
BIOINFORMATICS Vol. 21 Suppl. 2 2005, pages ii33–ii39
doi:10.1093/bioinformatics/bti1105

Databases

A query language for biological networks
Ulf Leser
Department for Computer Science, Humboldt-Universität zu Berlin, Berlin, Germany

ABSTRACT
Motivation: Many areas of modern biology are concerned with the
management, storage, visualization, comparison and analysis of net-
works, but no appropriate query language for such complex data
structures yet exists.
Results: We have designed and implemented the pathway query
language (PQL) for querying large protein interaction or pathway data-
bases. PQL is based on a simple graph data model with extensions
reflecting properties of biological objects. Queries match subgraphs
in the database based on node properties and paths between nodes.
The syntax is easy to learn for anybody familiar with SQL. As an import-
ant feature, a query may require a certain structure in the database to
exist but return a different subgraph. We have tested PQL queries on
networks of up to 16 000 nodes and found it to scale very well.
Availability: The code is available on request from the author.
Contact: leser@informatik.hu-berlin.de

1 INTRODUCTION
Many areas of modern molecular biology deal with data that are struc-
tured in the form of networks (graphs). Metabolic pathways signal
transduction pathways and networks of gene regulation are naturally
modeled as graphs. In these graphs, nodes typically represent bio-
logical entities such as enzymes, genes or compounds, and edges
represent some form of interaction or relationship. The availability
of biological network data is currently increasing rapidly, both due
to enhanced experimental techniques, such as two-hybrid systems
(Legrain and Selig, 2000), and due to enhanced prediction methods
(Mellor et al., 2002; von Mering et al., 2003). Furthermore, large pro-
tein interaction networks are extracted from publications based either
on natural-language processing (Hakenberg et al., 2005; Marcotte
et al., 2001) or on statistical properties (Jenssen et al., 2001).

In consequence, a large number of databases have emerged that
collect and manage data on the interactions of biological entities
(Bader et al., 2003; Hermjakob et al., 2004; Joshi-Tope et al., 2003;
Kanehisa et al., 2004; Karp et al., 2002; Krishnamurthy et al.,
2003; Salwinski et al., 2004). At the time of writing, an up-to-
date list of pathway data resources lists no fewer than 171 entries
(http://cbio.mskcc.org/prl). At the same time, the networks under
analysis are becoming larger and larger. Although isolated path-
ways rarely have more than a hundred components and can thus
be examined manually, many of the network resources described
above are far bigger. At the time of writing, KEGG (Kanehisa
et al., 2004) has >20 000 pathway maps, and the BIND data-
base (Bader et al., 2003) stores >147 000 protein interactions. The
largest current network is probably the PubGene database (Jenssen
et al., 2001), containing >6 million associations extracted from the
literature.

Clearly, users can review only small fractions of such networks
at a time. However, users are highly specific about the information
they are interested in. Typical queries against a pathway database
include

• Find all reactions involving a certain substance.

• Find all paths, i.e. chains of reactions, connecting two given
substances.

• Find the shortest path between two substances that includes
a third substance.

• Given a set of molecules, extract the subgraph which contains
all these elements and has the least number of nodes.

Despite the necessity for complex queries, current pathway databases
support only very simple queries. Mostly, searching the database is
restricted to full-text search of node names; sometimes it is also pos-
sible to search all paths between two given nodes. It is not possible to
formulate conditions describing complex node and path patterns or
to use conditions including functional annotation of biological entit-
ies. We believe that there is a strong need for a declarative language
to specify clearly and succinctly queries on biological networks. In
this paper, we propose such a language: PQL, the pathway query
language.

PQL is a declarative language whose syntax is similar to SQL. PQL
queries operate on a simple graph data model that is a generalization
of many more specific data models; therefore, we believe that PQL
can be very easily adopted for a broad range of existing systems. The
result of a PQL query is itself a graph, which offers possibilities for
nesting and composing PQL queries. Despite its syntactic simplicity,
PQL is a powerful language capable of expressing graph isomorph-
ism problems. Implementing PQL on top of a relational database is
quite straightforward, which eases its porting to different systems
and databases. We describe an implementation based on the com-
mercial Oracle V9.2 database system. However, PQL is not capable
of very complex graph operations such as the computation of span-
ning trees. In our understanding, such analysis should be confined to
specialized applications using highly tuned data structures.

