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Human speech contains both auditory and visual components, pro-
cessed by their respective sensory cortices. We test a simple model
in which task-relevant speech information is enhanced during cor-
tical processing. Visual speech is most important when the auditory
component is uninformative. Therefore, the model predicts that
visual cortex responses should be enhanced to visual-only (V)
speech compared with audiovisual (AV) speech. We recorded neur-
onal activity as patients perceived auditory-only (A), V, and AV
speech. Visual cortex showed strong increases in high-gamma band
power and strong decreases in alpha-band power to V and AV
speech. Consistent with the model prediction, gamma-band in-
creases and alpha-band decreases were stronger for V speech. The
model predicts that the uninformative nature of the auditory compo-
nent (not simply its absence) is the critical factor, a prediction we
tested in a second experiment in which visual speech was paired
with auditory white noise. As predicted, visual speech with auditory
noise showed enhanced visual cortex responses relative to AV
speech. An examination of the anatomical locus of the effects
showed that all visual areas, including primary visual cortex,
showed enhanced responses. Visual cortex responses to speech are
enhanced under circumstances when visual information is most
important for comprehension.

Keywords: audiovisual, electrocorticography, high gamma, speech,
visual cortex

Introduction

Speech is the most important form of human communication
and involves both the visual modality (the moving face of the
talker) and the auditory modality (the voice of the talker).
Simple visual stimuli, such as moving bars, evoke strong re-
sponses in visual cortex (Hubel and Wiesel 1968) and these re-
sponses can be modulated by simultaneously presented simple
auditory stimuli, such as pure tones (Giard and Peronnet 1999;
Molholm et al. 2002; Turilli et al. 2012; Nishimura and Song
2012; Mercier et al. 2013). While visually presented faces also
evoke strong visual cortex responses (Pitcher et al. 2011;
Davidesco et al. 2013; Schultz et al. 2013) little is known about
whether these responses are modulated by auditory stimuli. In
particular, visually presented talking faces are usually accompan-
ied by a concomitant auditory stimulus—the voice of the talker.
Speech perception can occur using only information from the
auditory modality (e.g., talking on the telephone). When clear
auditory speech is present, visual speech information contributes
little to speech comprehension (Sumby and Pollack 1954; Bern-
stein et al. 2004; Ross, Saint-Amour, Leavitt, Javitt et al. 2007).
However, when the auditory speech signal is compromised, for
example, due to external noise or damage to the cochlea, the
visual speech signal gains in importance for comprehension
(Bernstein et al. 2004; Ross, Saint-Amour, Leavitt, Javitt et al.
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2007; Ross, Saint-Amour, Leavitt, Molholm et al. 2007) and lip-
reading by itself (speechreading) can be used by deaf individuals
to understand the content of speech (Suh et al. 2009).

Because the combination of auditory and visual speech is
both ecologically common and important, we hypothesized
that visual cortex responses to faces would be strongly modu-
lated by an accompanying voice. Specifically, we test a simple
model, which posits that cortical networks for speech percep-
tion enhance relevant information and suppress less relevant
information. When auditory speech is present (such as during
perception of clear AV speech), visual speech information is
not necessary for speech perception, and we predict that visual
cortex responses should be weak or suppressed. In contrast,
under conditions in which no auditory speech information is
available (such as visual-only [V] speech) visual information is
highly relevant and we predict that the visual cortex responses
to visual speech should be strong or enhanced.

Contrary to these predictions, studies using blood oxygen
level-dependent functional magnetic resonance imaging
(BOLD fMRI) have not reported visual cortex differences in
the response to V versus AV speech (Miller and D’Esposito
2005; Wilson et al. 2008; Lee and Noppeney 2011; Nath and
Beauchamp 2011; Okada et al. 2013). However, the slow tem-
poral resolution of BOLD fMRI (~2 s for most studies) does not
allow for the investigation of the rapid interactions between
auditory and visual modalities that occur during speech per-
ception. Therefore, we used electrocorticography (eCog), which
allows direct measurement of neural activity with real-time
temporal resolution to investigate multisensory interaction in
visual cortex during speech perception.

