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We have demonstrated the discovery of
physical laws, from scratch, directly from ex-
perimentally captured data with the use of a
computational search. We used the presented
approach to detect nonlinear energy conservation
laws, Newtonian force laws, geometric invari-
ants, and system manifolds in various synthetic
and physically implemented systems without
prior knowledge about physics, kinematics, or
geometry. The concise analytical expressions that
we found are amenable to human interpretation
and help to reveal the physics underlying the
observed phenomenon. Many applications exist
for this approach, in fields ranging from systems
biology to cosmology, where theoretical gaps
exist despite abundance in data.

Might this process diminish the role of future
scientists? Quite the contrary: Scientists may use
processes such as this to help focus on interesting
phenomena more rapidly and to interpret their
meaning.
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The basis of science is the hypothetico-deductive method and the recording of experiments in
sufficient detail to enable reproducibility. We report the development of Robot Scientist “Adam,”
which advances the automation of both. Adam has autonomously generated functional genomics
hypotheses about the yeast Saccharomyces cerevisiae and experimentally tested these hypotheses
by using laboratory automation. We have confirmed Adam’s conclusions through manual
experiments. To describe Adam’s research, we have developed an ontology and logical language.
The resulting formalization involves over 10,000 different research units in a nested treelike
structure, 10 levels deep, that relates the 6.6 million biomass measurements to their logical
description. This formalization describes how a machine contributed to scientific knowledge.

omputers are playing an ever-greater role

in the scientific process (/). Their use to

control the execution of experiments con-
tributes to a vast expansion in the production of
scientific data (2). This growth in scientific data,
in turn, requires the increased use of computers
for analysis and modeling. The use of computers
is also changing the way that science is described
and reported. Scientific knowledge is best ex-
pressed in formal logical languages (3). Only
formal languages provide sufficient semantic
clarity to ensure reproducibility and the free
exchange of scientific knowledge. Despite the
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advantages of logic, most scientific knowledge is
expressed only in natural languages. This is now
changing through developments such as the
Semantic Web (4) and ontologies (3).

A natural extension of the trend to ever-greater
computer involvement in science is the concept of
a robot scientist (6). This is a physically imple-
mented laboratory automation system that exploits
techniques from the field of artificial intelligence
(7-9) to execute cycles of scientific experimenta-
tion. A robot scientist automatically originates
hypotheses to explain observations, devises exper-
iments to test these hypotheses, physically runs the
experiments by using laboratory robotics, inter-
prets the results, and then repeats the cycle.

High-throughput laboratory automation is trans-
forming biology and revealing vast amounts of
new scientific knowledge (10). Nevertheless, ex-
isting high-throughput methods are currently in-
adequate for areas such as systems biology. This
is because, even though very large numbers of

experiments can be executed, each individual ex-
periment cannot be designed to test a hypothesis
about a model. Robot scientists have the potential
to overcome this fundamental limitation.

The complexity of biological systems neces-
sitates the recording of experimental metadata in
as much detail as possible. Acquiring these meta-
data has often proved problematic. With robot
scientists, comprehensive metadata are produced
as a natural by-product of the way they work.
Because the experiments are conceived and ex-
ecuted automatically by computer, it is possible
to completely capture and digitally curate all as-
pects of the scientific process (11, 12).

To demonstrate that the robot scientist meth-
odology can be both automated and be made
effective enough to contribute to scientific knowl-
edge, we have developed Robot Scientist “Adam”
(13) (Fig. 1). Adam’s hardware is fully automated
such that it only requires a technician to period-
ically add laboratory consumables and to remove
waste. It is designed to automate the high-
throughput execution of individually designed
microbial batch growth experiments in micro-
titer plates (/4). Adam measures growth curves
(phenotypes) of selected microbial strains (geno-
types) growing in defined media (environments).
Growth of cell cultures can be easily measured in
high-throughput, and growth curves are sensitive
to changes in genotype and environment.