We think that this proposal can have many positive influences on
the field:

• Talking about a language implicitly forces one to think about the
requirements that exist for querying pathways. This discussion
apparently has not yet started in the community, despite many
papers mentioning various types of queries (see Section 4).

• A properly defined language can be used by many in pathway
databases, reducing the amount of duplicate work. Users need
to learn only one language and can use this language on their
favorite database.

© The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org ii33

http://cbio.mskcc.org/prl


U.Leser

• A query language acts as an interface between applications and
databases. PQL is thus a proposal for an interface between path-
way applications and pathway databases. Having a clear inter-
face fosters the development of database-independent methods
for pathway analysis. Network algorithms, user interfaces and
visualization tools may use this language and thus become more
easily ported to other databases.

• Having a clear semantics of queries helps to integrate data from
heterogeneous repositories since the same query can be shipped
to different databases.

The rest of this paper is organized as follows. Section 2 defines
the data model that PQL is based upon. Section 3 defines the syn-
tax and semantics of PQL and is the heart of this paper. Section 4
discusses a number of illustrative queries taken from publications
on pathway databases and systems and describes how (if at all)
they can be expressed in PQL. Section 5 sketches our prototyp-
ical implementation. Section 6 discusses related work. Section 7
concludes.

We omit formal definitions for brevity. These, together with more
query examples and an extensive section on related work, can be
found in Leser (2005).

2 PQL DATA MODEL
The basic PQL data model is a graph G with a set of nodes and
directed edges. A node is either an interaction or a molecule. The
graph need not be connected; i.e. it may fall into several unconnec-
ted subgraphs or even isolated nodes. The biological interpretation
of such a graph is the following. G represents a network of molecules
and their interactions. Molecules represent biochemical entities such
as proteins, metabolites or genes. Interaction nodes may symbol-
ize a chemical reaction with products and substrates, the formation
of a compound from different proteins or the expression of a gene.
Edges may connect (1) a molecule to an interaction, meaning that the
molecule is necessary for the interaction to happen; (2) an interaction
to a molecule, meaning that the molecule is a product of the inter-
action; (3) an interaction to an interaction. The latter situation arises
when the first interaction influences the second, such as an enzymes
inhibiting the catalytic effect of another enzyme. Interactions may
involve any number of molecules either as input or as output, and
molecules may be connected to any number of interactions.

The PQL data model is similar to the models used in pathway data-
bases such as aMAZE (van Helden et al., 2000), KEGG (Kanehisa
et al., 2004) and Reactome (Joshi-Tope et al., 2003). We give two
examples of how biological data are represented in our model. First,
consider the pyruvate metabolism pathway. Figure 1 is the original
pathway from KEGG. Figure 2 shows a small fraction of the KEGG
pathway in the PQL model. Enzymes and compounds are represen-
ted as molecules, and each arrow is transformed into an interaction
with products and substrates.

Second, consider the leucine biosynthesis in yeast. Figure 3
is this pathway as represented in the aMAZE database. Here,
names without surrounding rectangles represents metabolites, and
rectangles represent reactions, with a reaction ID and the EC num-
ber of the enzyme catalyzing the reaction. In our model, enzymes and
metabolites are molecules and reactions are interactions. Replacing
each rectangle with a node for the reaction connected to one node for

Fig. 1. Pyruvate metabolism from KEGG.

Fig. 2. Representation of the reactions in the upper right corner of the KEGG
pathway using the PQL data model. Molecules are boxes, interactions are
rounded boxes.

each enzyme translates the aMaze representation into the PQL data
model (Fig. 4).

The nodes in a PQL database are, thus, biological entities or bio-
chemical interactions. These need to be described further to allow
biological rather than purely abstract queries. The PQL data model
therefore defines a small set of properties of nodes and edges. Nodes,
i.e. molecules and interactions, are associated with one or more types
(e.g. ‘gene’, ‘enzyme’, ‘inhibition’, ‘catalysis’) and functions. The
vocabulary of all types and functions is modeled as a directed acyclic
graph of concepts, i.e. in the same way as the Gene Ontology. Nodes
further have a unique ID and a name. Nodes can be queried on their
name or their annotation using the operators ISA and HASFUNC.

