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Summary. The specifications of the Robust Gene Response Challenge are to design a genetic circuit
that ensures fast, robust expression of a fluorescent protein upon induction. Here, we work through the
specifications for a reference design and establish a baseline performance score, using both computational
and experimental methods. This analysis has helped refine the specifications and will provide standards
and protocols to help participating teams in their designs.

1 Introduction

Significant progress has occurred in the design of genetic circuits with small number of components.
However, a major challenge in genetic circuit design is to ensure robust operation of these small circuits
so that they can be combined to build larger circuits [9]. The Critical Assessment of Genetically
Engineered Networks (CAGEN) is a competition that aims to engender the design of robust genetic
circuits, by sequentially issuing design problems of increasing complexity. As part of this, the current
Robust Gene Response Challenge specifies the design of a circuit that can quickly generate at least a
tenfold change in the expression of a fluorescent protein upon induction, with minimal variation between
cells and across temperatures.

Previous investigations have studied circuit properties relevant to this Robust Gene Response Chal-
lenge, such as amplitude and noise at equilibrium and speed of response (for recent reviews on noise,
see [6, 10]). These investigations have combined mathematical models with experimental measurements
in both F. coli and yeast using a variety of techniques, including single-cell measurements using fluores-
cence microscopy, both static and dynamic, and flow cytometry as well as population-level measurements
using platereaders.

These results highlight three features that are relevant for designing Robust Gene Responses. One,
noise reduces as the amplitude increases (for example, see [3]). Two, noise arises at different steps of
gene expression and can be quantitatively tuned (for example, see [8]). Three, negative feedback can
reduce noise [4] and increase the speed of response [4, 11]. However, a characterization of a circuit in a
manner that would establish a baseline performance criteria for the Robust Gene Response Challenge
has not been done.

Here, we propose to work through the Challenge specifications for a simple reference design. First,
we state the normalized metric that will be used to score the designs. Second, we estimate this metric
using a computational model of a protein production-degradation process. This computation allows
us to verify that this metric agrees well with intuitive expectations of circuit properties such as the
amplitude, noise, and speed of response. Third, we calculate this metric using experimental single-cell
time-lapse fluorescence microscopy data acquired by inducing protein expression in F. coli. Finally, we
use the model to show that a slight modification of the metric can be used to estimate the score using
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population-level time-lapse fluorescence flow cytometry. The analysis presented here together with the
related scripts and data can help participating teams in their designs.

2 Defining the Performance Metric

Each participating entry is required to submit time traces at a nominal temperature and at temperatures
that are 5% above and below this nominal value, with measurements from at least five individual cells
chosen from separate colonies at each temperature. This represents a total of 15 time traces of data
(denoted y;(t),7 = 1,2,3...15). Of these at least one trace, say y;(t), must be chosen as a reference
trace (denoted 7(t)), and should demonstrate at least a tenfold change in amplitude upon induction.
The numerical score (S;) for each time trace is the integrated square error between the time trace and
the reference trace,

T2
S, = / ly;(t) — r(t)[2dt, j = 2,3,4.. .15,
T

Here, T; is the time where the reference trace reaches 10% of its equilibrium value, and T5 is the time
after which the variation in the reference trace is within 10% of its equilibrium value. Additionally, the
reference trace is required to hold the equilibrium value for a time duration 7T, — T; after T5. The score
of the design is based on worst-case analysis and will be the highest among the scores of the individual
traces.

Most metrics measuring variability normalize the variance in some fashion. For example, a widely
used metric for noise at equilibrium normalizes the standard deviation by the mean (see [7]). Motivated
by this, we normalize this metric by the equilibrium amplitude of the reference trace (M). With this
consideration, the final score is,

max; S;

S = e

This generates a single number that can be used to order the designs.