We applied Adam to the identification of
genes encoding orphan enzymes in Saccharomy-
ces cerevisiae: enzymes catalyzing biochemical
reactions thought to occur in yeast, but for which
the encoding gene(s) are not known (/5). To set
up Adam for this application required (i) a
comprehensive logical model encoding knowl-
edge of S. cerevisiae metabolism [~1200 open
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reading frames (ORFs), ~800 metabolites] (15),
expressed in the logic programming language
Prolog; (ii) a general bioinformatic database of
genes and proteins involved in metabolism; (iii)
software to abduce hypotheses about the genes
encoding the orphan enzymes, done by using a
combination of standard bioinformatic software
and databases; (iv) software to deduce experi-
ments that test the observational consequences of
hypotheses (based on the model); (v) software to
plan and design the experiments, which are based
on the use of deletion mutants and the addition of
selected metabolites to a defined growth medium;
(vi) laboratory automation software to physically
execute the experimental plan and to record the
data and metadata in a relational database; (vii)
software to analyze the data and metadata (gen-
erate growth curves and extract parameters); and
(viii) software to relate the analyzed data to the
hypotheses; for example, statistical methods are
required to decide on significance. Once this in-
frastructure is in place, no human intellectual inter-
vention is necessary to execute cycles of simple
hypothesis-led experimentation. [For more details
of the software, and its application to a related
functional genomics problem, see (/6) and figs.
S1 and S2].

Fig. 1. The Robot Scien-
tist Adam. The advances
that distinguish Adam from
other complex laboratory
systems are the individual
design of the experiments
to test hypotheses and the
utilization of complex in-
ternal cycles. Adam’s basic
operations are selection of
specified yeast strains from
a library held in a freezer,
inoculation of these strains
into microtiter plate wells
containing rich medium,
measurement of growth
curves on rich medium,
harvesting of a defined
quantity of cells from each
well, inoculation of these
cells into wells containing
defined media (minimal syn-
thetic dextrose medium plus
up to four added metab-
olites from a choice of six),
and measurement of growth
curves on the specified me-
dia. To achieve this func-
tionality, Adam has the
following components: a,
an automated —20°C freezer;
b, three liquid handlers (one

of which can separately control 96 fluid channels simultaneously); ¢, three
automated +30°C incubators; d, two automated plate readers; e, three robot
arms; f, two automated plate slides; g, an automated plate centrifuge; h, an
automated plate washer; i, two high-efficiency particulate air filters; and j, a
rigid transparent plastic enclosure. There are also two bar code readers, seven
cameras, 20 environment sensors, and four personal computers, as well as the
software. Adam is capable of designing and initiating over a thousand new

Adam formulated and tested 20 hypotheses
concerning genes encoding 13 orphan enzymes
(16) (Table 1). The weight of the experimental
evidence for the hypotheses varied (based on ob-
servations of differential growth), but 12 hypothe-
ses with no previous evidence were confirmed
with P < 0.05 for the null hypothesis.

Because Adam’s experimental evidence for its
conclusions is indirect, we tested Adam’s conclu-
sions with more direct experimental methods. The
enzyme 2-aminoadipate:2-oxoglutarate amino-
transferase (2A20A) catalyzes a reaction in the
lysine biosynthetic pathways of fungi. Adam hy-
pothesized that three genes (YER152C, YJLO60W,
and YGL202W) encode this enzyme and ob-
served results consistent with all three hypotheses
(Table 1). To test Adam’s conclusions, we pu-
rified the protein products of these genes and
used them in in vitro enzyme assays, which
confirmed Adam’s conclusions [supporting on-
line material (SOM)] (Fig. 2).

To further test Adam's conclusions, we ex-
amined the scientific literature on the 20 genes
investigated (Table 1) (/6). This revealed the ex-
istence of strong empirical evidence for the cor-
rectness of six of the hypotheses; that is, the
enzymes were not actually orphans (Table 1).

<

scale: 1m

The reason that Adam considered them to be
orphans was due to the use of an incomplete bio-
informatic database. These six genes therefore
constitute a positive control for Adam's meth-
odology. A possible error was also revealed
(Table 1) (SOM).

To better understand the reasons why the
identity of the genes encoding these enzymes has
remained obscure for so long, we investigated
their comparative genomics in detail (/6). The
likely explanation is a combination of three com-
plicating factors: gene duplications with retention
of overlapping function, enzymes that catalyze
more than one related reaction, and existing func-
tional annotations. Adam’s systematic bioinformatic
and quantitative phenotypic analyzes were required
to unravel this web of functionality.

