
Advanced Modelling in Biology 

Question 5 

Define combinatorial optimization. Give one example of such a problem and explain what 
makes it usually a computationally hard problem. 
 
Combinatorial optimization is the minimization or maximization of functions with discrete 
output sets.  One example of such a problem is the travelling salesman problem where one 
must find the minimum distance to travel through N number of cities.  Although there are 
algorithms (e.g. Dijkstra’s algorithm) that generally yield the solution, most of these 
problems are only solved by complete enumeration (ie going through every possible solution).   
 
If we look closely at the travelling salesman problem with N number of cities and each city 
connected to the each other, there are N! number of possible routes the salesman can take.  
Because computation then also becomes on the order of N! (known as combinatorial 
explosion), these types of problems are generally computational hard. 
 
Two methods used in combinatorial optimization are evolutionary (genetic) algorithms and 
simulated annealing. Describe the origin and basic ideas behind these algorithms and 
compare their advantages and disadvantages. 
 
The origin of simulated annealing comes from materials science and is based upon the idea of 
exploring the energy function by jumping to different energies depending upon the 
“temperature”.  One first selects an initial condition can calculates the energy at that point.  
Another point close by is randomly selected, and if the energy at that point is less than the 
previous energy, then we move to the lower energy point.  However, with some probability 
related to the Boltzmann distribution, we also accept increases in energy changes.  Higher 
temperatures lead us to have a probability of accepting higher temperature increases and 
tends to ensure that we do not get stuck at a local minima.  We repeat the algorithm, lowering 
the temperature each time, until we are satisfied that we have reached the global minimum. 
 
Evolutionary (or genetic) algorithms on the other hand were motivated from biology and is 
based upon the idea of parallel exploration of state space, leading to faster convergence of 
solutions.  Given a discrete set of solutions to our problem, we initially pick a population P of 
solutions at random.  The population first undergoes reproduction where pairs of solutions 
create one offspring.  Each solution in the population undergoes mutation at a certain 
frequency as well as cross-over (chiasma) where portions of solutions are chopped off and 
transferred to another solution.  The population is then ranked based upon the cost function 
and the bottom P/2 are removed from the population eliminating poor solutions.  The 
algorithm again is repeated until a suitable solution is reached. 
 
For continuous functions, it is easy to see that simulated annealing would be more 
appropriate than genetic algorithms.  However, due to the parallel exploration of state space 
utilized by genetic algorithms, they converge much faster to a solution than simulated 
annealing.  Furthermore, genetic algorithms are able to explore the state space much more 
through mutations and crossovers than the energy space simulated annealing covers.  One 
disadvantage of simulated annealing that it usually gets caught in local minima and 
depending on the shape of the energy landscape, it may be difficult to exit the local minima to 
continue the energy landscape exploration.  This is overcome by having a very slow decrease 
in temperature and allowing it to run for longer.  It is important to note that both of these 



algorithms are heuristic and do not guarantee that the solution be found.  Usually, they are 
run several times to test convergence onto a particular solution.  Only when run an infinite 
number of times do the algorithms guarantee the optimal solution. 
 
For both algorithms, write a few lines of pseudo-code to apply them to the optimization of a 
function U(x), where x is a configuration of the discrete set X = {x}. 
 
For simulated annealing 
 
Pick a random configuration x 
Evaluate U(x) 
For 1:number of times to repeat { 

Generate a new configuration xnew by picking a random element in x and changing 
it’s state 
Evaluate U(xnew) 
If U(xnew) < U(x) 

  Accept change in configuration, U(x) = U(xnew) 
Else if rand() < e^-(U(x)-U(xnew))/kT) 

  Accept change in configuration, U(x) = U(xnew) 
Else: 

  Do not accept change 
 Decrease temperature T 
 } 
 
For genetic algorithms 
 
Generate P number of configurations x 
Evaluate U(x) for all solutions in P 
For 1:number of times to repeat { 
 Pair up random configurations 
 Mate the pairs of configurations to produce children 
 Mutate each configuration with a probability p 
 Take pairs of random configurations and perform crossover 
 Evaluate U(xnew) for all solutions in expanded population 
 Rank all solutions depending upon U 
 Kill off bottom P/2 solutions 
 } 
 
Question 6 
 
Use a sketch to explain the mathematical basis of gradient methods for the optimization of a 
function U(x1, x2, . . . , xn). 
 