Many extensions to this model are possible. For instance, interac-
tions could be annotated with kinetic parameters, molecules could

ii34



A query language for biological networks

Fig. 3. Yeast leucine biosynthesis (only partly shown) taken from aMaze.

Fig. 4. Lower part of the leucine biosynthesis represented in the PQL model.
Molecules are boxes, interactions are rounded boxes.

be annotated with links to external databases and interactions could
be annotated with the cellular compartment they occur in. However,
the current focus of PQL is on matching structures in networks. We
leave those extensions to future work.

3 PATHWAY QUERY LANGUAGE
The purpose of PQL is to extract subgraphs with certain properties
from a graph. The power of the language is determined by the types
of subgraph properties it can express. Imagine a graph with n nodes
and m edges. For instance, a simple query could extract all nodes
with a certain name, which can be implemented in O(log(n)) as a
binary search over a sorted list of all node labels. A more complex
query could extract the shortest path from a fixed node n1 to a fixed
node n2, which for dense graphs is possible in O(n2) using Dijkstra’s
algorithm. Other complex queries could ask for the minimal spanning
tree of the graph, which requires O(m ∗ log(n)).

PQL allows for medium complexity queries. More precisely, it can
extract subgraphs that are characterized by node and edge properties
and by the existence and properties of the paths they contain. Thus,
PQL goes beyond the search options available in most interaction
databases but is not capable of computing the properties of the entire
graph. This restriction has the advantage that PQL queries can be
evaluated efficiently.

We introduce PQL in four steps. The first three assume cycle-
free graphs. Section 3.1 discusses the basic syntax and semantics
of PQL. We introduce expressions describing conditions on paths
in Section 3.2. Section 3.3 describes how the subgraph returned by
a PQL query is determined. Finally, in Section 3.4 we explain the
semantics of PQL queries in graphs containing cycles.

3.1 PQL basic syntax and semantics
PQL queries resemble the syntax of SQL, though the semantics of
queries is quite different. Like an SQL query, a PQL query has three
parts—a SELECT clause, a FROM clause and a WHERE clause.
Like SQL, where queries have relations as input and generate a rela-
tion as output, PQL queries are evaluated on a graph and result in
a graph. The general syntax of PQL is as follows:

SELECT subgraph-specification
FROM node-variables
WHERE node-condition-set

Query evaluation binds node variables to nodes of the graph such
that all node-conditions in the WHERE clause evaluate to TRUE. The
query result is constructed from these variable bindings according to
the subgraph-specification of the SELECT clause. Note that binding
of node variables, which essentially means matching parts of the
graph, does not directly determine the subgraph returned. For now,
we assume that the SELECT clause is a ‘*’ and returns all nodes
from the subgraph determined by the FROM and WHERE clause.
Consider the pathway shown in Figure 4. The following query returns
a graph consisting of the two nodes ‘3-Isopropylmalate’ and
‘EC1.1.1.85’:

SELECT *
FROM A, B
WHERE A.name=‘3-Isopropylmalate’ AND

B.name=‘EC1.1.1.85’

The semantics of a PQL query is intuitively defined as follows
(for details see Leser (2005)). Query evaluation considers each node-
variable in the FROM clause. For each of these variables, all possible
assignments of a variable to nodes of the graph are determined for
which the conditions of the WHERE clause evaluate to TRUE. Node
variables are equally assigned to molecules and interactions. Once all

ii35



U.Leser

bindings for each node variable have been computed, the Cartesian
product of these sets is built. All instances are removed for which
the entire WHERE clause evaluates to FALSE, thus enforcing con-
ditions that include more than one node variable (such as a condition
A.name=B.name). Next, all distinct assignments (node variables
to database nodes) from the remaining elements of the Cartesian
product are combined to form the so-called match graph. Thus, the
set of database nodes in the match graph is always a subset of the
nodes of the underlying database. The match graph does not con-
tain any edges (see Section 3.3). Consider the following query and
Figure 4:

SELECT *
FROM A, B
WHERE A.name=‘R04426’ AND

(B.name=‘NAD+’ OR B.name=‘CO2’)

It returns the nodes ‘R04426’, ‘NAD+’, and ‘CO2’, since only the
bindings (A→’R04426’, B→’NAD+’) and (A→’R04426’,
B→’CO2’) fulfill the conditions in the WHERE clause.