Use of a robot scientist enables all aspects of a
scientific investigation to be formalized in logic.
For the core organization of this formalization,
we used the ontology of scientific experiments:
EXPO (11, 12). This ontology formalizes generic
knowledge about experiments. For Adam, we
developed LABORS, a customized version of
EXPO, expressed in the description logic lan-
guage OWL-DL (/7). Application of LABORS
produces experimental descriptions in the logic-

strain and defined-growth-medium experiments each day (from a selection of
thousands of yeast strains), with each experiment lasting up to 5 days. The
design enables measurement of ODsgs,,, for each experiment at least once
every 30 min (more often if running at less than full capacity), allowing ac-
curate growth curves to be recorded (typically we take over a hundred mea-
surements a day per well), plus associated metadata. See the supporting
online material for pictures and a video of Adam in action.
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programming language Datalog (/8). In the course
of its investigations, Adam observed 6,657,024
optical density (ODsgs,y,) measurements (form-
ing 26,495 growth curves). These data are held in
a MySQL relational database. Use of LABORS
resulted in a formalization of the scientific argu-

mentation involving over 10,000 different research
units (segments of experimental research). This
has a nested treelike structure, 10 levels deep, that
logically connects the experimental observations
to the experimental metadata. (Fig. 3). This struc-
ture resembles the trace of a computer program

REPORTS

and takes up 366 Mbytes (/6). Making such
experimental structures explicit renders scien-
tific research more comprehensible, reproduc-
ible, and reusable. This paper may be considered
as simply the human-friendly summary of the
formalization.

Table 1. The orphan enzymes and Adam'’s hypotheses. The hypothesized
genes are those which Adam abduced encoded an orphan enzyme. Prob.
is Adam’s Monte Carlo estimate of the probability of obtaining the
observed discrimination accuracy or better with a random labeling of
replicates. The discrimination is between the differences in growth curves
observed with the addition of specified metabolites to the wild type and
the deletant. Acc. is the highest accuracy for a metabolite species in
discriminating between the growth curves observed with the addition of
specified metabolites to the wild type and the deletant. No. is the number

of metabolites tested. Existing annotation is the summary from the
Saccharomyces Genome Database of the annotation of the ORF. Dry is the
summary of whether the annotated function is the same as predicted by
Adam. If a gene already has an associated function, we do not consider
this to be contradictory to Adam'’s conclusions unless this function is
capable of explaining the observed growth phenotype, for example, BCY1.
ida indicates inferred from direct assay and iss, inferred from sequence or
structural similarity (5). Wet is the result of our manual enzyme assays.
See (16) for details.

Orphan enzyme Hyp(;t::esued Prob. Acc. No. Existing annotation Dry Wet
Glucosamine-6-phosphate YHR163W <107* 97 8 6-Phosphogluconolactonase, ida - -
deaminase (3.5.99.6) (SOL3)
Glutaminase (3.5.1.2) YILO33C <107* 92 11 Cyclic adenosine 3°,5"- X -
(BCY1) monophosphate (cAMP)—
dependent protein kinase
inhibitor, ida
L-Threonine 3- YDL168W <10™* 83 6 Alcohol dehydrogenase, ida - -
dehydrogenase (SFA1)
(1.1.1.103)
Purine-nucleoside YLR209C <10 82 11 Purine-nucleoside v -
phosphorylase (2.4.2.1) (PNP1) phosphorylase, ida
2-Aminoadipate YGL202W <10 80 3 Aromatic—amino acid v v
transaminase (2.6.1.39) (AROS) transaminase, ida
5,10-Methenyltetrahydrofolate YER183C <107* 80 4 5,10 Formyltetrahydrofolate v -
synthetase (6.3.3.2) (FAU1) cyclo-ligase, ida
Glucosamine-6-phosphate YNRO34W <107 79 2 Possible role in tRNA export - -
deaminase (3.5.99.6) (SOL1)
Pyridoxal kinase (2.7.1.35) YPR121W <107 78 1 Phosphomethylpyrimidine - -
(THI22) kinase, iss
Mannitol-1-phosphate YNRO73C <107* 78 6 Putative mannitol - -
5-dehydrogenase (1.1.1.17) dehydrogenase, iss
1-Acylglycerol-3-phosphate YDL052C 0.0001 80 6 1-Acylglycerol-3-phosphate v -
0O-acyltransferase (SLC1) O-acyltransferase ida
(2.3.1.51)
Glucosamine-6-phosphate YGR248W 0.0002 78 2 6-Phosphogluconolactonase, ida - -
deaminase (3.5.99.6) (SOL4)
Maleylacetoacetate YLLO60C 0.0003 76 3 Glutathione S-transferase, ida - -
isomerase (5.2.1.2) (GTT2)
Serine O-acetyltransferase YJL218W 0.0005 78 2 Unknown function - -
(2.3.1.30)
L-Threonine YLRO70C 0.0052 75 6 Xylitol dehydrogenase, ida - -
3-dehydrogenase (XYL2)
(1.1.1.103)
2-Aminoadipate YJLO60W 0.0084 73 3 Kynurenine - v
transaminase (2.6.1.39) (BNA3) aminotransferase, ida
Pyridoxal kinase (2.7.1.35) YNRO27W 0.0259 76 2 Involved in bud-site - -
selection, iss
Polyamine oxidase YMRO20W 0.0289 78 4 Polyamine oxidase, ida v -
(1.5.3.11) (FMS1)
2-Aminoadipate YER152C 0.0332 74 3 Uncharacterized - v
transaminase (2.6.1.39)
L-Aspartate oxidase YJLO45W 0.1300 72 1 Succinate dehydrogenase - -
(1.4.3.16) isozyme, iss
Purine-nucleoside YLRO17W 0.1421 72 6 Methylthioadenosine v -
phosphorylase (2.4.2.1) (MEU1) phosphorylase, ida
www.sciencemag.org SCIENCE VOL 324 3 APRIL 2009
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Fig. 2. Assay results for 2A20A activ-

