Vol. 21 Suppl. 2 2005, pages ii33-i39
doi: 10.1093/bioinformatics/bti1105

Databases

A query language for biological networks

Ulf Leser

Department for Computer Science, Humboldt-Universitat zu Berlin, Berlin, Germany

ABSTRACT

Motivation: Many areas of modern biology are concerned with the
management, storage, visualization, comparison and analysis of net-
works, but no appropriate query language for such complex data
structures yet exists.

Results: We have designed and implemented the pathway query
language (PQL) for querying large protein interaction or pathway data-
bases. PQL is based on a simple graph data model with extensions
reflecting properties of biological objects. Queries match subgraphs
in the database based on node properties and paths between nodes.
The syntax is easy to learn for anybody familiar with SQL. As animport-
ant feature, a query may require a certain structure in the database to
exist but return a different subgraph. We have tested PQL queries on
networks of up to 16 000 nodes and found it to scale very well.
Availability: The code is available on request from the author.
Contact: leser@informatik.hu-berlin.de

1 INTRODUCTION

Many areasof modern molecular biology deal with datathat arestruc-
tured in the form of networks (graphs). Metabolic pathways signal
transduction pathways and networks of gene regulation are naturally
modeled as graphs. In these graphs, nodes typically represent bio-
logical entities such as enzymes, genes or compounds, and edges
represent some form of interaction or relationship. The availability
of biological network datais currently increasing rapidly, both due
to enhanced experimental techniques, such as two-hybrid systems
(Legrain and Selig, 2000), and due to enhanced prediction methods
(Médlor etal.,, 2002; von Mering et al.,, 2003). Furthermore, largepro-
teininteraction networks are extracted from publicationsbased either
on natural-language processing (Hakenberg et al., 2005; Marcotte
et al,, 2001) or on statistical properties (Jenssen et al., 2001).

In consequence, a large number of databases have emerged that
collect and manage data on the interactions of biological entities
(Bader et al., 2003; Hermjakob et al., 2004; Joshi-Tope et al., 2003;
Kanehisa et al, 2004; Karp et al, 2002; Krishnamurthy et al,
2003; Salwinski et al, 2004). At the time of writing, an up-to-
date list of pathway data resources lists no fewer than 171 entries
(http://chbio.mskcc.org/prl). At the same time, the networks under
analysis are becoming larger and larger. Although isolated path-
ways rarely have more than a hundred components and can thus
be examined manually, many of the network resources described
above are far higger. At the time of writing, KEGG (Kanehisa
et al, 2004) has >20000 pathway maps, and the BIND data-
base (Bader et al,, 2003) stores >147 000 protein interactions. The
largest current network is probably the PubGene database (Jenssen
et al,, 2001), containing >6 million associations extracted from the
literature.

Clearly, users can review only small fractions of such networks
at atime. However, users are highly specific about the information
they are interested in. Typical queries against a pathway database
include

e Find all reactionsinvolving a certain substance.

e Find dl paths, i.e. chains of reactions, connecting two given
substances.

e Find the shortest path between two substances that includes
athird substance.

o Given a set of molecules, extract the subgraph which contains
all these elements and has the least number of nodes.

Despitethenecessity for complex queries, current pathway databases
support only very simple queries. Mostly, searching the database is
restricted to full-text search of node names; sometimesit isalso pos-
sibleto search all paths between two given nodes. It isnot possibleto
formulate conditions describing complex node and path patterns or
to use conditions including functional annotation of biological entit-
ies. We believe that there is a strong need for a declarative language
to specify clearly and succinctly queries on biological networks. In
this paper, we propose such a language: PQL, the pathway query
language.

PQL isadeclarativelanguagewhose syntax issimilar to SQL.. PQL
queries operate on asimple graph datamodel that isageneralization
of many more specific data models; therefore, we believe that PQL
can be very easily adopted for abroad range of existing systems. The
result of aPQL query isitself a graph, which offers possibilities for
nesting and composing PQL queries. Despiteitssyntactic simplicity,
PQL is apowerful language capable of expressing graph isomorph-
ism problems. Implementing PQL on top of arelational databaseis
quite straightforward, which eases its porting to different systems
and databases. We describe an implementation based on the com-
mercia Oracle V9.2 database system. However, PQL is not capable
of very complex graph operations such as the computation of span-
ning trees. In our understanding, such analysis should be confined to
specialized applications using highly tuned data structures.