3.2 Path expressions
We enrich the language with possibilities to match subgraphs in PQL
by using path expressions. A path is a set of nodes such that between
each pair of consecutive nodes an edge exists. Paths must be acyclic
for now. The length of a path is the number of edges it contains.
We introduce path expression by an example using the network of
Figure 2:

SELECT *
FROM B, C, D
WHERE D.name=’L-Lactaldehyde’ AND

B ISA ’Enzyme’ AND B[−2]D AND
B[−*]C[−*]D AND
C.name=’Lactaldehyde’

A condition of the form ‘X[−n]Y ’, with X and Y being node
variables, means that there must exist a path between the bindings
of X and Y in the underlying database. This path can have arbitrary
length if n is ‘*’ and must be of length n if n is a number. Hence, the
above query matches a subgraph of three nodes B, C and D such that
D has name L-Lactaldehyde, B is an enzyme, there exists a path
of length 2 between node B and D and there exists a path of arbitrary
length from B through C to D, where C must be Lactaldehyde.
Thus, the query finds all instances of the graph sketched in Figure 5.

Path expressions are existential conditions. They require that cer-
tain paths exist between the nodes assigned to node variables. They
do not require that all such paths adhere to the stated conditions.
Each path expression considers a path between only two nodes, but
since a PQL query may contain arbitrary many path expressions that
may share node variables, many types of subgraphs can be expressed.
However, path expressions are not capable of describing all possible
subgraphs. For instance, we cannot state a condition on the shortest
path between two nodes, and we cannot state that different paths have
the same length.

3.3 The SELECT clause—specifying the output
So far we have assumed that the SELECT clause is simply a ‘*’,
thus returning the set of all bindings of node variables. This is not
sufficient, since we are interested in finding subgraphs and not just

Fig. 5. Graphical representation of the query given in the text. Dashed lines
represent path expressions.

Fig. 6. Steps during the evaluation of a PQL query.

isolated nodes. These subgraphs may stretch further than the nodes
in the match graph, for instance including the vicinity of a matched
node up to a certain range. Furthermore, a query often only requires
some nodes to exist but does require the concrete bindings to be
retrieved.

To fulfill these requirements, PQL defines a variety of different
expressions in the SELECT clause, called select functions. Select
functions determine how the result graph, i.e. the query result,
is derived from the match graph. The match graph depends on
the underlying database, the node variables and the conditions in
the WHERE clause; select functions determine the result graph
by adding nodes and edges to the match graph or by removing
uninteresting bindings (Fig. 6).

PQL defines the following select functions:

• Addition of all (‘*’) variable bindings or only bindings of
specific variables.

• Addition of paths between bindings of any two node variables,
including fixed-length paths, shortest path and longest path.

• Addition of the vicinity around the bindings of a variable with
given radius.

For instance, the following query returns the vicinity of radius 2
(all nodes that can be reached from a node or that reach that node
by a path of length at most 2) around all bindings of A and all
paths between bindings of A and bindings of B:

SELECT A[−2], A[−*]B
FROM A, B
WHERE A[−<5]B AND A ISA ’enzyme’ AND

B.name=’Propane-1,2-diol

ii36



A query language for biological networks

Note that path expressions in the WHERE clause are existentially
quantified, whereas path expressions in the SELECT clause require
that all existing paths are included in the result graph.

3.4 Networks with cycles
So far we have assumed cycle-free graphs and hence cycle-free paths.
However, biological networks often contain cycles, such as feed-
back and feedforward loops (Yeger-Lotem et al., 2004).1 In fact, any
reversible reaction introduces a cycle.

PQL allows cycles in graphs, but queries are evaluated only on
cycle-free paths. There are three reasons for this. First, if paths may
contain cycles, the notion of ‘all paths’ between two nodes becomes
undefined, as there may be infinitely many. Second, in any network
with too large a number of cycles, many PQL queries containing
select functions with paths would always return an unreasonably
large fraction of the network. With an increasing number of nodes
involved in at least one cycle, chances rise that a path between any
pair of nodes touches a node that is part of a cycle. In this case, the
cycle and all its constituents immediately become part of the result,
although it is probably irrelevant for the query at hand. Third, cycle-
free paths are more efficient to deal with during the computation of
a query result.

