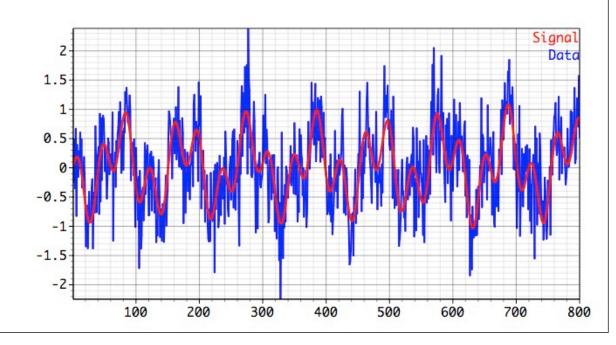

Creating Your 20.109 Presentation

Atissa Banuazizi

Writing, Rhetoric, and Professional Communication atissa@mit.edu

12-13 February 2015

The Book of Lists tells us that public speaking is the #1 human fear


Outline

- Some fundamentals of oral communication
- Structuring the journal club presentation
- Principles of effective visual support
- Delivering the presentation

Oral communication has unique constraints

- Challenge for the presenter:
 - Must communicate in "real time"
- Challenge for the audience:
 - Can't control rate of presentation to match their comprehension
 - Can't re-read sections

Maximize signal, minimize noise

Know your material and its message

Content is the key!

- Identify the core idea and why it matters
- Collect more information than you will use
- If possible, get a broader context
 - Read a review of paper
 - Read later paper by the same group
- Anticipate problem areas
- Research unfamiliar words, methods, etc.

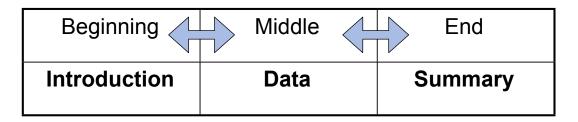
Know your audience

- Who are they?
- What do they know?
- What might some of them **not** know?
- What do they want to know more about?

A journal club has a distinct audience and purpose

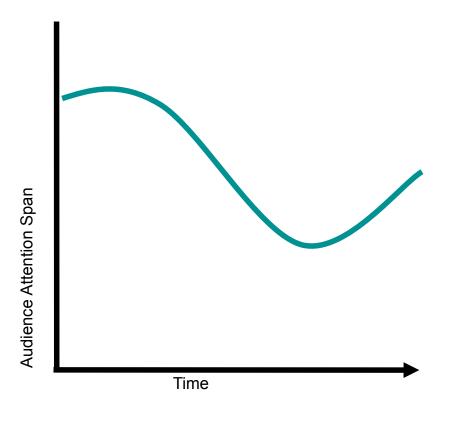
Audience

- Fellow researchers (peers)
- Similar (not identical) technical backgrounds
- Not experts on this particular research project


Purpose

- Get acquainted with research project
- Understand research in context
- Consider limitations of research
- Learn how it might apply to future projects, work in 20.109

Ask yourself...


- What is the main point I want to make to my audience?
- Why is this interesting or important?
- How do the data support my main point?
- What part of my story can I tell with the data <u>in the</u> <u>allotted amount of time</u>?

To organize the presentation, tell a story

- Engage the audience's interest as they follow the narrative
- Show how each section relates to and builds upon the one before it
- Leave out elements that are tangential to the story

Preview and Review help audience discern structure

- Map out goals of the talk in advance
- Summarize at the end
- Within each section, use topic sentences and recaps

Transitions guide your audience through the logic of the scientific process

http://www.highlandguides.com/winterreports0708.htm

Look forward and backward to differentiate and connect ideas

- Articulate the motivation for each step of the investigation before you explain it
- As you go, explain what questions still remain
- Most important point of an explanation comes first
- Use signal phrasing ("Although..." "As predicted..." "Unexpectedly...")

Introduction establishes context and problem

- Introduce yourself and your subject
 - Slide should have title, author, journal, pub date
 - Paraphrase your title verbally; no need to recite all authors
- In one sentence, introduce the central question or problem of the experiment
- State significance of experiment; why should we care?
- Briefly explain necessary background
- Give audience a preview of approach to problem

Data section works to answer central question

- Forms bulk of presentation
- Drawn from Methods, Results and Discussion of paper
 - keep explanation of methods to a minimum -- only as much as needed to understand results
 - integrate discussion as you go

Summary determines what audience remembers

- Recap: what are the primary findings?
- Link back: how have you fulfilled the need established in your Introduction?
- So what?: or, how do these these findings contribute to the field?
 - Emphasize the potential interest/utility of findings to your specific audience
 - What might be explored in future work?