We think that this proposal can have many positive influences on
thefield:

e Talking about alanguageimplicitly forcesoneto think about the
requirements that exist for querying pathways. This discussion
apparently has not yet started in the community, despite many
papers mentioning various types of queries (see Section 4).

e A properly defined language can be used by many in pathway
databases, reducing the amount of duplicate work. Users need
to learn only one language and can use this language on their
favorite database.

© The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org ii33

http://cbio.mskcc.org/prl

U.Leser

o A query language acts as an interface between applications and
databases. PQL isthusaproposal for an interface between path-
way applications and pathway databases. Having a clear inter-
face fosters the devel opment of database-independent methods
for pathway analysis. Network algorithms, user interfaces and
visualization toolsmay usethislanguage and thusbecome more
easily ported to other databases.

o Having aclear semantics of queries helpsto integrate datafrom
heterogeneous repositories since the same query can be shipped
to different databases.

The rest of this paper is organized as follows. Section 2 defines
the data model that PQL is based upon. Section 3 defines the syn-
tax and semantics of PQL and is the heart of this paper. Section 4
discusses a number of illustrative queries taken from publications
on pathway databases and systems and describes how (if at all)
they can be expressed in PQL. Section 5 sketches our prototyp-
ical implementation. Section 6 discusses related work. Section 7
concludes.

We omit formal definitions for brevity. These, together with more
query examples and an extensive section on related work, can be
found in Leser (2005).

2 PQL DATA MODEL

The basic PQL data model is a graph G with a set of nodes and
directed edges. A node is either an interaction or a molecule. The
graph need not be connected; i.e. it may fall into several unconnec-
ted subgraphs or even isolated nodes. The biological interpretation
of such agraphisthefollowing. G represents anetwork of molecules
and their interactions. Mol ecul es represent biochemical entities such
as proteins, metabolites or genes. Interaction nodes may symbol-
ize achemical reaction with products and substrates, the formation
of acompound from different proteins or the expression of a gene.
Edges may connect (1) amoleculeto an interaction, meaning that the
moleculeisnecessary for theinteraction to happen; (2) aninteraction
to a molecule, meaning that the molecule is a product of the inter-
action; (3) aninteraction to an interaction. The latter situation arises
when the first interaction influences the second, such as an enzymes
inhibiting the catalytic effect of another enzyme. Interactions may
involve any number of molecules either as input or as output, and
molecules may be connected to any number of interactions.

The PQL datamodel issimilar to the modelsused in pathway data-
bases such as aMAZE (van Helden et al., 2000), KEGG (Kanehisa
et al,, 2004) and Reactome (Joshi-Tope et al., 2003). We give two
examples of how biological data are represented in our model. First,
consider the pyruvate metabolism pathway. Figure 1 is the original
pathway from KEGG. Figure 2 shows asmall fraction of the KEGG
pathway in the PQL model. Enzymes and compounds are represen-
ted as molecules, and each arrow is transformed into an interaction
with products and substrates.

Second, consider the leucine biosynthesis in yeast. Figure 3
is this pathway as represented in the aMAZE database. Here,
names without surrounding rectangles represents metabolites, and
rectangles represent reactions, with areaction ID and the EC num-
ber of the enzyme catalyzing thereaction. In our model, enzymesand
metabolites are molecules and reactions are interactions. Replacing
each rectangle with anode for the reaction connected to one node for

Fig. 1. Pyruvate metabolism from KEGG.

[Eca.2.3.3] Glycerone-P|
o il
[Heact\on }——| Methvlglyoxal}.
’,{ Reaction [Reachon]
/// -
FC1.1121] [Lactaldenyde |
T
Reaction
EC1.1177| [Propane-1,2-diol]
T — [Hear:tmn"

Reaction

L-Lactaldehyde

Fig. 2. Representation of thereactionsin the upper right corner of the KEGG
pathway using the PQL data model. Molecules are boxes, interactions are
rounded boxes.

each enzyme trandlates the aM aze representation into the PQL data
model (Fig. 4).

The nodesin a PQL database are, thus, biological entities or bio-
chemical interactions. These need to be described further to allow
biological rather than purely abstract queries. The PQL data model
therefore definesasmall set of properties of nodes and edges. Nodes,
i.e. moleculesand interactions, are associated with one or moretypes
(e.g. ‘gene’, ‘enzyme’, ‘inhibition’, ‘catalysis') and functions. The
vocabulary of all typesand functionsismodeled asadirected acyclic
graph of concepts, i.e. in the same way asthe Gene Ontology. Nodes
further have aunique ID and a name. Nodes can be queried on their
name or their annotation using the operators | SA and HASFUNC.