ity. The proteins encoded by YGL202W, "#] ¥ contol voL168W

YJLO60W, YER152C, and YDL168W were 1] > noprotein added

expressed from OpenBiosystems (www. € A veL202w
openbiosystems.com) yeast ORF clones QC, 0% X vemisc

and purified. Activity was tested in an % 06] ~® YdLosow

assay of NADPH (reduced form of nico- g

tinamide adenine dinucleotide phosphate) ~ § °*

production based on (22). 1-o-aminoadipic ~ § o2

acid and 2-oxoglutarate were provided <

as substrates and pyridoxal phosphate o}

as cofactor. Glutamate production was .

assayed by using commercially available 0 5 10 15 20 25
yeast glutamate dehydrogenase, which Time (min)

uses NADP as cofactor and deaminates

glutamate, producing ammonia and NADPH and regenerating 2-oxoglutarate (16). Also consistent with

2A20A activity is experimental evidence indicating a
alanine or aspartate (16).

ttist
investigation

higher activity with L-a-aminoadipic acid over either
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the automation of
science
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full automation of
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24

Fig. 3. Structure of the Robot Scientist investigation (a fragment). It consists of two main parts: an

investigation into the automation of science an

d an investigation into the reuse of formalized

experiment information. The top levels involve Al research (red), which requires research in functional
genomics (blue) and systems biology (yellow). Each level of research unit (studies, cycles, trials, tests, and
replicates) is characterized by a specific set of properties (fig. S3) (16). Such a nested structure is typical of

many scientific experiments, where the testing of a

levels of supporting work. What is atypical in Adam”

top-level hypothesis requires the planning of many
s work is the scale and depth of the nesting.

A major motivation for the formalization of
experimental knowledge is the expectation that
such knowledge is more easily reused to answer
other scientific questions. To test this, we investi-
gated whether we could reuse Adam’s functional
genomic research (/6). An example question
investigated was the relative growth rates (Hyax)
in rich and defined media of the deletion strains
compared with those of the wild type. What
was observed, in both media, was a skewed dis-
tribution, with a few deletants having a much
lower [y, than that of the wild type, but most
having a slightly higher (1,,,. These observations
question the common assumption that wild-type
S. cerevisiae is optimized for ., and provide
quantitative test data for yeast systems biology
models (19).

It could be argued that the scientific knowl-
edge “discovered” by Adam is implicit in the
formulation of the problem and is therefore not
novel. This argument that computers cannot
originate anything is known as Lady Lovelace’s
objection (20): “The Analytical Engine has no
pretensions to originate anything. It can do
whatever we know how to order it to perform”
(her italics). We accept that the knowledge
automatically generated by Adam is of a modest
kind. However, this knowledge is not trivial, and
in the case of the genes encoding 2A20A, it
sheds light on, and perhaps solves, a 50-year-old
puzzle (21).