Materials and Methods

Subject Information

Informed consent was obtained from all subjects under the auspices of
the Baylor College of Medicine Institutional Review Board and the Uni-
versity of Texas Committees for the Protection of Human Subjects.
Seven subjects with medically intractable epilepsy (6 female, mean age
33 years, age range 21-43, 5 right handed according to self-report)
participated in the first experiment and 3 different subjects (also with
medically intractable epilepsy, one female, ages 23, 36, and 51) partici-
pated in the second experiment. Subdural electrodes were implanted
in each subject to determine the location of the seizure focus as part of
the clinical management of epilepsy, with placement guided solely by
clinical criteria. Clinical neurophysiologists identified epileptogenic
regions of cortex based on the intracranial recordings. Only data from
electrodes that did not exhibit interictal epileptiform activity and that
were not found to be sites of seizure onset were analyzed.

Electrode Implantation, Localization, and Recording
Before electrode implantation, structural MR scans were obtained. Cor-
tical surface models were constructed using FreeSurfer (Dale et al. 1999;
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Fischl et al. 1999) and visualized using SUMA (Argall et al. 2006). After
implantation surgery, subjects underwent whole-head CT. The CT scan
was aligned to the presurgical structural magnetic resonance (MR) images
using the software AFNI and all electrode positions were manually
marked on the structural MR images. Subsequently, the electrode posi-
tions were assigned to the nearest node on the cortical surface model
using the AFNI program SurfaceMetrics. Standard subdural recording
electrodes were used (AdTech). eCog was recorded with a 128-channel
Blackrock Microsystem (Cerebus, Salt Lake, Utah). The electrodes con-
sisted of platinum alloy discs embedded in silastic with a surface diam-
eter of either 3 mm (regular electrodes) or 0.5 mm (research electrodes);
no difference in responses between the electrode types was observed so
they were combined for analysis. All visual electrodes were located on
strips with inter-electrode distances that varied from 2 to 10 mm.

All electrodes were referenced to an inactive intracranial electrode
(an electrode that was turned towards the skull). ECog signals were
amplified, online low-pass filtered at 500 Hz (butterworth filter, filter
order of 4) and high-pass filtered at 0.3 Hz (butterworth filter, filter
order of 1) and digitized at 2 kHz. In the first experiment, we recorded
from 650 electrodes in 7 patients. Seventy-one electrodes were classi-
fied as visual electrodes, defined anatomically as over occipital lobe
and functionally as showing a clear high-gamma band response to
visual speech stimulation (averaged response over AV and V condi-
tions). In the second experiment, we recorded from 235 electrodes in
3 patients, selecting 40 visual electrodes.

Experimental Design and Stimuli

During both experiments, subjects were seated in a hospital bed facing
a video monitor (Viewsonic VP150, 1024 x 768 pixels) at a viewing dis-
tance of 57 cm, with a resulting display size of 40.5 x 22.9°. The pre-
sented images covered the entire screen. Sounds were presented from
a loudspeaker close to the subject at a volume that was comfortable for
the subject and ensured comprehension.

In the first experiment the words DRIVE, KNOWN, LAST, and
MEANT (all recorded by the same female talker) were presented in
3 different conditions: V, AV, and auditory-only (A) with 64-96 repeti-
tions per condition. The duration of the stimuli varied between stimuli
and conditions (auditory stimuli: DRIVE 500 ms, KNOWN 560 ms,
LAST 270 ms, MEANT 420 ms; visual stimuli: DRIVE 1640 ms, KNOWN
1260 ms, LAST 1460 ms, MEANT 1430 ms; AV stimuli had the same
duration as the respective visual stimuli). On AV trials, the auditory
stimuli started ~170 ms after the visual stimuli (DRIVE 230 ms,
KNOWN 80 ms, LAST 240 ms, MEANT 140 ms). Trials were separated
by interstimulus intervals (ISIs) of 2.5 s. On A trials and during the ISIs
a fixation dot was shown in the location of the mouth on a gray screen.

In the second experiment 2 additional conditions were introduced:
visual speech with auditory white noise (A, ;seV), and A white noise
(Anoise)- In the A5V condition visual speech input was presented to-
gether with auditory white noise that started at the same time as the
visual onset and lasted 1.38 s. In the A, ;s condition white noise was
presented for 1.38 s. For each subject, there were 24-80 repetitions
(trials) of the 5 stimulus types.