Q & A is an opportunity for the audience

- Anticipate questions not covered in the presentation
- OK to bring extra slides
- OK to acknowledge gaps in expertise
 - Explain what you do know
- OK to ask questioner to clarify what they are asking
 - Listen; repeat/rephrase

Visuals exist to support your message

Or: What good are slides at all?

Disadvantages:

 disruptive -- pull audience's attention away from the speaker

Advantages:

- can convey a point quickly
- add variety and interest
- audience recall increases dramatically when the speaker uses effective slides

Ask yourself: What specific point are you trying to convey with your visual?

Direct the audience's focus

Title all slides

 Headings should clarify the main point (conclusion to be drawn) for each slide

Use graphics liberally, keep them simple

Average attention span per slide: 8 sec

Use clear, explanatory labels for charts and diagrams

Make sure to label axes!

Less is More

- Limit number of slides
- Say more than you show
 - show primary points on slide; flesh out secondary points verbally
- Minimize text
 - Don't crowd your slides with a lot of text. Especially, avoid using complete sentences -- or worse, complete paragraphs. Either the audience will become engrossed in trying to read the text, and will stop paying attention to *you*, or else they'll wonder why you didn't just give them a handout already and save yourself the trouble of reading to them.
- Avoid potentially annoying animation
 - Really.

Use color to provide interest and emphasis

- Be easy on the eyes; don't distract from content
- Avoid low-contrast combinations

Typography should help audience read the text quickly

- Choose clear, simple fonts
- Type at least 20-24 pt
- Limit upper-case type
- Be sensitive to spacing and text alignment

Typography should help audience read the text quickly

Design should never say "Look at mg."

It should always say

"Look at this."

-- DAVID CRAIB

Make graphics the core of your narrative

What story does this picture tell?

"As shown in Fig. 2, the loss of neuraminidase activity from the supernatant coincides with the disappearance of this 66-kDa protein. This indicates that neuraminidase activity is precipitated via the 66-kDa protein."

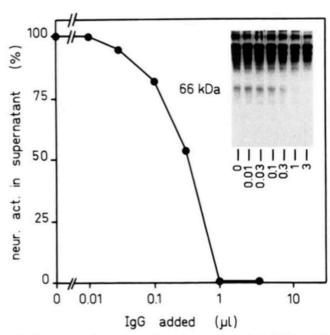
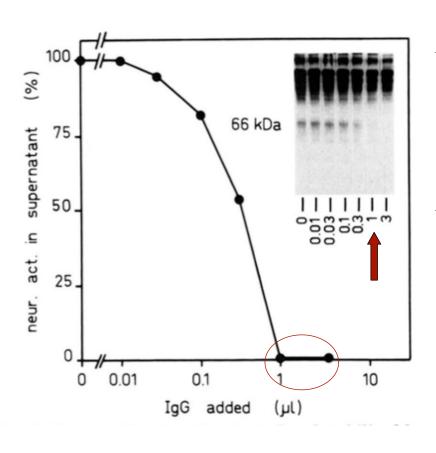
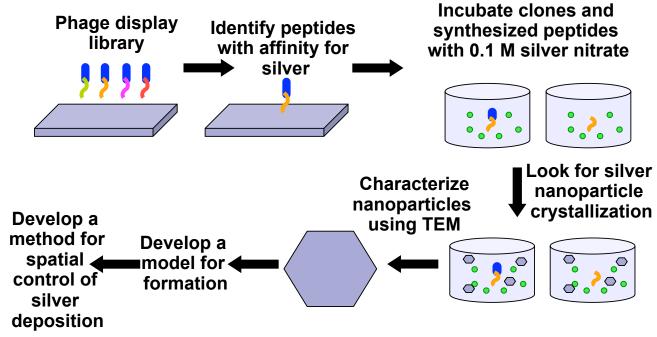



FIG. 2. Immunotitration of activated and stabilized human placental neuraminidase. Activated, stabilized neuraminidase was immunoprecipitated from a human glycoprotein preparation with increasing amounts of an IgG preparation prepared from neuraminidase-specific antibodies. Neuraminidase activity was measured in the supernatants. *Inset*, immunoblot analysis of supernatants using neuraminidase-specific antibodies.

