Advanced Modelling in Biology
Question 5

Define combinatorial optimization. Give one example of such a problem and explain what
makes it usually a computationally hard problem.

Combinatorial optimization is the minimization or maximization of functions with discrete
output sets. One example of such aproblem isthe travelling salesman problem where one
must find the minimum distance to travel through N number of cities. Although there are
algorithms (e.g. Dijkstra’ s algorithm) that generally yield the solution, most of these

problems are only solved by complete enumeration (ie going through every possible solution).

If we look closely at the travelling salesman problem with N number of cities and each city
connected to the each other, there are N! number of possible routes the salesman can take.
Because computation then also becomes on the order of N! (known as combinatorial
explosion), these types of problems are generally computational hard.

Two methods used in combinatorial optimization are evolutionary (genetic) algorithms and
simulated annealing. Describe the origin and basic ideas behind these algorithms and
compare their advantages and disadvantages.

The origin of simulated annealing comes from materials science and is based upon the idea of
exploring the energy function by jumping to different energies depending upon the
“temperature”. Onefirst selects an initia condition can calculates the energy at that point.
Another point close by is randomly selected, and if the energy at that point is less than the
previous energy, then we move to the lower energy point. However, with some probability
related to the Boltzmann distribution, we also accept increases in energy changes. Higher
temperatures lead us to have a probability of accepting higher temperature increases and
tends to ensure that we do not get stuck at alocal minima. We repeat the algorithm, lowering
the temperature each time, until we are satisfied that we have reached the globa minimum.

Evolutionary (or genetic) algorithms on the other hand were motivated from biology and is
based upon the idea of parallel exploration of state space, leading to faster convergence of
solutions. Given adiscrete set of solutions to our problem, we initially pick a population P of
solutions at random. The population first undergoes reproduction where pairs of solutions
create one offspring. Each solution in the popul ation undergoes mutation at a certain
frequency aswell as cross-over (chiasma) where portions of solutions are chopped off and
transferred to another solution. The population is then ranked based upon the cost function
and the bottom P/2 are removed from the population eliminating poor solutions. The
algorithm again is repeated until a suitable solution is reached.

For continuous functions, it is easy to see that simulated annealing would be more
appropriate than genetic algorithms. However, due to the parallel exploration of state space
utilized by genetic algorithms, they converge much faster to a solution than simulated
annealing. Furthermore, genetic algorithms are able to explore the state space much more
through mutations and crossovers than the energy space simulated annealing covers. One
disadvantage of simulated annealing that it usually gets caught in local minimaand

depending on the shape of the energy landscape, it may be difficult to exit the local minimato
continue the energy landscape exploration. Thisis overcome by having avery slow decrease
in temperature and allowing it to run for longer. It isimportant to note that both of these



algorithms are heuristic and do not guarantee that the solution be found. Usually, they are
run several times to test convergence onto a particular solution. Only when run an infinite
number of times do the algorithms guarantee the optimal solution.

For both algorithms, write a few lines of pseudo-code to apply them to the optimization of a
function U(x), where x is a configuration of the discrete set X = {x}.

For simulated annealing

Pick arandom configuration x
Evaluate U(x)
For 1:number of times to repeat {
Generate a new configuration xnew by picking a random element in x and changing
it's state
Evaluate U(xnew)
If U(xnew) < U(x)
Accept change in configuration, U(x) = U(xnew)
Elseif rand() < e™-(U(x)-U(xnew))/KT)
Accept change in configuration, U(x) = U(xnew)

Else:

Do not accept change
Decrease temperature T
}

For genetic algorithms

Generate P number of configurations x

Evaluate U(x) for al solutionsin P

For 1:number of times to repeat {
Pair up random configurations
Mate the pairs of configurations to produce children
Mutate each configuration with a probability p
Take pairs of random configurations and perform crossover
Evaluate U(xnew) for al solutions in expanded population
Rank all solutions depending upon U
Kill off bottom P/2 solutions

}
Question 6

Use a sketch to explain the mathematical basis of gradient methods for the optimization of a
function U(x, X2, . . ., Xn).