However, demanding paths to be cycle-free does not constrain the
power of PQL (Leser, 2005). The only case in which this restriction
affects PQL queries is queries for loops, i.e. expressions of the form
‘A[−*]A’ in the SELECT or WHERE clause. Such expressions
always return an empty answer. However, it is easy to reformu-
late them into the semantically equivalent form ‘A[−*]B[−*]A’,
which is perfectly computable in PQL.

4 EXEMPLARY BIOLOGICAL QUERIES
To evaluate whether or not PQL is sufficiently expressive for bio-
logical questions, we have analyzed a number of publications on
metabolic databases with respect to the types of queries they list as
being crucial. In this section, we describe queries taken from those
publications and give their equivalent in PQL, if it exists. This should
help the reader to better understand the strengths and limitations of
PQL and serves as a guideline for future extensions. Queries are
cited from van Helden et al. (2000), Karp et al. (2002) and Schaefer
(2004).
‘Find all genes whose expression is directly or indirectly affected by
a given compound.’

Ignoring the difficulty in defined the intented meaning of the word
‘affected’, the question can be answered as follows (assume the given
compound is L-Glutamate):

SELECT B
FROM A, B
WHERE A.name=’L-Glutamate’ AND

A[−*]B and B ISA ‘gene’

‘In the complete set of metabolic reactions, find all feedback loops
including a given compound.’

This is answered by the following PQL query (assume the given
compound is Methionine):

1Note that all motifs described in this reference can be found in a pathway
database using a single PQL query.

Fig. 7. Enzymes whose catalyzed reaction is inhibited by ATP.

SELECT A[−*]B[−*]A
FROM A, B
WHERE B.name=’Methionine’ AND

A[−*]B[−*]A
‘The user specifies a set of nodes. . . and prompts the system to extract
the. . . sub-graphs that interconnect each pair of seed nodes via the
smallest number of. . . links.’

Assuming a direct graph as the underlying data structure, PQL is
capable of such queries if the number of seed nodes is fixed at query
time. Note that the query does not ask for the minimal spanning tree of
the set of nodes, which cannot be computed by a PQL query (though
the use of PQL can considerably easy the computation). Assume we
have four seed nodes A, B, C and D. Then, the question would be
answered by the following query (‘A[−s]B’ computes the shortest
path between nodes A and B):

SELECT A[−s]B, A[−s]C, A[−s]D, B[−s]C,
B[−s]D, C[−s]D

FROM A, B, C, D
WHERE A[−*]B[−*]C[−*]D
‘Find all processes that lead from node A to node B in less than Max
steps, and more than Min steps.’

This query cannot readily be expressed in PQL because it is not
possible to specify in one query both maximum (N ) and minimum
(M) lengths of paths between two nodes. The following query does
not compute the desired result:

SELECT A[−*]B
FROM A, B
WHERE A[−> M]B AND A[−< N]B

Instead, the query computes all nodes A and B for which there
exists at least one path between them longer than M and at least one
path shorter than N . Having multiple conditions on paths is part of
future work on PQL.
‘Find all enzymes for which ATP is an inhibitor.’

The following PQL query finds the desired enzymes2 (see Fig. 7
for illustration):

SELECT A
FROM A, B, C, D
WHERE A ISA ‘enzyme’ AND

D.name=’ATP’ AND
A[−1]B AND D[−1]C[−1]B AND

2Since enzymes are usually used synonymously for the reactions they cata-
lyze, the original formulation is slightly ambiguous. We assume that we are
looking for reactions catalyzed by an enzyme and inhibited by ATP.

ii37



U.Leser

B ISA ‘reaction’ AND
C ISA ‘inhibition’

‘Retrieval of all interactions that involve any of a set of molecular
species as immediate participant.’

Such a query can easily be expressed in PQL using the vicinity
operation with a radius of 2 (radius 1 retrieves only interactions not
the interacting molecules).

‘Retrieval of a connected graph that includes a set of specified
interactions.’

Such queries cannot be computed using PQL, because the order of
elements in a path expression is fixed with the query. Again, having
more elaborate path conditions is part of future work on PQL.