Many extensions to this model are possible. For instance, interac-
tions could be annotated with kinetic parameters, molecules could

ii34

A query language for biological networks

2-1sopropylmalate

RO3965*/4.2.1.33

2 -lsopropylmaleate

RO4D001%/4.2.1.33%

L

3-lsopropylmalate

MNAD -+

[Roa426 1.1.1.ssL‘/
MADH

b
3-Carboxy-4-methyl-Z-oxopentanoate

IRDIESZ D,D.D.DI\
Co2
L

4-Methyl-2-oxopentanocate

L -Glutamate
IRUIDQOEZ.E.L‘IZ i2.6. 1.5H
=
¥

2-Oxoaglutarate

L-Leucine

Fig. 3. Yeast leucine biosynthesis (only partly shown) taken from aMaze.

[EC1.1.1.85] [3-Isopropylmalate| [NAD+]

L

(R04426)
NADH

A

3-Carboxy-4-methyl-2-oxopentanoate |

r ‘r—.
|RO1652 \
coz
"
I 4-Methyl-2-oxopentanoate |
“L-Glulamale-l
EC1,6.1.6|-\ — F—

{ R01652 |
2-Oxoglutarate

Fig. 4. Lower part of theleucine biosynthesisrepresented in the PQL model.
Molecules are boxes, interactions are rounded boxes.

be annotated with links to external databases and interactions could
be annotated with the cellular compartment they occur in. However,
the current focus of PQL is on matching structures in networks. We
|eave those extensions to future work.

3 PATHWAY QUERY LANGUAGE

The purpose of PQL is to extract subgraphs with certain properties
from a graph. The power of the language is determined by the types
of subgraph propertiesit can express. Imagine a graph with n nodes
and m edges. For instance, a smple query could extract all nodes
with a certain name, which can be implemented in O(log(n)) as a
binary search over a sorted list of all node labels. A more complex
query could extract the shortest path from a fixed node n; to afixed
noden», which for dense graphsis possiblein O(r?) using Dijkstra’s
a gorithm. Other complex queriescould ask for theminimal spanning
tree of the graph, which requires O(m = log(n)).

PQL alowsfor medium complexity queries. Moreprecisely, it can
extract subgraphsthat are characterized by node and edge properties
and by the existence and properties of the paths they contain. Thus,
PQL goes beyond the search options available in most interaction
databases but is not capable of computing the properties of the entire
graph. This restriction has the advantage that PQL queries can be
evaluated efficiently.

We introduce PQL in four steps. The first three assume cycle-
free graphs. Section 3.1 discusses the basic syntax and semantics
of PQL. We introduce expressions describing conditions on paths
in Section 3.2. Section 3.3 describes how the subgraph returned by
a PQL query is determined. Finaly, in Section 3.4 we explain the
semantics of PQL queriesin graphs containing cycles.

3.1 PQL basic syntax and semantics

PQL queries resemble the syntax of SQL, though the semantics of
queriesis quite different. Like an SQL query, aPQL query hasthree
parts—a SELECT clause, a FROM clause and a WHERE clause.
Like SQL, where queries have relations asinput and generate arela-
tion as output, PQL queries are evaluated on a graph and result in
agraph. The general syntax of PQL isasfollows:

SELECT subgraph-specification
FROM node-vari abl es
VWHERE node- condi ti on-set

Query evaluation binds node variables to nodes of the graph such
that all node-conditionsinthe WHERE clauseevaluateto TRUE. The
query result is constructed from these variable bindings according to
the subgraph-specification of the SELECT clause. Note that binding
of node variables, which essentially means matching parts of the
graph, does not directly determine the subgraph returned. For now,
we assume that the SELECT clause isa‘*’ and returns all nodes
from the subgraph determined by the FROM and WHERE clause.
Consider thepathway showninFigure4. Thefollowing query returns
agraph consisting of the two nodes ‘3- | sopr opyl mal at e’ and
‘EC1. 1.1.85":

SELECT *

FROM A, B

WHERE A. name=' 3- 1 sopropyl mal ate’ AND
B. nane=' ECL1. 1. 1. 85’