3 Computing the Performance Score for a Protein Production-
Degradation Circuit

Next, we estimated the performance score using a model of a simple protein production-degradation
circuit. In this model, the total level of a protein X depends on the balance between its production,
modeled as a zero-order process that changes from a basal rate of ay to a upon induction, and its dilution
due to cell growth, modeled as first-order processes with rate constant v. Analytical expressions of the
fold-change upon induction, amplitude and noise at equilibrium, and the response speed for this model
are standard. The fold-change upon induction is O%, and the Challenge specifications require that this
exceed a factor of ten. The equilibrium amplitude (M) and noise (n) depend on the ratio /7,
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and the response speed (7) depends only on v, 7 = 1/v. The Challenge specifications require low noise,
or equivalently a high amplitude, and a fast response speed. In general, these properties will change with
temperature, depending on how the process parameters depend on temperature. Initially, we ignore this
temperature dependence in estimating the score.
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Calculating performance score for this model requires access to temporal trajectories, which can be
generated using stochastic simulations of the model (see Fig. 1). These can be generated these using
the software package BioNets [2]. The performance score generated using these traces is 0.005 (N = 15).
Recalculating the performance score for another set of stochastic traces (= 0.010, N = 15) or for a larger
set of traces (= 0.011, N = 100) yields a similar value.
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Figure 1: Trajectories of the protein production-degradation process generated using stochastic sim-
ulations. Black trace is the reference trace, arbitrarily picked as the first trace, and green traces are
the other 14 traces. All traces are sampled at a 10 minute resolution. Shaded area indicates the time
duration (T3 = 0, Ty = 3hr) over which the performance score integral is evaluated. Finally, the equi-
librium amplitude M is used as the normalization factor. The model parameters for this simulation are
a = 1000 nM /hr, ap = InM/hr, v = 1/hr.

To verify that the performance metric adequately captures the Challenge specifications of circuit
noise and speed as given by the analytical expressions, we performed two additional set of simulations:
First, the noise was increased for a fixed speed, by varying only o and not 7. Second, the speed was
increased at a fixed noise, by varying v and changing « so that «/~ is fixed. For each value of noise and
speed in these cases, two sets of 15 trajectories were simulated. The performance score was calculated
as outlined above. In addition, for comparison with a larger number of trajectories, the performance
score was also calculated for an additional set of 100 trajectories. For all sets of trajectories, we find
that the performance score worsens if noise increases or if response speed reduces (Fig. 2). This is in
accordance with intuitive expectations of how the score should vary relative to properties like speed and
noise, verifying that the metric adequately captures the Challenge specifications. Further, an implication
of the broad correlation between the performance score and circuit properties like noise and speed is
that population-level measurements characterizing amplitude and speed can also be used in early design
iterations.
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Figure 2: Performance worsens as noise increases or speed reduces. Performance scores are calculated
as (a) noise is varied for fixed speed and, (b) speed is varied for fixed noise. Red crosses and blue
circles are the performance scores for two sets of 15 trajectories. Black line connects points representing
performance scores for a set of 100 trajectories, and are similar to the red crosses and blue circles.
To change noise levels for fixed speed in (a), the values of « are varied logarithmically from 10nM /hr
to 10*nM/hr, for fixed 7. To change speed values for fixed noise in (b), the values of v are varied
logarithmically from 0.1/hr to 10/hr and « values are adjusted so that the ratio a/y = 1000 nM stays
fixed.

4 Measuring the Performance Score for a Inducible Protein
Expression Circuit

As the next step in working through the Challenge specifications, we estimated the performance score
from experimental measurements. One of the most simplest choices for this purpose is an inducible
protein expression circuit in E. coli. This also serves to establish a set of reference protocols for experi-
ments.