5 IMPLEMENTATION OF PQL
We have implemented PQL on top of Oracle Server V9.2.3 The
implementation consists of three parts: (1) a model for stor-
ing the PQL data model, (2) procedures performing certain pre-
computations on the data to improve the performance of PQL queries
and (3) a compiler for PQL queries.

A PQL query is compiled into a PL/SQL stored procedure. This
procedure finds all possible bindings given the conditions of the
query and computes the result graph using the select functions in
the SELECT clause. Since the result of a PQL query is a graph, it
cannot be simply returned as the result of the procedure. We could
encode the result into a single table and use a table function, but
table functions are currently supported only by commercial database
systems, thus impeding the portability of PQL. Therefore, the result
graph is stored in two tables. If PQL queries were used in client pro-
grams, we envisage that these tables would be read and turned into
a graph representation by the middleware.

The relational data model used in our PQL implementation is very
simple. Nodes are stored in the Node table, edges in the Edge
table. An edge is represented by the foreign keys of the two nodes
it connects. Annotations are stored in the Function and Type
tables. Since both the type and the function hierarchies are DAGs,
the structure of the concepts is encoded in two separate tables.

Evaluating a PQL query has two phases: computing the match
graph and computing the result graph. Computing the match graph
conceptually requires that assignments of node variables to nodes
are enumerated and tested. We push as much of this work as possible
into the database, i.e. express it using SQL operations. Conditions
on node names and node IDs are efficiently supported by any rela-
tional database, e.g. by using indices. Therefore, the efficiency
of computing a match graph is dominated by two factors: (1) the
cost of evaluating path expressions and (2) the cost of comput-
ing the ISA and HASFUNC operations, i.e. traversing a DAG. To
speed up these operations, the PQL compiler assumes some helper
tables to be filled before executing the query. With their help, path
expressions and DAG operations can be answered in approximately
logarithmic time.

The helper tables store all cycle-free paths that exist in the graphs.
Not only the existence of a path is stored—this would speed up only

3At the time of writing, the implementation was missing the following fea-
tures. (1) Only AND may be used in the WHERE clause. (2) ISA and
HASFUNC are not implemented. (3) Complex path expressions are not
recognized by the parser.

path expressions of the form ‘A[−*]B’—but also its length and
all nodes it contains. Using this data, path expressions of the form
‘A[−>3]B’ and ‘A[−4]B’ can be evaluated using a single lookup.
Further, this information helps to compute the select functions for
shortest path and vicinity. Computing all cycle-free paths is achieved
by iteratively computing paths of increasing length. This is a costly
operation, but computing all paths is necessary only once, and current
database technology makes it feasible even for large graphs. For
instance, our current implementation computes all ∼208 000 paths
between the ∼16 000 nodes and ∼23 000 edges of the Gene Ontology
(GeneOntology Consortium, 2001) in ∼5 min on a laptop. However,
we cannot possibly compute all paths in a network of all interactions
between genes and proteins extracted from Medline, which is one of
our envisaged applications. For such graphs, future versions of PQL
must use recursive or hybrid methods for path enumerations.

6 RELATED WORK
To the best of our knowledge, this is the first suggestion for a query
language directly targeted at biological networks. None of the path-
way and interaction databases we have examined so far has a query
language. BIND (Bader et al., 2003), DIP (Salwinski et al., 2004)
and IntAct (Hermjakob et al., 2004) have only keyword search and
no notion of paths or subgraphs. Reactome (Joshi-Tope et al., 2003)
and Kinase Pathway Database (Koike et al., 2003) have an additional
module for finding paths between two given nodes. In both cases it
is not clear whether or not paths must lie within one pathway or
may cross pathways. Sohler et al. (2004) describe the TopNet sys-
tem for pathway visualization and analysis. The authors mention an
XML-based pathway query language but give too few details for a
comparison.