The semantics of a PQL query is intuitively defined as follows
(for detail s see Leser (2005)). Query eval uation considers each node-
variableinthe FROM clause. For each of these variables, all possible
assignments of a variable to nodes of the graph are determined for
which the conditions of the WHERE clause evaluateto TRUE. Node
variablesare equally assigned to moleculesand interactions. Onceall

i35

U.Leser

bindings for each node variable have been computed, the Cartesian
product of these sets is built. All instances are removed for which
the entire WHERE clause evaluates to FAL SE, thus enforcing con-
ditionsthat include more than one node variable (such asacondition
A. nane=B. nane). Next, all distinct assignments (node variables
to database nodes) from the remaining elements of the Cartesian
product are combined to form the so-called match graph. Thus, the
set of database nodes in the match graph is always a subset of the
nodes of the underlying database. The match graph does not con-
tain any edges (see Section 3.3). Consider the following query and
Figure 4

SELECT *
FROM A, B
WHERE A. nanme=' R04426° AND
(B. name=' NAD+' OR B. name='CQ2’)

It returns the nodes ‘R04426’, ‘NAD+’, and ‘CO2’, since only the
bindings (A—' R04426’ , B—' NAD+) and (A—' R04426’ ,
B—’' CO2’") fulfill the conditions in the WHERE clause.

3.2 Path expressions

We enrich the language with possibilitiesto match subgraphsin PQL
by using path expressions. A path isaset of nodes such that between
each pair of consecutive nodes an edge exists. Paths must be acyclic
for now. The length of a path is the number of edges it contains.
We introduce path expression by an example using the network of
Figure 2:

SELECT *

FROM B, C, D

WHERE D. name=' L- Lact al dehyde’ AND
B I SA ' Enzyme’ AND B[—2] D AND
B[—*]C —*] D AND
C. nanme=' Lact al dehyde’

A condition of the form ‘X[—n] Y’, with X and Y being node
variables, means that there must exist a path between the bindings
of X and Y inthe underlying database. This path can have arbitrary
lengthif nis'*’ and must be of length » if n isanumber. Hence, the
above query matches a subgraph of three nodes B, C and D such that
D hasnamelL- Lact al dehyde, B isan enzyme, thereexistsapath
of length 2 between node B and D and there exists a path of arbitrary
length from B through C to D, where C must be Lact al dehyde.
Thus, the query finds all instances of the graph sketched in Figure 5.

Path expressions are existential conditions. They require that cer-
tain paths exist between the nodes assigned to node variables. They
do not require that all such paths adhere to the stated conditions.
Each path expression considers a path between only two nodes, but
since aPQL query may contain arbitrary many path expressions that
may share nodevariables, many typesof subgraphs can be expressed.
However, path expressions are not capable of describing all possible
subgraphs. For instance, we cannot state a condition on the shortest
path between two nodes, and we cannot statethat different paths have
the same length.

3.3 The SELECT clause—specifying the output

So far we have assumed that the SELECT clause is simply a **’,
thus returning the set of al bindings of node variables. This is not
sufficient, since we are interested in finding subgraphs and not just

 BISAENZyme resssesssseseess

< C=Lactaldehyde
—
length=* *»,, length=*
- e = g _..;'\ —
+__ D=L-Lactaldehyde >

length=2

Fig. 5. Graphical representation of the query given in the text. Dashed lines
represent path expressions.

s !
| #—% Underlying
& \ \ database graph
.
n. Match graph of the SELECT B[-1]
A query. Four nodes FROM A, B, C, D
. - are matched WHERE A[-1]B[-1]€[-1]D
c
/-_,x\' Result graph of
| A .\, SELECT B[-1]
| -) query. Nodes are FROM A, B, C, D
7\) | s oo e et

Fig. 6. Steps during the evaluation of a PQL query.

isolated nodes. These subgraphs may stretch further than the nodes
in the match graph, for instance including the vicinity of a matched
node up to a certain range. Furthermore, a query often only requires
some nodes to exist but does require the concrete bindings to be
retrieved.

To fulfill these requirements, PQL defines a variety of different
expressions in the SELECT clause, called select functions. Select
functions determine how the result graph, i.e. the query result,
is derived from the match graph. The match graph depends on
the underlying database, the node variables and the conditions in
the WHERE clause; select functions determine the result graph
by adding nodes and edges to the match graph or by removing
uninteresting bindings (Fig. 6).

PQL defines the following select functions:

e Addition of all (‘*") variable bindings or only bindings of
specific variables.

e Addition of paths between bindings of any two node variables,
including fixed-length paths, shortest path and longest path.

e Addition of the vicinity around the bindings of a variable with
given radius.

For instance, the following query returns the vicinity of radius 2
(@l nodes that can be reached from a node or that reach that node
by a path of length a most 2) around all bindings of A and all
paths between bindings of A and bindings of B:

SELECT Al -2], A[—*]B

FROM A, B

WHERE Al —<5] B AND A | SA 'enzyne’ AND
B. nane=" Pr opane- 1, 2-di ol

ii36

A query language for biological networks

Note that path expressions in the WHERE clause are existentialy
quantified, whereas path expressionsin the SELECT clause require
that all existing paths are included in the result graph.