Experimental Task

To ensure attention to the stimuli we used a catch trial design (for one
subject in the first experiment, no catch trials were presented). On
pseudorandom trials, a catch stimulus was presented, consisting of the
AV word PRESS (20% of trials). Subjects were instructed to press a
mouse button in response to these trials. The mean accuracy was
89+17% (mean+SD, for one subject button presses were not re-
corded) with mean false alarm rate of 3+ 6%. Instructions were given
to look at the fixation dot whenever it was on the screen and at the
mouth of the speaker at all other times. Practice trials were used before
data collection commenced to ensure that subjects understood the task
and were familiar with the stimuli.

Data Analysis
The electrophysiological data were analyzed in MATLAB 7.12.0
(MathWorks Inc. Natick, MA) using the open source toolbox FieldTrip
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(http://fieldtrip.fcdonferd.nl/, Oostenveld et al. 2011) and customized
scripts. The data were low pass filtered at 400 Hz (Butterworth filter,
filter order of 4), high pass filtered at 0.5 Hz (Butterworth filter, filter
order of 3) and discrete Fourier transform was applied to remove re-
maining line noise (60, 120, 180 Hz). The data were epoched with
respect to the visual stimulus onset from -1 to 2 s.

For the analysis of higher frequencies, the data were transformed to
time-frequency space using multitapers (Slepian sequences, number
of tapers=3) followed by Fourier transformation. The tapers were
applied in time steps of 10 ms and frequency steps of 2 Hz (frequency
smoothing of +10 Hz, temporal smoothing of 200 ms) to a time
window from —0.5 to 1.5 s and a frequency window from 10 to 200 Hz.
Before the time-frequency transformations, trials in the A condition
were aligned to the visual onset in AV trials. After the time-frequency
transformation, the data were inspected at all visual electrodes and
single trials were manually removed if they contained clearly visible
artifacts. A baseline was calculated over all trials from all experimental
conditions at each electrode over the time window from —500 to
—200 ms. This baseline was used to calculate the power in percent
change at the individual trial level and the data were then averaged
over experimental conditions. We first averaged the V and AV re-
sponses over all 71 visual electrodes to select a frequency window for
the analysis. Based on this response we selected a frequency window
from 70 to 110 Hz. To statistically compare the responses to V and AV
stimuli at visual electrodes, we averaged the high-gamma band re-
sponses over the time window from 0 to 1500 ms after the visual onset
and performed a paired #test over all 71 electrodes. To learn more
about the temporal dynamics of the difference between the responses,
we additionally performed paired #-tests between the V and AV condi-
tion for each time point (every 10 ms) from 0 to 1500 ms. In the second
experiment we performed the same tests between the A,V and AV
condition. The running #tests were false discovery rate (FDR) cor-
rected at g=0.05 (Benjamini and Yekutieli 2001) using the function
fdr_bh (Mass Univariate ERP Toolbox; Groppe et al. 2011).

For the analysis of lower frequencies, the data were transformed to
time-frequency space using a single Hanning taper with a time
window of 500 ms, resulting in a frequency resolution of 2 Hz. The
tapers were applied in time steps of 10 ms and frequency steps of 2 Hz
to a time window from —0.5 s to 1.5 s and a frequency window from
2 to 30 Hz. A baseline from —500 to —250 ms was used and data ana-
lyses were performed in line with the data analyses of high-gamma
band activity (see above). A frequency window from 8 to 14 Hz was
selected for statistical analyses of lower frequency responses because a
clear suppression was seen in this frequency range in the average
response over the Vand AV conditions.

Anatomy and Response Magnitude

For the first experiment, we classified each visual electrode into one
of 4 anatomical regions: visual pole, medial occipital, lateral occipi-
tal, and ventral occipital. T-tests were performed on the difference
responses (V-AV) for each region and an analysis of variance (ANOVA)
was performed with region as the fixed factor using the function aov of
the R software environment (http://www.r-project.org/). In a separate
analysis the geodesic distance of each visual electrode from the occipi-
tal pole along the pial surface was obtained using the AFNI SurfDist
tool. We calculated the Pearson product-moment correlation and also
fit a linear mixed model to the data using the high-gamma difference
response as the dependent variable, distance from the occipital pole as
the fixed effect and subject as the random effect, using the lmer and
ImerTest functions within R.