Adam is a prototype and could be greatly
improved. Its hardware and software are “brittle,”
so although Adam is capable of running for a few
days without human intervention, it is advisable
to have a technician nearby in case of problems.
The integration of Adam’s artificial intelligence
(AI) software also needs to be enhanced so that it
works seamlessly. To extend Adam, we have de-
veloped software to enable external users to pro-
pose hypotheses and experiments, and we plan to
automatically publish the logical descriptions of
automated experiments. The idea is to develop a
way of enabling teams of human and robot sci-
entists to work together. The greatest research
challenge will be to improve the scientific in-
telligence of the software. We have shown that a
simple form of hypothesis-led discovery can be
automated. What remain to be determined are the
limits of automation.
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Priming in Systemic Plant Inmunity

Ho Won Jung,* Timothy ]. Tschaplinski,? Lin Wang,?* Jane Glazebrook,® Jean T. Greenberg*t

Plants possess inducible systemic defense responses when locally infected by pathogens.
Bacterial infection results in the increased accumulation of the mobile metabolite azelaic

acid, a nine-carbon dicarboxylic acid, in the vascular sap of Arabidopsis that confers local and
systemic resistance against the pathogen Pseudomonas syringae. Azelaic acid primes plants to
accumulate salicylic acid (SA), a known defense signal, upon infection. Mutation of the AZELAIC
ACID INDUCED 1 (AZI1) gene, which is induced by azelaic acid, results in the specific loss of
systemic immunity triggered by pathogen or azelaic acid and of the priming of SA induction in
plants. Furthermore, the predicted secreted protein AZI1 is also important for generating vascular
sap that confers disease resistance. Thus, azelaic acid and AZI1 are components of plant systemic

immunity involved in priming defenses.

hole plant immunity, called systemic

s " / acquired resistance (SAR), often de-
velops after localized foliar infections

by diverse pathogens. In this process, leaves dis-

tal to the localized infection become primed to
activate a stronger defense response upon sec-
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ondary infection (7). Leaves infected with SAR-
inducing bacteria produce vascular sap, called
petiole exudate, which confers disease resistance
to previously unexposed (naive) plants (2, 3). This
indicates that a mobile systemic signal(s) is involved
in SAR (4). Although the hormone jasmonic acid
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(JA) accumulates to a high level in petiole exu-
dates from leaves infected with SAR-inducing
bacteria, JA does not seem to be the critical sig-
nal for SAR (5, 6). Instead, SAR and the pro-
duction of active exudates require the DIR1
protein, a predicted secreted protein and puta-
tive signal carrier in the lipid transfer protein fam-
ily, and other proteins involved in glycerolipid
biosynthesis (2, 3, 7). Additionally, SAR and
exudate-induced resistance appears to require the
phenolic metabolite salicylic acid (SA) (3, 8) and
possibly methylsalicylate (MeSA) and its methyl
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Azelaic acid (uM)

Fig. 1. Azelaic acid specifically confers resistance to Pseudomonas syringae. (R)

Azelaic acid—induced resistance is concentration-dependent. Plants were sprayed with 1, E
10, 100, and 1000 M azelaic acid in 5 mM MES (pH 5.6) or 5 mM MES (pH 5.6) alone 2 16
days before infection with P. syringae pv. maculicola strain PmaDG3 (ODgq = 0.0001).
(B) Induced resistance is time-dependent. Plants sprayed with 5 mM MES or 1 mM azelaic
acid for the time periods indicated were subsequently inoculated with PmaDGS3. (C)
5 mM MES or 1 mM azelaic acid was injected into local leaves. Two days later, either
local or systemic leaves were infected with PmaDG3. (D) Dicarboxylic acids (1 mM) of
different carbon-chain lengths were applied to Arabidopsis. M, 5 mM Mes; Cg, suberic
acid; Cy, azelaic acid; Cyq, sebacic acid. (E) Mobility of deuterium-labeled azelaic acid
[HOOC(CD,);,COOH] injected into WT leaves. Azelaic acid amounts were determined
in petiole exudates (left) and distal leaves (right) after local injection with 1 mM
azelaic acid. *P < 0.05; **P < 0. 01; t test. Error bars indicate SE.
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