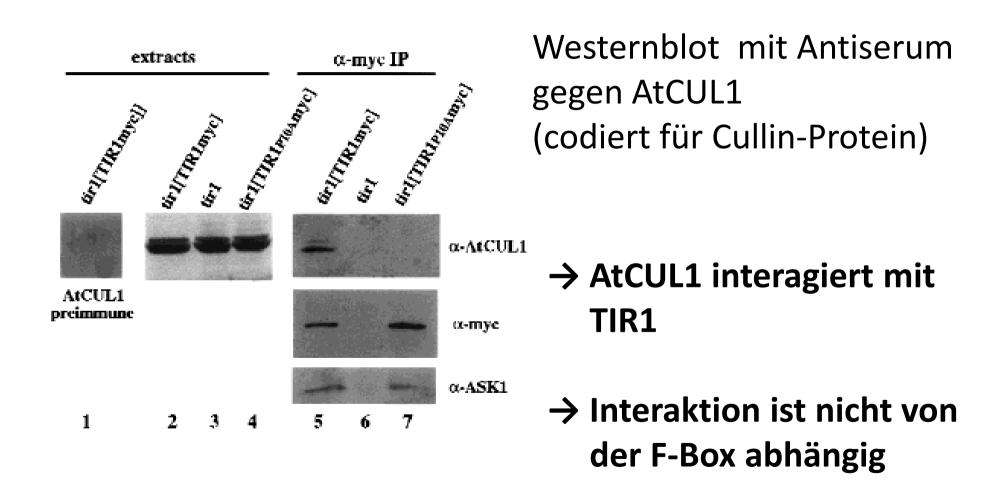
Yeast Two-Hybrid assay


- bei F-Box-Mutation keine Interaktion
 - →F-Box notwendig
- nur geringe Interaktion

 (evtl. noch andere
 Bereiche für Bindung
 wichtig oder z.B. falsche
 Faltung)
- →F-Box alleine reicht für Interaktion nicht aus

Wie interagiert TIR1 mit ASK1 und ASK2 in Pflanzen?

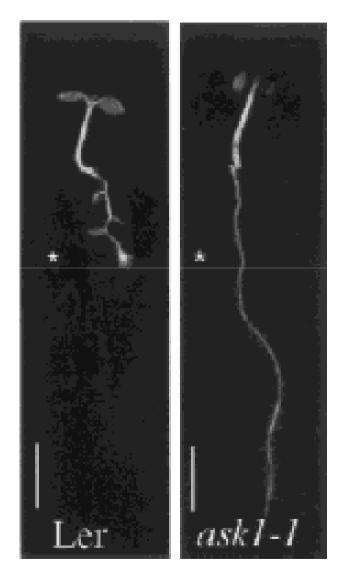
Immunopräcipitation


= Aufkonzentration eines Antigens in einer Lösung mittels eines Antikörpers

Durchführung

- Rohextrakt aus Keimlingen mit TIR1-myc
- Nachweis von TIR1-myc Proteins durch monoklonalen c-myc-Antikörper
- Blotten auf Membran
- Untersuchung mit Antiseren (α -ASK1 und α ASK2)
- Nachweis von ASK1 und ASK2

Identifizierung weiterer Bestandteile des SCF-Komplexes

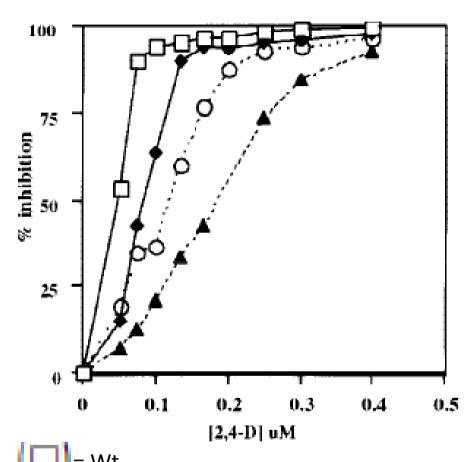

Identifizierung weiterer Bestandteile des SCF-Komplexes

→ in Hefe: keine Interaktion von F-Box –Mutante (TIR1P10A) mit ASK1 und ASK2

→ in Pflanzen: Interaktion trotz defekter F-Box möglich

→ TIR1-Sequenz außerhalb der F-Box auch wichtig für ASK-Bindung + Assoziation mit Skp1