From van der Horst GT, Galjart NJ, d'Azzo A, Galjaard H, Verheijen FW. Identification and in vitro reconstitution of lysosomal neuraminidase from human placenta. J Biol Chem. 1989 Jan 15;264(2):1317–1322.

Neuraminidase activity is precipitated via 66-kDa protein

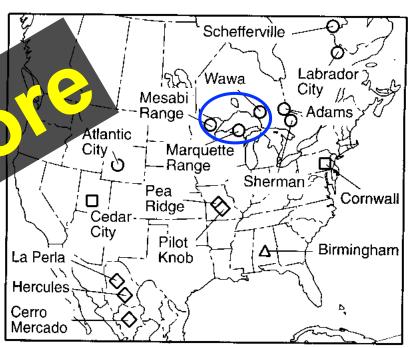


immunoblot analysis of supernatants

Neuraminidase activity ceases with disappearance of 66-kDa!

From van der Horst GT, Galjart NJ, d'Azzo A, Galjaard H, Verheijen FW. Identification and in vitro reconstitution of lysosomal neuraminidase from human placenta. J Biol Chem. 1989 Jan 15;264(2):1317–1322.

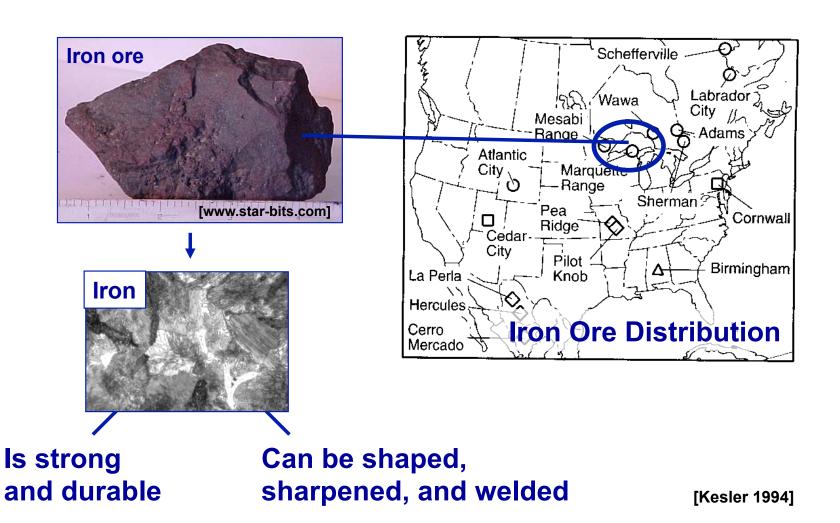
Approach: Combinatorial chemistry to find peptides that bind and precipitate silver



Courtesy of Anna Simon, 20.109 (S08). Naik et al, Biomimetic synthesis and patterning of silver nanoparticles. *Nature Materials* 2002 **1:**169 - 172

Iron

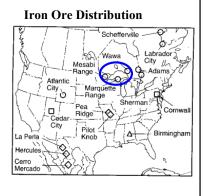
- An abundant metal, makes up 5.6% of earth's crust
- Properties:
 - shaped, sharpened, welded
 - strong, durable
- Accounts for >95% of motion used
- Iron ores discovered in 1844 in Michigan's Upper Peninsula
- Soon found other ores in upper Wisconsin and Minnesota


Iron Ore Distribution

Kesler 1994

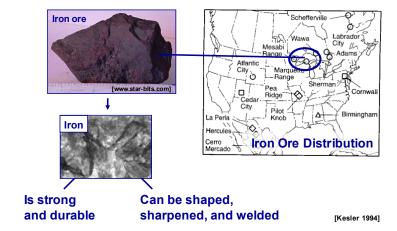
Michael Alley et al., "How the Design of Headlines in Presentation Slides Affects Audience Retention," *Technical Communication*, vol. 53, no. 4 (May 2006), pp. 225-234.

Iron ores make up 5.6% of the earth's crust and account for 95% of the metals used


Alley et al., 2006

Students learning from the transformed slide scored higher on an identical test question

Q: How abundant is iron in the earth's crust?