The pathway database system (Krishnamurthy et al., 2003) is a
complete system for modeling, visualizing and editing pathways. It
is based on hyper-graphs, i.e. edges are reactions connecting sets of
nodes (molecules). The data model is very rich, including pathways,
species, reaction properties etc. The system supports canned quer-
ies for simple selection based on node or edge properties, simple
paths (only two ends) and neighborhood queries. Queries are always
evaluated in memory; i.e. the entire database is loaded into main
memory at startup. A similar system is PathDB, built around the
ISYS system for application integration in the life sciences (Siepel
et al., 2001). Queries are parameterized functions that do not go
beyond the capabilities of the previously described system. EcoCyc
(Karp et al., 2002) is a pathway databases based on a frame-based
knowledge representation and reasoning systems. Arbitrary queries
may be programmed in LISP, PERL or Java, but no query language
is provided.

Graph databases have been an area of research in the database
community for some years. Güting (1994) proposed a data model
and query language for graph data in spatial applications. The data
model is an extension of an object-oriented model with special class
types for links and paths. However, the query language was defined
only in fragments and no implementation is available. GraphLog
(Consens and Mendelzon, 1990) is a visual graph query language
whose expressions are translated into rules of a DATALOG program.
GraphLog is considerably more expressive than PQL. However,
GraphLog returns only tuples of matched nodes, not graphs, and
cannot be implemented easily on top of relational databases. Also,
some commercial databases support network-type data. For instance,

ii38



A query language for biological networks

Oracle has recently released an extender for Network Data Manage-
ment as part of the spatial extender in version 10g (Oracle Corp.,
2003). With this extender, networks of various types can be generated
and managed. Access is either through a PL/SQL or a Java API.
However, there is no notion of network queries. In Das et al. (2004),
Oracle reports on an experimental system for querying ontologies
(read: DAGs). Similar to PQL, the implementation is based on
the pre-computed transitive closure of the graph, but it is unclear
whether Oracle’s approach can be extended to full graphs. Finally,
there has been extensive work in the area of query languages for
semi-structured data and XML [see e.g. Buneman (1997); the most
prominent language today is XQuery], but these languages operate
only on trees.

Our current focus for PQL is on the definition of an appropri-
ate, expressive and simple query language for querying biological
networks. Not much effort has yet been invested into an efficient
implementation. For instance, faster algorithms are known for com-
puting the transitive closure of a graph (Agrawal and Jagadish,
1987). However, one must be careful whether or not these algorithms
can treat cyclic paths and really compute all paths, not only all
connections.

7 CONCLUSIONS
We have described PQL, a language for querying biological net-
works. The power of PQL comes from mainly three sources: the
adoption of a biological data model, the ability to define conditions
on paths in a query and a variety of functions to give a detailed
specification of the desired result constructed from the matching
subgraphs.

PQL’s syntax is derived from SQL because we believe that many
programmers are familiar with this language. However, PQL has a
different semantics and allows queries to be formulated in a concise
way that would require extensive programming using only SQL. A
drawback of defining a new language is that mixing of SQL and PQL
in a single query is not possible.

Our analysis of requirements for such a language, based on a lit-
erature review and presented in Section 4, has shown that there is
a strong need to define more clearly the exact nature of a biolo-
gical question against a biological network than is possible with
current languages and that PQL needs further extensions to fulfill all
such needs. These extensions include named paths, nesting of PQL
queries and the explicit modeling of pathways, organisms and tis-
sues. Also, many interesting queries require that certain conditions
hold on all elements of a path, such as a query asking for all paths
between two enzymes that do not contain a certain third enzyme. To
enable such conditions, PQL must be extended to include path bind-
ings in addition to the currently available node bindings. Another
line of necessary improvement is an efficient and complete imple-
mentation of PQL. The current implementation should be considered
a prototype to support language definition. Specifically, it must be
equipped with a graphical interface for query specification and result
visualization.

We hope that PQL is the start of a common effort to develop query
languages for biological network data. Repeating our plea from the
introduction, we think that such a discussion is badly needed to
support the exchange of network data, to allow for a concise spe-
cification of data to be extracted from a pathway database and to
reduce duplication of work in different systems. We believe that a

declarative query language should be a natural component of any
pathway database.

ACKNOWLEDGEMENTS
This work is supported by BMBF grant no. 0312705B (Berlin Center
for Genome-Based Bioinformatics). We thank Silke Trissl and Lukas
Faulstich for many fruitful discussions.

Conflict of Interest:none declared.

