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Background

Bayesian networks: an overview

A Bayesian network (BN) [6, 7] is a combination of:

• directed graph G = (V, E), in which each node vi ∈ V
corresponds to a random variable Xi (a gene, a trait, an
environmental factor, etc.);

• a global probability distribution, X = {Xi}, which can be split
into simpler local probability distributions according to the
arcs aij ∈ E present in the graph.

This combination allows a compact representation of the joint
distribution of high-dimensional problems, and simplifies inference
using the graphical properties of G.
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Background

The two main properties of Bayesian networks

Markov blanket
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The defining characteristic of BNs is that
graphical separation implies (conditional)
probabilistic independence. As a result,
the global distribution factorises into local
distributions: each one is associated with
a node Xi and depends only on its parents
ΠXi ,

P(X) =

p∏
i=1

P(Xi | ΠXi
).

In addition, we can visually identify the
Markov blanket of each node Xi (the set
of nodes that completely separates Xi

from the rest of the graph, and thus in-
cludes all the knowledge needed to do in-
ference on Xi).
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Background

Bayesian networks for GS and GWAS

From the definition, if we have a set of traits and markers for each variety,
all we need for GS and GWAS are the Markov blankets of the traits [11].
Using common sense, we can make some additional assumptions:

• traits can depend on markers, but not vice versa;

• traits that are measured after the variety is harvested can depend on
traits that are measured while the variety is still in the field (and
obviously on the markers as well), but not vice versa.

Most markers are discarded when the Markov blankets are learned. Only
those that are parents of one or more traits are retained; all other
markers’ effects are indirect and redundant once the Markov blankets
have been learned. Assumptions on the direction of the dependencies
allow to reduce Markov blankets learning to learning the parents of each
trait, which is a much simpler task.
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Learning

Learning the Bayesian network

1. Feature Selection.

1.1 For each trait, use the SI-HITON-PC algorithm [1, 10] to learn
the parents and the children of the trait; children can only be
other traits, parents are mostly markers, spouses can be either.
Dependencies are assessed with Student’s t-test for Pearson’s
correlation [5] and α = 0.01.

1.2 Drop all the markers which are not parents of any trait.

2. Structure Learning. Learn the structure of the BN from the nodes
selected in the previous step, setting the directions of the arcs
according to the assumptions in the previous slide. The optimal
structure can be identified with a suitable goodness-of-fit criterion
such as BIC [9]. This follows the spirit of other hybrid approaches
[3, 12], that have shown to be well-performing in literature.

3. Parameter Learning. Learn the parameters of the BN as a Gaussian
BN [6]: each local distribution in a linear regression and the global
distribution is a hierarchical linear model.
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The Parameters of the Bayesian Network

The local distribution of each trait Xi is a linear model

Xi = µ+ ΠXiβ + ε

= µ+Xjβj + . . .+Xkβk︸ ︷︷ ︸
traits

+Xlβl + . . .+Xmβm︸ ︷︷ ︸
markers

+ε

which can be estimated any frequentist or Bayesian approach in
which the nodes in Xi are treated as fixed effects (e.g. ridge
regression [4], elastic net [13], etc.).

For each marker Xi, the nodes in ΠXi are other markers in LD with
Xi since COR(Xi, Xj |ΠXi) 6= 0⇔ βj 6= 0. This is also intuitively
true for markers that are children of Xi, as LD is symmetric.
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A caveat about causal interpretations

http://xkcd.com/552/

Even though “good” BNs have a structure that mirrors cause-effect
relationships [8], and even though there is ample literature on how to
learn causal BNs from observational data, inferring causal effects from a
BN requires great care even with completely independent data (i.e. with
no family structure).
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The MAGIC data

The MAGIC data (the same as in Ian’s talk) include 721 varieties, 16K
markers and the following phenotypes:

• flowering time (FT);

• height (HT);

• yield (YLD);

• yellow rust, as measured in the glasshouse (YR.GLASS);

• yellow rust, as measured in the field (YR.FIELD);

• mildew (MIL) and

• fusarium (FUS).