Iron

- An abundant metal, makes up 5.6% of earth's crust
- Properties:
 - shaped, sharpened, welded
 - strong, durable
- Accounts for >95% of metals used
- Iron ores discovered in 1844 in Michigan's Upper Peninsula
- Soon found other ores in upper Wisconsin and Minnesota

Kesler 1994

Iron ores make up 5.6% of the earth's crust and account for 95% of the metals used

Led to 59% recall

Led to 77% recall

p<0.001

Alley et al., 2006

The secret of good delivery is rehearsal

- Practice at least 4 times
- Practice with a colleague for feedback
 - Is your content clear?
 - Do you rock, squirm, gesture too much?
 - Is there room for improvements/adjustments?
- Time yourself
- What 3 questions will your audience likely ask?

Connect with your audience

Work to build rapport

- Establish eye contact; look at people
- Convey enthusiasm; if you aren't excited about your subject, your audience won't be either
- Explain novel ideas/terms or references
- Use everyday language and terms
- Clarify connections that may be obvious to you but not them

A presentation is *two-way* communication

Pay attention to audience reaction; modify your talk as needed

Extemporaneous speech is most suitable for informal presentations

	+	
Reading from written text	Huge safety net	Distances speaker from audience Little flexibility
Memorizing	Freedom from notes Security of knowing exactly what to say	Minor interruption can derail you Artificial/stagey Time-intensive
Extemporizing (w/ rehearsal)	Best connection with audience Most flexibility	Can seem intimidating to novice speakers

Project mastery with your body language

- Make non-verbal behavior deliberate; avoid extraneous motion
- Use gestures that complement your speech's content and are natural for you
- Stand at a 45-degree angle to the audience
- Keep weight evenly dispersed on both feet
- Don't block the screen!

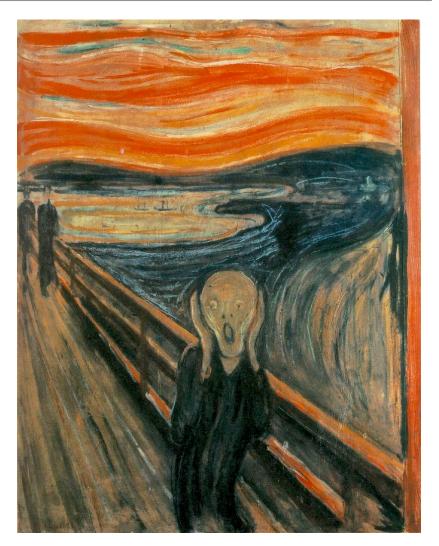
Maximize the signal in the vocal channel

Volume

 Project to back of room: support voice with deep breaths

Rate

- Speak at appropriate rate for audience comprehension
- Slow down for especially complex or important content
- Incorporate strategic pauses


http://www.stevebeyerproductions.com/images/Three%2520Tenors.jpg

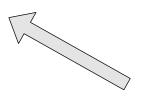
Pitch

- Keep pitch of your voice at a natural level
- Avoid "uptalk"

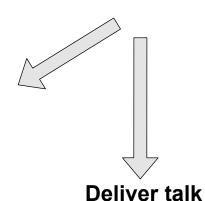
Anxiety is normal, but can be overcome

- Practice and prepare
- Visualize yourself succeeding!
- Focus and center yourself
- Breathe
- Have a conversation

http://upload.wikimedia.org/wikipedia/en/archive/f/f4/20100829163553!The_Scream.jpg


Now What?

Get acquainted with research



Organize your thoughts Design slides Practice talk

Revise

Meet to review video/slides

Sources

Alley, Michael. *The Craft of Scientific Presentations*. New York: Springer, 2005.

Alley, Michael, Madeline Schreiber, Katrina Ramsdell, and John Muffo. "How the Design of Headlines in Presentation Slides Affects Audience Retention," *Technical Communication*, vol. 53, no. 4 (May 2006), pp. 225-234.

Doumont, Jean-luc. *Trees, maps, and theorems*. Kraainem, Belgium: Principiae, 2008.

Duarte, Nancy. Slide:ology. Sebastopol, CA: O'Reilly Media, 2008.

Perelman, Leslie C., Paradis, James, and Barrett, Edward. *The Mayfield Handbook of Technical and Scientific Writing.* Mountain View, CA: Mayfield Publishing, 1998.

Available to MIT community at https://web.mit.edu/course/ 21/21.guide/www/home.htm

Tufte, Edward R. *The Visual Display of Quantitative Information*, 2nd ed. Cheshire, CT: Graphics Press, 2001.