Results

High-Gamma Band Responses to Speech in Visual Cortex

In visual cortex, broadband responses were observed to both
AV and V speech (Fig. 14). High-gamma band responses to V
speech were much stronger than responses to AV speech
(75+£53% vs. 63+49%, mean across electrodes + SD; paired
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Figure 1. High-frequency responses at visual electrodes. (4) Time—frequency
responses (10-200 Hz, —0.5-1.5 s) averaged over all 71 visual electrodes for the V
(top), AV (middle), and A (bottom) conditions. The dotted lines mark the onset of the
visual stimulus (or the respective time point in the A condition). The auditory stimulus
onset ~170 ms later. (B) High-gamma-band responses (70-110 Hz, 0-1500 ms)
averaged over all visual electrodes for the V, AV, and A conditions (mean = SEM,
**% p—107"%_(C) Time courses of the high-gamma band responses (70-110 Hz)
across all visual electrodes. The yellow shaded area depicts the significant time window
that was used for 0. (D) High-gamma band response to V speech as a function of the AV
response magnitude for each visual electrode (70-110 Hz, 660-1230 ms).

ttest: togy=7.1, P=10""% 70-110 Hz, 0-1500 ms; Figure 1B).
High-gamma band responses to A speech were not significant-
ly above baseline (0.3 + 7%, ¢79y=0.3, P=0.74).

Next, we investigated the time course of the high-gamma
band responses in visual cortex (Fig. 1C). The responses rose
quickly for both V and AV speech, peaking at 200 ms after the
visual onset. There were additional peaks at 400 ms and at
700 ms followed by gradual declines in power between 700
and 1200 ms; the gamma power stayed elevated above baseline
until the end of the analysis window at 1500 ms. As expected,
the V and AV responses were identical before the onset of the
auditory stimulus at 170 ms. The V response was consistently
greater than the AV response from 660 to 1230 ms (FDR cor-
rected P<0.05 from 660 to 1230 ms, 1390 to 1400 ms, and
1480 to 1500 ms).

To evaluate the consistency of the greater responses to V
speech across visual cortex electrodes, we plotted the magni-
tude of the V response as a function of the AV response magni-
tude for each electrode (70-110 Hz, 660-1230 ms; Fig. 1D).
Most electrodes showed positive gamma-band responses to AV
and V speech (AV >0 and V > 0), and of these, 57/61 (93%) ex-
hibited greater gamma-band increases to V than AV speech. A
strong correlation between the V and AV responses across elec-
trodes was observed (Pearson’s 7=0.89, P= 10725,

Alpba-Band Responses to Speech in Visual Cortex
Our initial analysis focused on high-gamma band activity
because it provides an estimate of local neural activity (Ray and
Maunsell 2011; Lachaux et al. 2012). We also examined lower
frequency responses that have been implicated in speech pro-
cessing (e.g., Luo and Poeppel 2007; Lange et al. 2013). Unlike
the gamma-band increases commonly observed in response to
sensory stimulation, power in the alpha-band commonly
decreases in response to sensory stimulation after an initial in-
crease in the evoked response (e.g., Hoogenboom et al. 2000;
Siegel et al. 2007; Wyart and Tallon-Baudry 2009; Hipp et al.
2011; Schepers et al. 2012; Davidesco et al. 2013). Consistent
with this common finding, we observed strong decreases in
the alpha range (~8-14 Hz; Fig. 24) for V and AV speech.
However, as in the gamma-band responses, we observed dif-
ferent magnitudes of alpha-band responses for V and AV con-
ditions. The alpha-band decreases were larger for V than AV
speech (—32 + 20% vs. —22 * 20%, mean across electrodes + SD;
paired ttest: t9y=—12.4, P= 1078, 8 to 14 Hz, 0-1500 ms;
Figure 2B). A speech evoked only weak alpha-band decreases
relative to baseline (-5 + 14%; ¢79y = —3.2, P=0.002).
Examining the time course of the alpha-band response re-
vealed an increase during the initial evoked response, peaking
at 100 ms after the visual onset. This increase was not different
for V and AV speech (Fig. 2C). After the initial positive transi-
ent, alpha-band responses decreased to below baseline levels,
plateauing ~500 ms after stimulus onset. The alpha-band
decrease was larger for the V condition than the AV condition
from 550 ms until the end of the analysis window (pgpg < 0.05).
Plotting the alpha-band responses revealed that most indi-
vidual electrodes showed decreased alpha-band power for V
and AV speech (V<0 and AV<0; 8-14 Hz, 550-1500 ms;
Fig. 2D). Of these electrodes, 60/64 (94%) exhibited stronger
alpha-band decreases to V than AV speech. There was a strong
correlation between V and AV responses (r=0.89, P= 10_24).