The mathematical basis of gradient methods depends on calculating the slope (or gradient for 
dimensions greater than 2) and travelling along that pathway to reach the minimum.  For 
gradient methods however, we are only guaranteed a local optimization and not global 
optimization.  Only for convex functions are we guaranteed a global minimum.  For normal 
gradient methods such as steepest descent, an initial starting position is taken randomly and 
the gradient is calculated at that point.  Steps are taken against the direction of the gradient 



 until the gradient at the point becomes zero signifying that you have reached a 
minimum.  This is seen in the diagram below. 
 

 
You need to obtain numerically the global minimum of the function U(x) in Figure 1 for 
which you have the explicit analytical form. Compare in detail how you would achieve it: 
i) by using an integrator such as ode45 
ii) by using the steepest descent solver fsolve. 
 
Both ode45 and fsolve by themselves will only achieve finding the local minima.  With 
ode45, we integrate the negative energy gradient, such that we are always progressing down 
the energy gradient.  Once it reaches the minima, ode45 will then stop.  So given our energy 
function U(x), we can calculate  and hence come up with our differential equation to plug 
into ode45 as .  Over time, x will converge to a local minimum.  To find the global 
minimum of the function, we must try several different initial conditions for x and evaluate 
the energy U(x) for each minimum that is found using the ode45.  Only by trying a sufficient 
number of initial conditions that yield all of the local minima can we be sure that we are 
indeed at a global minimum. 
 
Fsolve works in a similar way to the above method and is also an implementation of the 
steepest descent algorithm.  However, fsolve finds the zeros of a function and so the input 
function must be the derivative of our energy function U(x) that we wish to minimize.  Again, 
with one initial condition, you are guaranteed a local minimum, but in order to find the global 
minimum, several initial conditions must be tried and the energy U(x) must be evaluated at 
each zero to ensure that we really reach the global minimum.   
 
For both methods, discrete time steps are not generally taken unless specified (when using 
ode45).  Instead, time steps are taken to maximize the efficiency of the algorithm so it 
quickly converges to a solution in matlab. 
 
Use this example to discuss the problems encountered when applying gradient methods to 
global optimization of non-convex functions. Explain why this is a computationally hard 
problem in general and mention briefly some of the methods that can help with it. 
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One of the main problems with gradient methods is that you are not guaranteed a solution.  
As is seen in figure 1, if we start at different initial conditions, we may or may not end up in 
the global minimum but might get stuck in a local minimum.  This problem becomes 
exacerbated the more minima we have.  In the worst case scenario, one must try an infinite 
number of initial conditions to ensure that the global minimum is found, making this a 
computationally difficult problem.  One can get around this by simulated annealing where an 
initial guess is selected at random, and a step size is taken.  Although we accept all changes 
that lead us down a gradient, we will also accept changes that take us up a gradient with some 
probability related to the “temperature” that we set and the change in energy that the move 
causes.  This also does not guarantee the global minima, but by allowing movement up the 
gradient, we are less likely to get stuck in a local minimum.  Only if we allow the temperature 
to decrease very slowly and run the algorithm for an infinite amount of time will we be 
guaranteed the global minimum. 
 
Another problem with gradient methods is quite the opposite to having several minima.  
Having a very shallow function such that the gradient changes very little for a long time can 
also cause the computer to take a long time to converge.  Both fsolve and ode45 tend to take 
time steps that will maximize the change in gradient, but for shallow functions, the change in 
gradient might be too small to converge quickly and will have to keep taking infinitely small 
time steps until the minimum is reached.  For energy landscapes of more than 2 variables, 
conjugate gradient methods can be applied where we don’t always take steps in the direction 
against the gradient, but move to the side and then return back to the gradient.   
 
 