There are three parts to computing the performance score from experimental data - constructing de-
sired strain using standard molecular biology procedures, acquiring the data using time-lapse fluorescent
microscopy, and analyzing the data using image processing tools. We used two previously constructed
strains [1, 5] to measure the single-cell protein induction dynamics (Fig. 3). In these strains, the addi-
tion of the inducer IPTG increases the expression of fluorescent proteins, CI-YFP in [5] and YFP in [1]
(Fig. 2). For the measurement, cells were grown overnight in LB at 37° C. The overnight culture was
diluted 1 : 100 in MGC (M9 minimal media containing 0.2% Glycerol, 0.01% Casamino acids, 0.15 u
g/ml Biotin, and 1.5x4 M Thiamine), and grown at 32°C for 3 hours. For time-lapse imaging, cells were
placed on agarose pads (1.5% Low melting point Agarose in MGC) with and without IPTG and imaged
every 10 minutes. This imaging was performed at a nominal temperature, chosen to be 32°C as in [5],
and at temperatures 5% (= 2°C) above and below this nominal value. This experiment yields data in
the form of a time-sequence of images. Processing these images to estimate fluorescence in each cell and
how this changes over time was done through a custom software written in MATLAB and C.

For the first strain, the chosen reference trace reaches its equilibrium value of ~ 60 a.u. at T" = 160
minutes. In the absence of induction, the equilibrium value for a trace is ~ 2 a.u. Therefore, the
reference trace exhibits a greater than ten-fold induction. Further, the time after which it stays within
10% of this equilibrium value is T, = 150 minutes, and so it also maintains this equilibrium value for
the required time. The performance score for this dataset is 0.27. Similarly, the chosen reference trace
for the second strain reaches its equilibrium value of ~ 45 a.u. at T = 100 minutes. In the absence
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Figure 3: Single-Cell Dynamics of a Inducible Protein Expression Circuits. Solid black line represents
the reference trajectory. Dashed black line is a trajectory in the absence of induction. Red, magenta
and blue colors represent the temperatures 34°C, 32°C, and 30°C, respectively. Circles on each trace
denote the time of cell division. Shaded regions indicate the time duration over which the integral is
evaluated. All traces show mean single-cell fluorescence values above camera background. The time
of induction is ~ —10 min. Additional information: (a) Schematic represents induction of fluorescent
protein YFP. Reference trace is at 32°C. The IPTG concentration for induction is ImM. (b) Schematic
represents induction of fluorescent protein CI-YFP. Reference trace is at 34°C. The IPTG concentration
for induction is 10uM.



of induction, the equilibrium value of a trace is &~ 1 a.u. Therefore, this reference trace exhibits a
greater than ten-fold induction. As the time after which it stays within 10% of this equilibrium value
is T5 = 80 minutes, the reference trace holds the equilibrium value for the required duration of time.
The performance score for this dataset is S = 0.29. Both performance scores are largely similar. This
is to be expected as even though one of the datasets is more variable than the other, it is also faster.
Therefore, these cancel out and give rise to similar score. Interestingly, these are quite similar to the
simulated ones. Links to the scripts and data used to estimate performance score from experimental
measurements will be on the CAGEN website.

5 Estimating performance score using population-level mea-
surements

Performance scores estimated so far, both computationally and experimentally, rely on single-cell time
courses. Next, we explored whether similar performance estimates can be obtained from population-
level measurements, which yield a a distribution of fluorescent intensities at each time point. If possible,
this offers a simpler measurement technology that can also be used in early design iterations. For this
purpose, we propose a slight modification to the previous metric computationally compare it with the
previous metric. In particular, we define the metric based on the time course of the variance of the
distribution (02(t)) and the equilibrium amplitude M of the time course of the mean of the distribution

(1)),
1 T2

S, = —
PM o In

o?(t)dt.

As before, the integral is evaluated over the time in which the mean time-course rises from 10% to a
time after which it stays within 10% of its final value. In contrast to the metric S, which is a worst-case
measure, the modified metric S, is an average measure.

