As in the journal club paper, glucose is the only carbon source.

- Media Used
 - Enology
 - 220 g/L glucose
 - 200 mg/L nitrogen
 - Anaerobic growth factors
 - Brewery
 - 80 g/L glucose
 - 400 mg/L nitrogen
 - No anaerobic growth factors
 - Bakery
 - 80 g/L glucose
 - 400 mg/L nitrogen
 - 150 g/L sorbitol
 - No anaerobic growth factor
- Fermentation Kinetics
 - V = CO₂ production rate (g liter-1 h-1)
 - o h = Lag-phase time
 - Time between inoculation and beginning of CO₂ release
 - AF time → fermentation has ended when CO₂ production rate (V) dropped below 0.05 g liter-1 h-1
 - \circ **V**_{max} = Maximal CO₂ production rate (g liter-1 h-1)
 - CO₂tot = Total amount of CO₂ released at the end of fermentation (g liter-1)
- Population Dynamics

$$\circ N_t = \frac{KN_oe^{rt}}{K + N_o(e^{rt} - 1)}$$

- K = carrying capacity (cells/mL)
- r = intrinsic growth rate (cell division/hr)
- N₊ = population size at time t
- N_o = initial population size
- CO₂ Specific Flux
 - J = CO₂ production rate per cell (g h-1 cell-1)
 - \circ **J**_{max} = maximum CO₂ production rate per cell
- Relationships
 - V_{max} is correlated with K
 - As Vmax increases, K increases
 - $\circ\quad$ No correlation between V_{max} and J_{max}
 - K is correlated with acetic acid, trehalose, and relative nitrogen consumption
 - As K increases, for example, nitrogen consumption increases
 - o K is correlated to biomass
 - No correlation between biomass and cell size
 - Correlation between the mean cell size and J_{max}

- o K is negatively correlated with cell size
 - As cell size increases, K decreases
- Cell size and growth recovery and cell size and trehalose are positively correlated
 - As cell size increases, growth recovery and trehalose increase
- o K is the main component of Vmax variation
- \circ $\;$ The major factors controlling fermentative ability were population parameters (K, $\rm V_{max})$
- \circ As ammonia (mg/L) increases, K (cells/mL) increases, thus V_{max} increases \to ultimately, CO2tot (g liter-1 h-1) will increase