Experiment 2: Visual Cortex Responses to Speech and
Auditory Noise

Compared with AV speech, V speech resulted in greater in-
creases in high-gamma band power and greater decreases in
alpha-band power (V > AV), supporting a model in which cor-
tical networks processing task-relevant information are en-
hanced. Our model predicts that this effect should be specific
to meaningful auditory speech information, whose absence
triggers an enhanced visual cortex response (resulting in
V> AV). However, the effect could also be due to suppression
of visual cortex by any simultaneously presented auditory
stimulus (also resulting in V> AV). In order to distinguish these
possibilities, we conducted a second experiment in which we
replaced auditory speech with auditory white noise in the AV
condition. If the V> AV response is due to a specific effect of
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Figure 2. Low-frequency responses at visual electrodes. (A) Time—frequency
responses (2—-30 Hz, —0.5 to 1.5 s) averaged over all 71 visual electrodes for the V
(top), AV (middle), and A (bottom) conditions. The dotted lines mark the onset of the
visual stimulus (or the respective time point in the A condition). The auditory stimulus
onset ~170 ms later. (B) Alpha-band responses (8—14 Hz, 0—1500 ms) averaged over
all visual electrodes for the V, AV, and A conditions (mean =+ SEM, *** P = 107'8). (C)
Time courses of the alpha-band responses (8—14 Hz) across all visual electrodes. The
yellow shaded area depicts the significant time window that was used for D. (D)
Alpha-band response to V speech as a function of the AV response magnitude for each
visual electrode (8—14 Hz, 550-1500 ms).

meaningful auditory speech, then auditory noise should be
similar to no sound at all: V= A, .V and A, iV > AV. In con-
trast, if the V > AV response is due to a nonspecific suppression
of visual cortex by sound, then auditory noise should produce
a similar effect: V> A giseV and A, iseV = AV.

To distinguish these possibilities, V, AV, and A speech were
presented, along with 2 additional conditions in which the
auditory speech in the original stimuli was replaced with audi-
tory white noise: visual speech with auditory white noise
(Apoise V) and A white noise (A, ;se)- Because the visual compo-
nents of AV and A,V were identical, any differences in
visual cortex responses must be due to the difference between
auditory meaningful speech and white noise.

First, we replicated the result from the first experiment.
High-gamma band responses to V speech were significantly
greater than responses to AV speech (142 +90% vs. 108 = 66%,
mean across electrodes + SD; paired #-test: f39y=3.8, P= 1074;
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Figure 3. Results of the second experiment. (A) Time courses of the high-gamma
band responses (70-110 Hz) across all electrodes for the AV noise (black), AV speech
(red), V (green), A (dark blue), and auditory noise (light blue) conditions. The yellow
shaded area depicts the significant time window that was used for C. (B) Time courses
of the alpha-band responses (8—14 Hz). (C) High-gamma band response to AV noise as
a function of the AV response magnitude for each visual electrode (70-110 Hz,
610-920 ms). (D) Alpha-band response to AV noise as a function of the AV response
magnitude for each visual electrode (8—14 Hz, 720-1100 ms).

70-110 Hz, 0-1500 ms) and alpha-band decreases were
greater to V than AV speech (=38 +16% vs. —27 + 17%, mean
across electrodes + SD; paired #-test: #z0y = —4.4, P=10">; 8-14 Hz,
0-1500 ms).