REFERENCES
Agrawal,R. and Jagadish,H.V. (1987) Direct algorithms for computing the transitive

closure of database relations. In Proceedings of the 13th Conference on Very Large
Databases, Brighton, UK, pp. 255–266.

Bader,G.D. et al. (2003) BIND: the biomolecular interaction network database. Nucleic
Acids Res., 31, 248–250.

Buneman,P. (1997) Semistructured Data. In Proceedings of the 16th ACM Symposium
on Principles of Database Systems, Tuscon, AZ, pp. 117–121.

Consens,M.P. and Mendelzon,A.O. (1990) GraphLog: a visual formalism for real life
recursion. In Proceedings of the ACM Symposium on Principles of Database Systems,
Nashville, TN, pp. 404–416.

Das,S., Chong,E., Eadon,G. and Srinivasan,J. (2004) Supporting ontology-based
semantic matching in RDBMS. In Proceedings of the 30th Conference on Very Large
Databases (VLDB04), Toronto, Canada, pp. 1054–1065.

GeneOntology Consortium. (2001). Creating the gene ontology resource: design and
implementation. Genome Res., 11, 1425–1433.

Güting,R.H. (1994) GraphDB: modeling and querying graphs in databases. In Pro-
ceedings of the 20th Conference on Very Large Databases, Santiago de Chile,
pp. 297–308.

Hakenberg,J., Plake,C. and Leser,U. (2005) Optimizing syntax patterns for discover-
ing protein–protein interactions. In Proceedings of the ACM Symposium on Applied
Computing, Santa Fe, NM, Bioinformatics Track 1, pp. 195–201.

Hermjakob,H. et al. (2004) IntAct: an open source molecular interaction database.
Nucleic Acids Res., 32 (Database issue), D452–D455.

Jenssen,T.K. et al. (2001) A literature network of human genes for high-throughput
analysis of gene expression. Nat. Genet.28, 21–28.

Joshi-Tope,G. et al. (2003) The Genome Knowledgebase: a resource for biologists and
bioinformaticists. Cold Spring Harb. Symp. Quant. Biol., 68, 237–243.

Kanehisa,M. et al. (2004) The KEGG resource for deciphering the genome. Nucleic
Acids Res., 32 (Database issue), D277–D280.

Karp,P.D. et al. (2002) The EcoCyc database. Nucleic Acids Res., 30, 56–58.
Koike,A. et al. (2003) Kinase pathway database: an integrated protein-kinase and NLP-

based protein-interaction resource. Genome Res., 13, 1231–1243.
Krishnamurthy,L. et al. (2003) Pathways database system: an integrated system for

biological pathways. Bioinformatics, 19, 930–937.
Legrain,P. and Selig,L. (2000) Genome-wide protein interaction maps using two-hybrid

systems. FEBS Lett., 480, 32–36.
Leser,U. (2005). A query language for biological networks. Technischer Report 187,

Department for Computer Science, Humboldt-Universität Berlin.
Marcotte,E.M. et al. (2001) Mining literature for protein–protein interactions. Bioin-

formatics, 17, 359–363.
Mellor,J.C. et al. (2002) Predictome: a database of putative functional links between

proteins. Nucleic Acids Res., 30, 306–309.
Oracle Corp. (2003) Oracle Database 10g Network Data Model.
Salwinski,L. et al. (2004) The database of interacting proteins: 2004 update. Nucleic

Acids Res., 32 (Database issue) D449–D451.
Schaefer,C.F. (2004) Pathway databases. Ann. N. Y. Acad. Sci., 1020, 77–91.
Siepel,A. et al. (2001) ISYS: a decentralized, component-based approach to the

integration of heterogeneous bioinformatics resources. Bioinformatics, 17, 83–94.
Sohler,F. et al. (2004) New methods for joint analysis of biological networks and

expression data. Bioinformatics, 20, 1517–1521.
van Helden,J. et al. (2000) Representing and analysing molecular and cellular function

using the computer. Biol. Chem., 381, 921–935.
von Mering,C. et al. (2003) STRING: a database of predicted functional associations

between proteins. Nucleic Acids Res., 31, 258–261.
Yeger-Lotem,E. et al. (2004) Network motifs in integrated cellular networks of

transcription-regulation and protein–protein interaction. Proc. Natl Acad. Sci. USA,
101, 5934–5939.

ii39