3.4 Networkswith cycles

Sofar wehave assumed cycle-freegraphsand hencecycle-freepaths.
However, biological networks often contain cycles, such as feed-
back and feedforward |oops (Yeger-Lotem et al., 2004).% Infact, any
reversible reaction introduces acycle.

PQL allows cycles in graphs, but queries are evaluated only on
cycle-free paths. There are three reasons for this. First, if paths may
contain cycles, the notion of ‘all paths’ between two nodes becomes
undefined, as there may be infinitely many. Second, in any network
with too large a number of cycles, many PQL queries containing
select functions with paths would always return an unreasonably
large fraction of the network. With an increasing number of nodes
involved in at least one cycle, chances rise that a path between any
pair of nodes touches a node that is part of acycle. In this case, the
cycle and al its constituents immediately become part of the result,
although it is probably irrelevant for the query at hand. Third, cycle-
free paths are more efficient to deal with during the computation of
aquery result.

However, demanding pathsto be cycle-free does not constrain the
power of PQL (Leser, 2005). The only case in which this restriction
affects PQL queriesisqueriesfor loops, i.e. expressions of the form
‘Al —*] A’ in the SELECT or WHERE clause. Such expressions
always return an empty answer. However, it is easy to reformu-
late them into the semantically equivalent form ‘Al —*] B[—*] A',
which is perfectly computablein PQL.

4 EXEMPLARY BIOLOGICAL QUERIES

To evaluate whether or not PQL is sufficiently expressive for bio-
logical questions, we have analyzed a number of publications on
metabolic databases with respect to the types of queriesthey list as
being crucial. In this section, we describe queries taken from those
publicationsand givetheir equivalent in PQL, if it exists. Thisshould
help the reader to better understand the strengths and limitations of
PQL and serves as a guideline for future extensions. Queries are
cited from van Helden et al. (2000), Karp et al. (2002) and Schaefer
(2004).

Inhibition C

Fig. 7. Enzymes whose catalyzed reaction isinhibited by ATP.

SELECT Al —*]B[—*] A

FROM A B
WHERE B. nane=' Met hi oni ne’ AND
Al —*]B[—*]A

‘The user specifies a set of hodesand prompts the system to extract
the. .. sub-graphs that interconnect each pair of seed nodes via the

smallest number af. . links!

Assuming adirect graph as the underlying data structure, PQL is
capable of such queriesif the number of seed nodesisfixed at query
time. Notethat the query doesnot ask for theminimal spanning tree of
the set of nodes, which cannot be computed by a PQL query (though
the use of PQL can considerably easy the computation). Assume we
have four seed nodes A, B, C and D. Then, the question would be
answered by the following query (‘ Al —s] B’ computes the shortest
path between nodes A and B):

SELECT Al —-s]B, Al —-s]C, Al —-s]D, B[-s]C,
B[—-s]D, —-s]D

FROM A B, C D

WHERE Al —*] B[—*] —*]D

‘Find all processes that lead from node A to node B in less than Max

steps, and more than Min steps!

This query cannot readily be expressed in PQL because it is not
possible to specify in one query both maximum (N) and minimum
(M) lengths of paths between two nodes. The following query does
not compute the desired result:

SELECT Al —*] B
FROM A, B

‘Find all genes whose expression is directly or indirectly affected bA\HERE Al —>M B AND Al —<N| B

a given compound!

Ignoring the difficulty in defined the intented meaning of theword
‘affected’, the question can be answered asfollows (assumethegiven
compound isL- @ ut amat e):

SELECT B

FROM A B

WHERE A. nanme=' L-d utamate’ AND
Al —*]1B and B | SA ‘ gene’

Instead, the query computes al nodes A and B for which there
exists at least one path between them longer than M and at least one
path shorter than N. Having multiple conditions on paths is part of
future work on PQL.

‘Find all enzymes for which ATP is an inhibitor’

The following PQL query finds the desired enzymes? (see Fig. 7
for illustration):

SELECT A

‘In the complete set of metabolic reactions, find all feedback loopgROM A, B, C, D

including a given compound.

Thisis answered by the following PQL query (assume the given
compound is Met hi oni ne):

INote that all motifs described in this reference can be found in a pathway
database using asingle PQL query.