Next, we compared gamma-band responses to A, sV and
AV speech. Responses to A,V speech were stronger than the
responses to AV speech (Fig. 34). The responses began to
diverge at 610 ms, with the A,V response greater than the
AV response from 610 to 920 ms (all pFDR < 0.05). Plotting the
individual electrode responses (70-110 Hz, 610-920 ms;
Fig. 3C) showed that most electrodes displayed positive
gamma-band responses to both stimulus types (A, ,iscV >0 and
AV >0). Of these electrodes, 23/28 (82%) exhibited greater
increases to A,piseV than AV.

Finally, we compared the alpha-band responses. There were
greater alpha-band decreases for A,V compared with AV
speech (Fig. 3B). The effect was significant from 140 to
290 ms, 720 to 1100 ms and 1450 to 1500 ms (all pFDR < 0.05).
Most individual electrodes showed alpha-band decreases
(8-14 Hz, 720-1100 ms; Fig. 3D) for both stimulus types
(AnoiseV<0 and AV<O0); of these, 26/29 (90%) exhibited
greater alpha-band decreases to A, iscV than AV.

In summary, the visual cortex responses to visual speech
with auditory noise and no auditory component were similar,
suggesting that the lack of a meaningful auditory stimulus is
critical.

Anatomical Specificity of Visual Cortex Responses

In both experiments, we observed significantly greater visual
cortex responses to V speech than AV speech. If the visual
cortex enhancement was mediated by direct projections from
auditory cortex, early visual areas might be expected to show
stronger enhancement because of the documented projections
from auditory cortex to striate cortex (Falchier et al. 2002;
Nishimura and Song 2012). Alternatively, if visual cortex sup-
pression was mediated by parietal or frontal areas, later visual
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areas might show a larger effect because of their stronger con-
nections with higher cortical areas (Lewis and van Essen
2000). We created cortical surface models of each individual
subject and mapped the activity from each individual electrode
on to the cortical surface model, with the magnitude of the dif-
ference between the V and AV responses assigned to a color
scale (Fig. 4).

Significantly greater gamma-band responses to V than AV
speech were observed at all locations in visual cortex, includ-
ing cortex on the banks of the calcarine sulcus, the location of
primary visual cortex (V1). However, there was no obvious
gradient in the response difference between different visual
areas. To quantify this observation, we divided the electrodes
by their anatomical location into occipital pole (OP, n=15),
medial occipital (MO, n=34), lateral occipital (LO, n=18),
and ventral occipital (VO, n=4). While all regions showed

A Electrode locations and visual areas

enhanced high-gamma band responses to V speech (70-110
Hz, 0-1500 ms; OP: {14, =3.6, P=0.003; MO: f33,=3.5, P=
1074 LO: t17y=6.2, P=10"% VO: 15, = 2.3, P=0.105; Fig. 4B),
an analysis of variance showed no differences between regions
(F3210<0.1, P>0.9). We also measured the distance of each
electrode in each subject from the occipital pole (Murphey
et al. 2009) and found a similar lack of anatomical specificity.
There was no dependence between distance and the difference
responses with either a linear correlation (= —0.04, P=0.8) or
a linear mixed effect model with distance as fixed effect and
subject as random effect (estimate = —0.04, P=0.68).

A similar lack of effect of anatomical location was observed
in the alpha-band. On the cortical surface model, stronger
alpha-band decreases for V than AV speech were observed at
all locations in visual cortex (Fig. 4C). Classifying electrodes by
region showed consistently greater alpha-band decreases to V
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Figure 4. Electrode coverage and classification. (4) Electrode locations over visual cortex in 2 representative subjects: YAH (medial and posterior views) and YAD (ventral view).
Electrodes are shown as burgundy circles. Each electrode was classified by anatomical region, dotted black line shows boundary between regions (Pole: occipital pole; CS and
dashed black line: calcarine sulcus). (B) Difference in high-gamma responses (V—AV) for each electrode in subject YAH, mapped to the cortical surface. (C) Difference in high-gamma
responses (V—AV) for all electrodes, sorted by anatomical region. Black bar shows mean for each region; no effect of region was observed. (D) Difference in alpha responses (V—AV)
in subject YAH. (E) Difference in alpha responses (V—AV) for all electrodes, sorted by anatomical region. No effect of region was observed.
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speech (8-14 Hz, 0-1500 ms; OP: ¢4, =-12.5, P= 1078, MO:
tazy=—7.9, P=107% LO: t47y=—4.7, P=107%; VO: t3y=—4.7,
P=0.018; Fig. 4D), but an analysis of variance showed no dif-
ferences between regions (F;210=0.3, P=0.8). There was no
dependence between distance and the difference responses
with either a linear correlation (»=-0.06, P=0.6) or a linear
mixed effect model with distance as fixed effect and subject as
random effect (estimate = —0.05, P=0.4).