The previously introduced computational model of protein production-degradation can facilitate a
comparison of the two metrics. We have already used stochastic simulations to compute the worst-
case metric S. By ignoring the time connectivities in the same data (Fig. 4a), it can also be used to
compute the average metric S,. We find that the average score is 0.002 (N = 100), which underestimates
the average score by only an order of magnitude for these simulations. A related question in taking
population-level measurements is the time resolution that is convenient in data acquisition. To check
how the score depends on the sampling rate, we computed the score for different time resolutions (Fig.
4b). We find that the score is reasonably constant for sampling rates from 10 minutes to 2 hours. In
fact, any sampling rate which is at least twice as fast as the response time (= T5) is expected to offer
sufficient resolution. Finally, we verified that changes in the average metric relative to circuit properties
like noise and speed conform to intuitive expectations (Fig. 4c, d). For this, we computed the average
score for the case when the noise is varied for a fixed speed as well as for the case when the speed was
varied for a fixed noise level. In both cases, the average score showed the expected dependence, which
was also similar to the dependence of the worst case metric. Together, this analysis shows that the
average score computed using population-level measurements is also a good indicator of performance.

6 Discussion

The goal of the Robust Gene Response Challenge is to design a circuit that can quickly increase the
expression of a fluorescent protein by tenfold upon induction and exhibit minimal variation in expression
between cells and across temperatures. To this end, we have worked through the Challenge specifications:
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Figure 4: Population-level Metric Scores for the Protein Production-Degradation Circuit. (a) Three-
dimensional plot shows evolution of fluorescence distributions over time. (b) Solid red line connects
average scores computed at sampling rates 10, 20, 30, 60, 120 minutes. Black dot represents the worst-
case metric score at a 10 minute sampling rate. Performance scores are calculated as (c) noise is varied
for fixed speed and, (d) speed is varied for fixed noise. In each plot, solid red line connects the average
score measurements (N = 100). Solid black line connects the worst-case score measurements (N = 100).
To change noise levels for fixed speed in (c), the values of « are varied logarithmically from 10nM /hr
to 10*nM/hr, for fixed 7. To change speed values for fixed noise in (d), the values of v are varied
logarithmically from 0.1/hr to 10/hr and « values are adjusted so that the ratio a/y = 1000 nM stays
fixed.



First, we have stated the normalized performance metric that will be used to compare designs. Second,
we have used a simple computational model to estimate this metric, and verify that this normalized
metric adequately captures circuit properties like noise, and speed of response. Third, we have estimated
performance scores using experimentally acquired single-cell time-lapse fluorescence microscopy data
from inducible protein expression circuits in E. coli. These establish a baseline performance measure.
Finally, we present a slight modification to the metric and use a model to show how a performance
score can be estimated using population-level time-lapse fluorescence flow cytometry. These tasks are
aimed at establishing baseline performance criteria and provide standards and protocols that can be
used by participating teams as a starting point for their designs. The related scripts and data as well as
refinements to the Challenge specifications suggested from this analysis will be posted on the CAGEN
website.

An interesting aspect of the Robust Gene Response Challenge specifications is the need for circuit
performance to be maintained across temperatures. Understanding how temperature affects the op-
eration of genetic circuits is fundamental problem in cell biology, with significant efforts devoted to
understanding temperature-compensatory mechanisms in circadian rhythms. It is also interesting from
a design point of view as robustness to temperature variations is likely to be an important property in
the use of synthetic molecular circuits. The current Challenge is likely to result in data that will be
important for both these contexts.

Based on what is known experimentally and from computational models, there are many conceptual
designs that can be used to exceed baseline performance indices. One is to use negative feedback,
whose role in engineering fast responses is well known theoretically and experimentally. These can be
implemented either using transcriptional feedbacks, where the protein regulates its own expression, or
using degradation tags to increase protein degradation, for example ssrA in F. coli or ubiquitin-based
systems in yeast.

Efforts to design circuits for this CAGEN Challenge will improve on the current techniques for the
design of robust biological circuits. As they will be accessible to a wider research community, they will
provide foundations to develop new design protocols as well as mathematical tools to address them.
Together, they will help in the overall goal of engineering biological processes with applications in
agriculture, medicine, and environmental sciences.
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