WHERE A | SA ‘enzyme’ AND
D. nane=' ATP AND
Al -1]B AND D{ —1]] —1] B AND

2Since enzymes are usually used synonymously for the reactions they cata-
lyze, the original formulation is slightly ambiguous. We assume that we are
looking for reactions catalyzed by an enzyme and inhibited by ATP.

ii37

U.Leser

B I SA ‘reaction’ AND
CISA “inhibition’

‘Retrieval of all interactions that involve any of a set of molecular

species as immediate participant’

Such a query can easily be expressed in PQL using the vicinity
operation with aradius of 2 (radius 1 retrieves only interactions not
the interacting molecules).

‘Retrieval of a connected graph that includes a set of specifie

interactions’

Such queries cannot be computed using PQL, because the order of
elementsin a path expression is fixed with the query. Again, having
more elaborate path conditionsis part of future work on PQL.

5 IMPLEMENTATION OF PQL

We have implemented PQL on top of Oracle Server V9.2.3 The
implementation consists of three parts. (1) a model for stor-
ing the PQL data model, (2) procedures performing certain pre-
computations on the datato improvethe performance of PQL queries
and (3) acompiler for PQL queries.

A PQL query is compiled into a PL/SQL stored procedure. This
procedure finds all possible bindings given the conditions of the
query and computes the result graph using the select functions in
the SELECT clause. Since the result of a PQL query is a graph, it
cannot be simply returned as the result of the procedure. We could
encode the result into a single table and use a table function, but
tablefunctionsare currently supported only by commercial database
systems, thus impeding the portability of PQL. Therefore, the result
graphisstoredin two tables. If PQL querieswere used in client pro-
grams, we envisage that these tables would be read and turned into
agraph representation by the middleware.

Therelational datamodel used in our PQL implementationisvery
simple. Nodes are stored in the Node table, edges in the Edge
table. An edge is represented by the foreign keys of the two nodes
it connects. Annotations are stored in the Functi on and Type
tables. Since both the type and the function hierarchies are DAGs,
the structure of the conceptsis encoded in two separate tables.

Evaluating a PQL query has two phases. computing the match
graph and computing the result graph. Computing the match graph
conceptually requires that assignments of node variables to nodes
are enumerated and tested. We push as much of thiswork as possible
into the database, i.e. express it using SQL operations. Conditions
on node names and node IDs are efficiently supported by any rela-
tiona database, e.g. by using indices. Therefore, the efficiency
of computing a match graph is dominated by two factors: (1) the
cost of evaluating path expressions and (2) the cost of comput-
ing the ISA and HASFUNC operations, i.e. traversing a DAG. To
speed up these operations, the PQL compiler assumes some helper
tables to be filled before executing the query. With their help, path
expressions and DAG operations can be answered in approximately
logarithmic time.

The helper tables store all cycle-free pathsthat exist in the graphs.
Not only the existence of a path is stored—thiswould speed up only

3At the time of writing, the implementation was missing the following fea-
tures. (1) Only AND may be used in the WHERE clause. (2) ISA and
HASFUNC are not implemented. (3) Complex path expressions are not
recognized by the parser.

path expressions of the form ‘Al —*] B'—but also its length and
all nodes it contains. Using this data, path expressions of the form
‘Al —>3] B’ and‘A[—4] B’ can be evaluated using asingle lookup.
Further, this information helps to compute the select functions for
shortest path and vicinity. Computing all cycle-free pathsisachieved
by iteratively computing paths of increasing length. Thisis a costly
operation, but computing all pathsisnecessary only once, and current
database technology makes it feasible even for large graphs. For
jnstance, our current implementation computes all ~208 000 paths

etween the ~16 000 nodes and ~23 000 edges of the Gene Ontology
(GeneOntology Consortium, 2001) in ~5 min on alaptop. However,
we cannot possibly compute all pathsin anetwork of all interactions
between genes and proteins extracted from Medline, which is one of
our envisaged applications. For such graphs, future versions of PQL
must use recursive or hybrid methods for path enumerations.

6 RELATED WORK

To the best of our knowledge, thisisthe first suggestion for a query
language directly targeted at biological networks. None of the path-
way and interaction databases we have examined so far has a query
language. BIND (Bader et al., 2003), DIP (Salwinski et al., 2004)
and IntAct (Hermjakob et al,, 2004) have only keyword search and
no notion of paths or subgraphs. Reactome (Joshi-Tope et al.,, 2003)
and Kinase Pathway Database (Koike et al., 2003) have an additional
module for finding paths between two given nodes. In both cases it
is not clear whether or not paths must lie within one pathway or
may cross pathways. Sohler et al. (2004) describe the TopNet sys-
tem for pathway visualization and analysis. The authors mention an
XML-based pathway query language but give too few details for a
comparison.