Discussion

Using eCog, we examined responses to multisensory speech
with high spatial and temporal resolution. In both early and
late visual cortex, we observed greater responses to visual
speech than AV speech, suggesting an enhancement when
visual speech is presented by itself. A second experiment
showed that this enhancement remained when auditory noise
was presented, indicating that the meaningful content of the
auditory stimulus was necessary to induce the observed re-
sponse difference between V and AV speech.

Previous studies have observed both low-frequency de-
creases and high-gamma band increases to face stimuli in
visual cortex, as observed in the present study (Kaiser et al.
2005; Dobel et al. 2011; Davidesco et al. 2013; Griitzner et al.
2013; Schepers et al. 2013). However, previous studies have
not compared the difference between the responses to V and
AV speech. For instance, in an electroencephalography (EEG)
study, AV speech and A speech both evoked occipital de-
creases in low-frequency power (Schepers et al. 2013), but
because V speech was not presented, enhanced responses to V
versus AV speech could not be observed.

In addition to the sustained low-frequency decreases and
high-gamma band increases that were the most prominent
feature of our data, we also observed a low-frequency response
increase that peaked at ~100 ms, similar to the event-related
potential (ERP) responses reported in both scalp EEG and
magnetoencephalography (MEG) studies of face processing
(Halgren et al. 2000; Liu et al. 2002; Feng et al. 2012; Wu et al.
2012) and eCog recordings (Allison et al. 1999). We saw no dif-
ference in these early responses between visual and AV speech;
this is unsurprising because the onset of auditory speech did
not occur until ~170 ms after visual onset. This temporal delay
between the onset of the multisensory interaction and the
timing of the short latency transient response may explain why
previous studies did not report differences in visual cortex ERP
responses to V versus AV speech (Besle et al. 2004).

JMRI Studies on AV Speech

Neuroimaging studies have reported strong responses in early
and late visual cortex to AV and visual speech (Miller and D’E-
sposito 2005; Wilson et al. 2008; Lee and Noppeney 2011; Nath
and Beauchamp 2011; Okada et al. 2013) without finding dif-
ferences in the response to V versus AV speech. This disparity
between the fMRI and eCog results may be due to the relatively
slow temporal resolution of fMRI. In our results, the difference
between responses to V versus AV speech was most pro-
nounced at 890 ms after visual onset. Because fMRI integrates
responses over the relatively long duration of each repetition
time (TR-2s for most studies) it may lack sensitivity to re-
sponses or response differences that occur in restricted time
windows. For instance, visually presented faces that are not
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attended by the subject evoke a short-duration response that is
detected with MEG but not with fMRI (Furey et al. 2006). With
high temporal resolution fMRI (effective TR-100 ms), it may
be possible to replicate the findings described in the present
study (Lin et al. 2012; Chang et al. 2013).

Source of the Observed Effects in Visual Cortex

As shown in Figure 5, perception of AV speech activates an ex-
tended network of brain areas consisting of visual cortex, audi-
tory cortex, and multisensory areas in the superior temporal
sulcus (STS) as well as parietal and frontal areas (Price et al.
2005; Hickok and Poeppel 2007; Pulvermuller and Fadiga
2010; Nath and Beauchamp 2011). We suggest a simple model
in which the goal of this network is to extract meaning from AV
speech as quickly and efficiently as possible. When the audi-
tory component of the speech input is sufficient to extract
meaning, the visual response is not needed and therefore not
enhanced. In contrast, when the auditory stimulus does not
contain sufficient information to extract meaning (as is the case
for V speech or visual speech with auditory white noise) the
visual response is needed to extract meaning and is therefore
enhanced.

