

## Conception d'un modèle de poutre visqueuse pour approcher la mécanique du fuseau mitotique.



Ce projet pour un étudiant en Master vise à concevoir un modèle de poutre dominé par la viscosité pour comprendre les propriétés mécaniques du fuseau mitotique et comment celles-ci contribuent à une division cellulaire fidèle. Ce stage, supervisé par Loïc Le Marrec (IRMAR) (<a href="https://www.researchgate.net/profile/Loic Le Marrec/">https://www.researchgate.net/profile/Loic Le Marrec/</a>) fait plus largement partie d'un projet collaboratif incluant aussi l'équipe CeDRE à l'IGDR (<a href="mailto:igdr.univ-rennes1.fr">igdr.univ-rennes1.fr</a>) et en particulier Nina Soler (étudiante en thèse) et Jacques Pécréaux (Responsable de l'équipe).

## Contexte de l'étude :

Le fuseau mitotique est essentiel pour maintenir un nombre correct de chromosomes dans les cellules filles et assurer des divisions fidèles face à des perturbations extrinsèques (températures, nutriments, oxygène) ou intrinsèques (mutation, polyploïdie). Nous avons récemment découvert que le fuseau est une structure dominée par la viscosité, ne se trouvant ni à l'équilibre thermodynamique ni dans un état permanent. Cela se base sur un modèle discret et une première quantification à partir des trajectoires des pôles du fuseau (c.à.d. les extrémités de la poutre). La physique statistique suggère qu'il en découle une grande adaptabilité qui expliquerait le taux très bas d'erreurs de partitionnement des chromosomes, au-delà des mécanismes biochimiques déjà connus (SAC). L'équipe CeDRE à l'IGDR étudie la division cellulaire par des approches de biophysique cellulaire; nous souhaitons comprendre la robustesse de la division cellulaire en étudiant et modélisant les interactions biophysiques et mécaniques entre les acteurs moléculaires de la mitose.

## Objectif du stage:

Le candidat choisi concevra un modèle continu permettant d'approcher les fluctuations de la longueur du fuseau mais aussi sa flexion. A cet effet l'étudiant développera un modèle de poutre en flexion plane incluant tension, cisaillement et flexion. Dans un premier temps, un modèle de viscosité de Rayleigh sera utilisé pour chacun de ces degrés de libertés afin de tenir compte du comportement matériel de fuseau. Dans un second temps on introduira une interaction visco-élastique avec le milieu environnant.

L'objectif est ici de pouvoir déterminer le comportement du fuseau libre. Dans un second temps on résoudra le problème forcé. Dans tout les cas l'objectif est essentiellement de construire un modèle de simulation rapide et versatile. Les simulations en temps ou en fréquences seront réalisées sur matlab.

L'ajustement des paramètres sera réalisé en fontion des données disponibles expérimentalement. En particulier , le candidat reprendra l'outil d'analyse conçu par Benjamin Mercat, ancien doctorant ayant réalisé l'analyse discrète (<a href="www.theses.fr/203587960">www.theses.fr/203587960</a>) pour l'adapter au modèle continu et utiliser au moins quatre positions le long du fuseau (poles et kinétochores) / de la poutre.

## Environnement du stage et compétences développées :

Le candidat aura une formation en modélisation des systèmes mécaniques et en calcul scientifique, avec de bonnes compétences en programmation. Le projet se déroulera pour l'essentiel à l'IRMAR auprès de Loïc Le Marrec, avec des passages dans l'équipe interdisciplinaire CeDRE sur le campus de Villejean. Une ouverture d'esprit sur la biologie est nécessaire, sans connaissance requise toutefois. Le stage durera 5 à 6 mois et sera indemnisé au taux en vigueur, soit typiquement 545 E par mois.

Contact Loïc Le Marrec, <u>loic.lemarrec@univ-rennes1.fr</u> Jacques Pécréaux, <u>jacques.pecreaux@univ-rennes1.fr</u>