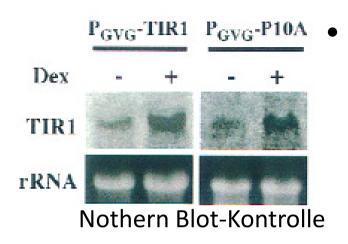
ASK wird für eine normale Auxinantwort benötigt



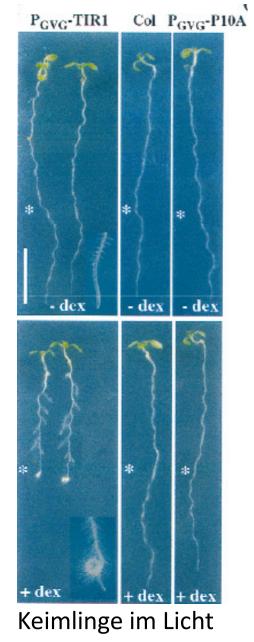
WT auf Auxinmedium,
 kein weiteres Wachstum, da
 zu hohe Auxinkonzentration

 ask1-1-Mutante ist auxinresistent, reagiert wie WT ohne Behandlung mit exogenem Auxin

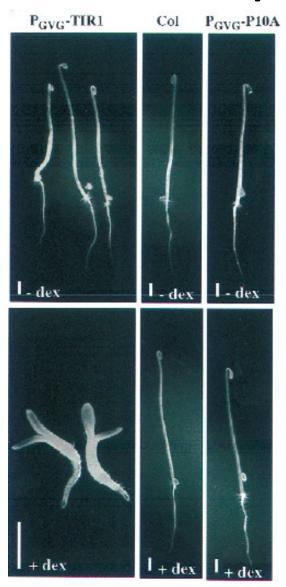
Ler = Wt


ASK wird für eine normale Auxinantwort benötigt

- WT reagier als erstes und am stärksten
- → frühe Inhibierung der Seitenwurzelbildung
- Doppelmutante
 (tir1-1, ask1-1) stärker
 resistent als einzelne
 Mutanten
- →Bestätigung, dass ASK1 und TIR1 interagieren!

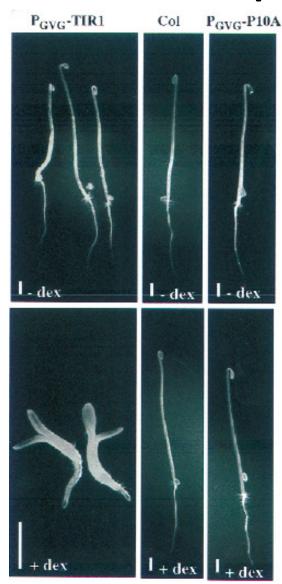

= tir1-1
= ask1-1
= tir1-1, ask1-1

TIR1-Überexpression begünstigt Auxinantwort



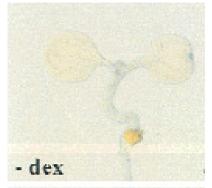
Erzeugung einer gainof-function Mutante
(P_{GVG}TIR1), die bei
Behandlung mit
Dexamethazone TIR1
exprimiert

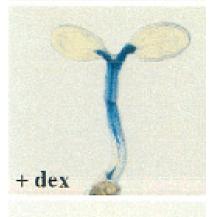
- P_{GVG}TIR1 durch Dexametazone-Behandlung ähnlicher Phänotyp, wie TIR1-Mutante ohne Behandlung
- F-Box-Mutante bei TIR1-Überproduktion gleicher Phänotyp wie WT, kein veränderter Habitus

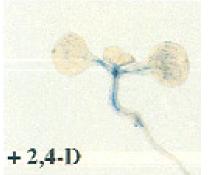

TIR1-Überexpression begünstigt Auxinantwort

Keimlinge im Dunkeln

- Etiolierung auxinabhängig
- P_{GVG}TIR1 stark veränderter Habitus
 - → Deetiolierung und Hemmung des Hypokotylwachstums
- F-Box-Mutante kein verändertes Verhalten durch TIR1-Überexpression