Because of its long latency and context dependence, the en-
hancement of visual-cortex responses likely relies on
top-down neural circuitry consisting of recurrent connections
from frontal-parietal-temporal areas to visual areas, perhaps in-
cluding thalamic relays (Sherman 2007; Saalmann et al. 2012;
Davidesco et al. 2013; Leitao et al. 2013). The speech network
may engage the top-down circuitry without requiring a con-
scious (voluntary) shift of attention. In this model, auditory as-
sociation areas perform initial processing of the auditory
speech stimulus, as early as 110-150 ms after auditory stimulus
onset in the superior temporal gyrus (Chang et al. 2010;
MacGregor et al. 2012). If the auditory speech signal is not suf-
ficient to unambiguously identify the speech stimulus, higher-
level areas would become engaged to further process the audi-
tory and visual speech information, including dorsolateral pre-
frontal cortex, the frontal eye field and lateral intraparietal
cortex (Rossi et al. 2007; Bisley and Goldberg 2010; Miller and
Buschman 2013; Squire et al. 2013) and STS (Beauchamp et al.
2004; Kayser and Logothetis 2009). Regardless of the anatom-
ical origin of the visual enhancement, the model predicts that
presenting even an irrelevant visual stimulus at the location of

Figure 5. Regions important for cortical AV speech processing. Cortical surface model
showing BOLD fMRI responses (yellow color) to AV speech (P < 0.05, FDR corrected;
subject KO). F, frontal areas; P parietal areas (activity in depth of intraparietal sulcus not
visible), A, auditory cortex; STS, superior temporal sulcus and related multisensory
areas; V, visual cortex. Arrows indicate possible pathways for enhancement of visual
cortex activity when auditory information is insufficient for speech comprehension.
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the talker’s face would evoke a larger response in the V condi-
tion than the AV condition. The model also predicts that
presenting AV speech with increasing degrees of auditory
noise would lead to graded enhancement of visual responses
(Kawase et al. 2005; Nath and Beauchamp 2011; Schepers
etal. 2013).

We observed a consistent difference in visual cortex re-
sponses to V versus AV speech. We refer to this difference as
an enhanced response to V speech relative to AV speech
because in normal experience, AV speech is encountered far
more often than V speech and it therefore seems sensible to
consider it as the baseline condition. Of course, the effect
could also be considered a diminished response to AV speech
relative to V speech. This would suggest that auditory cortex
inhibits visual cortex, leading to a diminished response in
visual cortex when the auditory component of the stimulus is
present in AV speech. This direct inhibition would be expected
to occur early after auditory stimulation. For instance, an
auditory tone suppressed visual responses to a disc beginning
at ~40 ms after stimulus onset (Giard and Peronnet 1999;
Molholm et al. 2002; Mercier et al. 2013). In mice, activation of
auditory cortex through short noise bursts let to reduced visual
neural responses to moving bars in primary visual cortex be-
ginning ~6 ms after auditory stimulus onset (Turilli et al. 2012).
Anatomically, these effects could be mediated by direct axonal
projections from auditory cortex to visual cortex or thalamo-
cortical connections (Falchier et al. 2002; Campi et al. 2010;
van den Brink et al. 2013).

There are 2 arguments against such direct inhibition of visual
cortex by auditory cortex as the explanation for the effects ob-
served in our study. The first is the long latency of the observed
response difference between V versus AV speech: it did not begin
until ~490 ms after auditory stimulus onset, much later than that
reported in studies that used simple stimuli. The second is that
the inhibition was contingent upon the content of the auditory
stimulus: in the second experiment, auditory noise paired with
visual speech showed greater responses than AV speech.

Implications for Sensory Deficits

Hearing loss occurs in ~80% of people with healthy aging and
auditory word recognition declines in healthy older adults (Gates
et al. 1990; Yueh et al. 2003). Interestingly, older adults with
hearing impairments have been found to perform better in word
identification than older adults with normal hearing when only
the visual speech signal was available (Tye-Murray et al. 2007).
When the auditory speech signal is compromised, for example,
due to external noise or damage to the cochlea, the visual speech
signal gains in importance for comprehension (Bergeson et al.
2005; Ross, Saint-Amour, Leavitt, Javitt et al. 2007). Therefore, pa-
tients with impaired auditory perception might be expected to
have heightened visual cortex responses to speech.
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