The mathematical basis of gradient methods depends on calculating the slope (or gradient for
dimensions greater than 2) and travelling along that pathway to reach the minimum. For
gradient methods however, we are only guaranteed alocal optimization and not global
optimization. Only for convex functions are we guaranteed a global minimum. For normal
gradient methods such as steepest descent, an initial starting position is taken randomly and
the gradient is calculated at that point. Steps are taken against the direction of the gradient



—VU until the gradient at the point becomes zero signifying that you have reached a
minimum. Thisis seenin the diagram below.

1200

1000

800

600

400 -

200+

ok

-200
-5

You need to obtain numerically the global minimum of the function U(x) in Figure 1 for
which you have the explicit analytical form. Compare in detail how you would achieve it:
i) by using an integrator such as ode45

ii) by using the steepest descent solver fsolve.

Both ode45 and fsolve by themselves will only achieve finding the local minima. With

ode45, we integrate the negative energy gradient, such that we are always progressing down
the energy gradient. Once it reaches the minima, ode45 will then stop. So given our energy
function U(x), we can calculate VU and hence come up with our differential equation to plug

into ode45 as% = —VU. Over time, x will convergeto alocal minimum. To find the global

minimum of the function, we must try several different initial conditions for x and evaluate
the energy U(x) for each minimum that is found using the ode45. Only by trying a sufficient
number of initial conditions that yield al of the local minima can we be sure that we are
indeed at a global minimum.

Fsolve worksin asimilar way to the above method and is also an implementation of the
stegpest descent algorithm. However, fsolve finds the zeros of afunction and so the input
function must be the derivative of our energy function U(x) that we wish to minimize. Again,
with oneinitia condition, you are guaranteed alocal minimum, but in order to find the global
minimum, several initial conditions must be tried and the energy U(x) must be evaluated at
each zero to ensure that we really reach the global minimum.

For both methods, discrete time steps are not generally taken unless specified (when using
0ded5). Instead, time steps are taken to maximize the efficiency of the algorithm so it
quickly converges to a solution in matlab.

Use this exampl e to discuss the problems encountered when applying gradient methods to
global optimization of non-convex functions. Explain why thisis a computationally hard
problemin general and mention briefly some of the methods that can help with it.



-1 48 0B 04 02 0 02 04 06 098 1
X

Figure 1:

One of the main problems with gradient methods is that you are not guaranteed a solution.
Asisseeninfigure 1, if we start at different initial conditions, we may or may not end up in
the global minimum but might get stuck in alocal minimum. This problem becomes
exacerbated the more minimawe have. In the worst case scenario, one must try an infinite
number of initial conditions to ensure that the global minimum is found, making thisa
computationally difficult problem. One can get around this by simulated annealing where an
initial guessis selected at random, and a step size istaken. Although we accept all changes
that lead us down a gradient, we will also accept changes that take us up a gradient with some
probability related to the “temperature” that we set and the change in energy that the move
causes. Thisalso does not guarantee the global minima, but by allowing movement up the
gradient, we are less likely to get stuck in alocal minimum. Only if we allow the temperature
to decrease very slowly and run the algorithm for an infinite amount of time will we be
guaranteed the global minimum.

Another problem with gradient methods is quite the opposite to having several minima.
Having a very shallow function such that the gradient changes very little for along time can
also cause the computer to take along time to converge. Both fsolve and ode45 tend to take
time steps that will maximize the change in gradient, but for shallow functions, the changein
gradient might be too small to converge quickly and will have to keep taking infinitely small
time steps until the minimum is reached. For energy landscapes of more than 2 variables,
conjugate gradient methods can be applied where we don’t always take steps in the direction
against the gradient, but move to the side and then return back to the gradient.