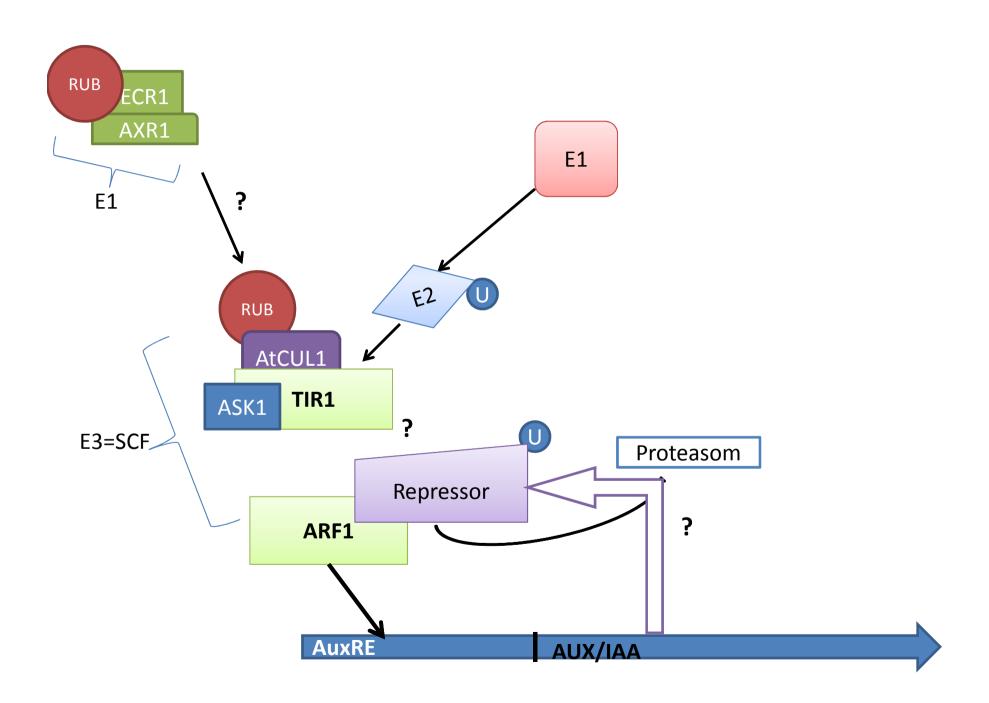

TIR1-Überexpression begünstigt Auxinantwort




Keimlinge im Dunkeln

- → TIR1-Überexpression hat den gleichen Effekt, wie eine Auxinbehandlung vom WT!
- → TIR1 ist konzentrationsabhängige Komponente!
- → Nicht nur TIR1, sondern gesamter SCF-Komplex ist notwendig!

Fördert TIR1-Überexpression wirklich die Auxinsignalgebung?



- Untersuchung von Überexpressionslinien von TIR1 mit gus-Reporter
- TIR1-Überexpression ähnlichen Phänotyp wie Behandlung mit exogenem Auxin
- →allein Menge an TIR1 entscheidend für Ausbildung von Auxin-Phänotyp!
- →TIR1 und SCF-Komplex haben zentrale Rolle im Signalgebungsweg!

Zusammenfassung

- TIR wird in sich teilendem und wachsendem Gewebe exprimiert
- (Northern Blot, in situ-Hybridisierung, gus-Färbung)
- TIR1 wird vor Cyc1At exprimiert (evtl Überwindung der G_2 -Phase bei Zellteilung)
- Interaktion von TIR1 mit ASK1 und ASK2
 - →TIR1 bindet an etwas, das Teil des SCF-Komplexes ist
- In Hefe F-Box und andere TIR1-Komponeten für SCF-Komplex-Bildung notwendig
- Identifizierung von AtCUL1 als Bestandteil des SCF-Komplexes
- F-Box in Pfllanzen nicht für Interaktion mit AtCUL1 notwendig (anders als in Hele)
- TIR1-Überexpression hat den gleichen Effekt, wie eine Auxinbehandlung vom WT!
- TIR1 ist konzentrationsabhängige Komponente!
- Nicht nur TIR1, sondern gesamter SCF-Komplex ist notwendig!
- allein Menge an TIR1 entscheidend für Ausbildung von Auxin-Phänotyp!
- TIR1 und SCF-Komplex haben zentrale Rolle im Signalgebungsweg!

Weitere mögliche Fragestellungen

- Wie reguliert Auxin den AXR1-SCFTIR1-Signalweg
- → Noch kein Rezeptor identifiziert
- -Auxin-Signalweg reguliert Zusammensetzung, Lokalisation oder Aktivität des SCFTIR1
- gibt es eine Kinase, die, wie bei Hefe u. Säugern, SCF − Substratproteine phosphoriliert? → für Abbau durch SCF erkennbar