The pathway database system (Krishnamurthy et al., 2003) is a
complete system for modeling, visualizing and editing pathways. It
is based on hyper-graphs, i.e. edges are reactions connecting sets of
nodes (molecules). The datamodel isvery rich, including pathways,
species, reaction properties etc. The system supports canned quer-
ies for simple selection based on node or edge properties, simple
paths (only two ends) and neighborhood queries. Queries are always
evaluated in memory; i.e. the entire database is loaded into main
memory at startup. A similar system is PathDB, built around the
ISY'S system for application integration in the life sciences (Siepel
et al, 2001). Queries are parameterized functions that do not go
beyond the capabilities of the previously described system. EcoCyc
(Karp et al, 2002) is a pathway databases based on a frame-based
knowledge representation and reasoning systems. Arbitrary queries
may be programmed in LISP, PERL or Java, but no query language
is provided.

Graph databases have been an area of research in the database
community for some years. Giiting (1994) proposed a data model
and query language for graph data in spatial applications. The data
model isan extension of an object-oriented model with special class
types for links and paths. However, the query language was defined
only in fragments and no implementation is available. GraphLog
(Consens and Mendelzon, 1990) is a visual graph query language
whose expressionsare trand ated into rules of aDATAL OG program.
GraphLog is considerably more expressive than PQL. However,
GraphLog returns only tuples of matched nodes, not graphs, and
cannot be implemented easily on top of relational databases. Also,
some commercial databases support network-typedata. For instance,

ii38

A query language for biological networks

Oracle hasrecently released an extender for Network Data Manage-
ment as part of the spatial extender in version 10g (Oracle Corp.,
2003). Withthisextender, networksof varioustypescan be generated
and managed. Access is either through a PL/SQL or a Java API.
However, there is no notion of network queries. In Das et al. (2004),
Oracle reports on an experimental system for querying ontologies
(read: DAGs). Similar to PQL, the implementation is based on
the pre-computed transitive closure of the graph, but it is unclear
whether Oracle's approach can be extended to full graphs. Finaly,
there has been extensive work in the area of query languages for
semi-structured data and XML [see e.g. Buneman (1997); the most
prominent language today is XQuery], but these languages operate
only on trees.

Our current focus for PQL is on the definition of an appropri-
ate, expressive and simple query language for querying biological
networks. Not much effort has yet been invested into an efficient
implementation. For instance, faster algorithms are known for com-
puting the transitive closure of a graph (Agrawa and Jagadish,
1987). However, onemust be careful whether or not these algorithms
can treat cyclic paths and really compute al paths, not only all
connections.

7 CONCLUSIONS

We have described PQL, a language for querying biological net-
works. The power of PQL comes from mainly three sources: the
adoption of abiological data model, the ability to define conditions
on paths in a query and a variety of functions to give a detailed
specification of the desired result constructed from the matching
subgraphs.

PQL’s syntax is derived from SQL because we believe that many
programmers are familiar with this language. However, PQL has a
different semantics and allows queries to be formulated in a concise
way that would require extensive programming using only SQL. A
drawback of defining anew languageisthat mixing of SQL and PQL
inasingle query is not possible.

Our analysis of requirements for such alanguage, based on allit-
erature review and presented in Section 4, has shown that there is
a strong need to define more clearly the exact nature of a biolo-
gica question against a biological network than is possible with
current languages and that PQL needs further extensionsto fulfill all
such needs. These extensions include named paths, nesting of PQL
queries and the explicit modeling of pathways, organisms and tis-
sues. Also, many interesting queries require that certain conditions
hold on all elements of a path, such as a query asking for al paths
between two enzymes that do not contain a certain third enzyme. To
enable such conditions, PQL must be extended to include path bind-
ings in addition to the currently available node bindings. Ancther
line of necessary improvement is an efficient and complete imple-
mentation of PQL . The current implementation should be considered
a prototype to support language definition. Specifically, it must be
equipped with agraphical interface for query specification and result
visualization.

We hope that PQL isthe start of acommon effort to develop query
languages for biological network data. Repeating our plea from the
introduction, we think that such a discussion is badly needed to
support the exchange of network data, to allow for a concise spe-
cification of data to be extracted from a pathway database and to
reduce duplication of work in different systems. We believe that a

declarative query language should be a natural component of any
pathway database.