Varieties with missing phenotypes or family information and markers with
> 20% missing data were dropped. The phenotypes were adjusted for
family structure via BLUP and the markers screened for MAF > 0.01 and
COR < 0.99.
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Bayesian network learned from MAGIC
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51 nodes (7 traits, 44 markers), 86 arcs, 137 parameters for 600 obs.
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Phenotypic traits in MAGIC
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Assessing arc strength with boostrap resampling

Friedman et al. [2] proposed an approach to assess the strength of each
arc based on bootstrap resampling and model averaging:

1. For b = 1, 2, . . . ,m:

1.1 sample a new data set X∗b from the original data X using
either parametric or nonparametric bootstrap;

1.2 learn the structure of the graphical model Gb = (V, Eb) from
X∗b .

2. Estimate the confidence that each possible edge ei is present in the
true network structure G0 = (V, E0) as

p̂i = P̂(ei) =
1

m

m∑
b=1

1l{ei∈Eb},

where 1l{ei∈Eb} is equal to 1 if ei ∈ Eb and 0 otherwise.
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Averaged Bayesian network from MAGIC
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81 out of 86 arcs from the original BN are significant.
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Phenotypic traits in MAGIC

YR.GLASS

YLD

HT

YR.FIELD

FUS

MIL

FT

from to strength direction

YR.GLASS YLD 0.636 1.000
YR.GLASS HT 0.074 0.648
YR.GLASS YR.FIELD 1.000 0.724
YR.GLASS FT 0.020 0.800

HT YLD 0.722 1.000
HT YR.FIELD 0.342 0.742
HT FUS 0.980 0.885
HT MIL 0.012 0.666

YR.FIELD YLD 0.050 1.000
YR.FIELD FUS 0.238 0.764
YR.FIELD MIL 0.402 0.661

FUS YR.GLASS 0.030 0.666
FUS YLD 0.546 1.000
FUS MIL 0.058 0.758
MIL YR.GLASS 0.824 0.567
MIL YLD 0.176 1.000
FT YLD 1.000 1.000
FT HT 0.420 0.809
FT YR.FIELD 0.932 0.841
FT FUS 0.436 0.692
FT MIL 0.080 0.825

Arcs in the BN are highlighted in red in the table.
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Inference

Inference in Bayesian networks

Inference for BNs usually takes two forms:

• conditional probability queries, in which the distribution of
one or more nodes of interest is investigated conditional on a
second set of nodes (which are either completely or partially
fixed);

• maximum a posteriori queries, in which the most likely
outcome of a certain event (involving one or more nodes)
conditional on evidence on a set of nodes (which are often
completely fixed for computational reasons).

In practice this amounts to answering “what if?” questions (hence
the name queries) about what could happen in observed or
unobserved scenarios using posterior probabilities or density
functions.
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Flowering time: what if we fix directly related alleles?

Flowering Time
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Fixing 6 genes that are parents of FT in the BN not to be homozygotes
for late flowering (EARLY) or for early flowering (LATE). Heterozygotes

are allowed in both cases.

Marco Scutari, Phil Howell University College London, NIAB



Inference

Flowering time: which nodes we used...
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Yellow rust: what if we fix (in)directly related alleles?

Yellow Rust (Field)
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Fixing 8 genes that are parents of YR.FIELD, then another 7 that are
parents of YR.GLASS, either not to be homozygotes for yellow rust

susceptibility or for yellow rust resistance. Heterozygotes are allowed in
both cases.
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Yellow rust: nodes farther away can help...
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G3140: can we guess the allele?

G3140
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If we have two varieties for which we scored low levels of fusarium (0 to
2), and are among the top 25% yielding, but one is tall (top 25%) and
one is short (bottom 25%), which is the most probable allele for gene

G3140?
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G3140: information travels backwards...
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Conclusions

Conclusions

• Bayesian networks provide an intuitive representation of the
relationships linking sets of phenotypes and markers, both
within and between each other.

• Given a few reasonable assumptions, we can learn a Bayesian
network for multiple trait GWAS and GS efficiently and
reusing state-of-the-art general-purpose algorithms.

• Once learned, Bayesian networks provide a flexible tool for
inference on both the markers and the phenotypes.

Thanks!
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