ACKNOWLEDGEMENTS

Thiswork issupported by BMBF grant no. 0312705B (Berlin Center
for Genome-Based Bioinformatics). Wethank Silke Trissl and Lukas
Faulstich for many fruitful discussions.

Conflict of Interestnone declared.

REFERENCES

Agrawal,R. and Jagadish,H.V. (1987) Direct agorithms for computing the transitive
closure of database relations. In Proceedings of the 13th Conference on Very Large
DatabasesBrighton, UK, pp. 255-266.

Bader,G.D. et al. (2003) BIND: the biomolecular interaction network database. Nucleic
Acids Res.31, 248-250.

Buneman,P. (1997) Semistructured Data. In Proceedings of the 16th ACM Symposium
on Principles of Database Systerisiscon, AZ, pp. 117-121.

Consens,M.P. and Mendelzon,A.O. (1990) GraphLog: a visua formalism for red life
recursion. In Proceedings of the ACM Symposium on Principles of Database Systems
Nashville, TN, pp. 404-416.

Das,S., Chong,E., Eadon,G. and Srinivasan,J. (2004) Supporting ontology-based
semantic matchingin RDBMS. In Proceedings of the 30th Conference on Very Large
Databases (VLDBO04)oronto, Canada, pp. 1054-1065.

GeneOntology Consortium. (2001). Creating the gene ontology resource: design and
implementation. Genome Regsl1, 1425-1433.

Guting,R.H. (1994) GraphDB: modeling and querying graphs in databases. In Pro-
ceedings of the 20th Conference on Very Large DatahaSestiago de Chile,
pp. 297-308.

Hakenberg,J., Plake,C. and Leser,U. (2005) Optimizing syntax patterns for discover-
ing protein—protein interactions. In Proceedings of the ACM Symposium on Applied
Computing Santa Fe, NM, Bioinformatics Track 1, pp. 195-201.

Hermjakob,H. et al. (2004) IntAct: an open source molecular interaction database.
Nucleic Acids Res32 (Database issue), D452-D455.

Jenssen,T.K. et al. (2001) A literature network of human genes for high-throughput
analysis of gene expression. Nat. Genet28, 21-28.

Joshi-Tope,G. et al. (2003) The Genome Knowledgebase: a resource for biologists and
bioinformaticists. Cold Spring Harb. Symp. Quant. Bip68, 237-243.

Kanehisa M. et al. (2004) The KEGG resource for deciphering the genome. Nucleic
Acids Res.32 (Database issue), D277-D280.

Karp,PD. et al. (2002) The EcoCyc database. Nucleic Acids Res30, 56-58.

Koike,A. et al. (2003) Kinase pathway database: an integrated protein-kinase and NL P-
based protein-interaction resource. Genome Regsl3, 1231-1243.

Krishnamurthy,L. et al. (2003) Pathways database system: an integrated system for
biological pathways. Bioinformatics 19, 930-937.

Legrain,P. and Selig,L . (2000) Genome-wide protein interaction maps using two-hybrid
systems. FEBS Lett. 480, 32-36.

Leser,U. (2005). A query language for biological networks. Technischer Report 187,
Department for Computer Science, Humboldt-Universitét Berlin.

Marcotte,E.M. et al. (2001) Mining literature for protein—protein interactions. Bioin-
formatics 17, 359-363.

Mellor,J.C. et al. (2002) Predictome: a database of putative functional links between
proteins. Nucleic Acids Res30, 306-309.

Oracle Corp. (2003) Oracle Database 10g Network Data Model.

Salwinski,L. et al. (2004) The database of interacting proteins: 2004 update. Nucleic
Acids Res.32 (Database issue) D449-D451.

Schaefer,C.F. (2004) Pathway databases. Ann. N. Y. Acad. S¢i1020, 77-91.

Siepel,A. et al. (2001) ISYS: a decentralized, component-based approach to the
integration of heterogeneous bioinformatics resources. Bioinformatics 17, 83-94.

Sohler,F. et al. (2004) New methods for joint analysis of biological networks and
expression data. Bioinformatics 20, 1517-1521.

van Helden,J. et al. (2000) Representing and analysing molecular and cellular function
using the computer. Biol. Chem, 381, 921-935.

von Mering,C. et al. (2003) STRING: a database of predicted functional associations
between proteins. Nucleic Acids Res31, 258-261.

Yeger-Lotem,E. et al. (2004) Network motifs in integrated cellular networks of
transcription-regulation and protein—protein interaction. Proc. Natl Acad. Sci. USA
101, 5934-5939.

ii39

