Acclimation of Saccharomyces cerevisiae to Low Temperature: A Chemostat-based Transcriptome Analysis

Tai, S. L., Daran-Lapujade, P., Walsh, M. C., Pronk, J. T., & Daran, J. M. (2007). Acclimation of Saccharomyces cerevisiae to low temperature: a chemostat-based transcriptome analysis. *Molecular biology of the cell, 18*(12), 5100-5112.

Lauren Kelly and Cameron Rehmani Seraji

Department of Biology
Loyola Marymount University

BIOL 398-05/MATH 388-01 March 30, 2017

- Background Information
- Goal of the Present Study
- Methods and Procedures
- In chemostat based cultures, nutrient limitation affected the transcriptional regulation of genes at low temperatures.
- Comparing this chemostat study to other batch culture studies revealed inconsistent gene expression.
- Is the environmental stress response (ESR) an obligatory response to growth at low temperatures?

- Background Information
- Goal of the Present Study
- Methods and Procedures
- In chemostat based cultures, nutrient limitation affected the transcriptional regulation of genes at low temperatures.
- Comparing this chemostat study to other batch culture studies revealed inconsistent gene expression.
- Is the environmental stress response (ESR) an obligatory response to growth at low temperatures?

Background Information

- Temperature fluctuations are an evitable environmental factor that affects all organisms.
- Sudden exposure to environmental changes will trigger a dynamic stress-response called adaptation.
- Prolonged exposure to nonlethal stimuli leads to acclimation.
- Chemostat cultures allow for accurate control of specific growth rate, independent of other culture conditions.
- Ms2p/msn4p has been previously suggested to be a transcriptional factor in cold temperature.

- Background Information
- Goal of the Present Study
- Methods and Procedures
- In chemostat based cultures, nutrient limitation affected the transcriptional regulation of genes at low temperatures.
- Comparing this chemostat study to other batch culture studies revealed inconsistent gene expression.
- Is the environmental stress response (ESR) an obligatory response to growth at low temperatures?

Goals of the Present Study

- Tai et al. (2007) aimed to investigate steady-state, acclimatized growth of *S. cerevisiae* at colder temperatures.
 - Emphasized transcriptional regulation of the genome.
- They compared their chemostat culture results with those from previous studies in batch cultures and demonstrated the differences between the two.
- They also aimed to further describe the role of ESR genes at low-temperature in chemostat cultures.

- Background Information
- Goal of the Present Study
- Methods and Procedures
- In chemostat based cultures, nutrient limitation affected the transcriptional regulation of genes at low temperatures.
- Comparing this chemostat study to other batch culture studies revealed inconsistent gene expression.
- Is the environmental stress response (ESR) an obligatory response to growth at low temperatures?

Methods and Procedures

- S. cerevisiae strain: CEN.PK113-7D (MATa)
- Grown in a chemostat culture (D = 0.03 h⁻¹)
- Four Growth Conditions:
 - 12°C, glucose-limited
 - 12°C, ammonium-limited
 - 30°C, glucose-limited
 - 30°C, ammonium-limited
- Utilized various analytical methods and microarray analysis and compared their data to other S. cerevisiae low-temperature transcriptome datasets.

- Background Information
- Goal of the Present Study
- Methods and Procedures
- In chemostat based cultures, nutrient limitation affected the transcriptional regulation of genes at low temperatures.
- Comparing this chemostat study to other batch culture studies revealed inconsistent gene expression.
- Is the environmental stress response (ESR) an obligatory response to growth at low temperatures?

Growth-Efficiency Was Not Affected by Growth Temperature

Table 1. Physiological characteristics of *S. cerevisiae* grown in ammonium- and glucose-limited anaerobic chemostat cultures

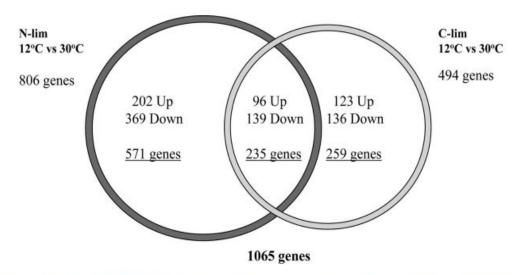
Limiting nutrient	Growth temperature (°C)	$Y_{Glu/X}$ $(g_{DW} \cdot g_{glucose}^{-1})$	$q_{ m Glu}^{}$	$q_{\text{EtOH}}^{}^{a}}$	q_{CO2}^{a}	Carbon recovery (%)	Residual glucose (mM)	Residual ammonia (mM)
Glucose	12	0.07 ± 0.01	-2.5 ± 0.2	3.8 ± 0.3	4.4 ± 0.3	100 ± 3	2.8 ± 1.1	65.2 ± 2.2
Glucose	30	0.07 ± 0.00	-2.3 ± 0.0	3.5 ± 0.0	3.8 ± 0.2	95 ± 1	0.3 ± 0.1	61.3 ± 4.5
Ammonium	12	0.05 ± 0.00	-3.6 ± 0.2	6.1 ± 0.3	6.0 ± 0.6	97 ± 4	90.0 ± 9.8	1.5 ± 0.2
Ammonium	30	0.04 ± 0.00	-4.0 ± 0.1	6.8 ± 0.2	7.4 ± 0.2	97 ± 2	85.1 ± 8.2	0.2 ± 0.1

Cultures were grown at 30 and 12°C (D = $0.03 \, h^{-1}$). Values represent the mean \pm SD of data from three independent steady-state chemostat cultivations. $Y_{Glu/X}$, biomass yield on glucose; DW, dry weight.

- Biomass was similar at both temperatures in both nutrient conditions.
- In the 12°C cultures, the residual concentrations of glucose and ammonia were higher than the 30°C cultures.
 - Residual nutrient concentration is temperature dependent.

^a Values expressed as mmol $\cdot g_{DW}^{-1} \cdot h^{-1}$.

Less S. cerevisiae Growth on Glucose-Limited Media


Table 2. Protein and storage carbohydrates contents of *S. cerevisiae* biomass grown in ammonium- and glucose-limited anaerobic chemostat cultures

Limiting nutrient	Growth temperature (°C)	Biomass dry weight (g _{DW} ·l ⁻¹)	Whole cell protein $(g_{protein} \cdot g_{DW}^{-1})$	Biomass nitrogen content (mg _{nitrogen} • g _{DW} ⁻¹)	Trehalose $(g_{\text{equivalent glucose}} \cdot g_{\text{DW}}^{-1})$	Glycogen (g _{equivalent glucose} • g _{DW} -1)
Glucose	12	1.71 ± 0.09	0.40 ± 0.01	nd	< 0.005	0.06 ± 0.01
Glucose	30	1.89 ± 0.06	0.43 ± 0.01	nd	0.02 ± 0.00	0.04 ± 0.00
Ammonium	12	2.27 ± 0.05	0.47 ± 0.03	63 ± 3	< 0.005	0.02 ± 0.00
Ammonium	30	3.53 ± 0.01	0.34 ± 0.01	41 ± 2	0.04 ± 0.00	0.05 ± 0.01

Cultures were grown at 30 and 12° C (D = $0.03 \, h^{-1}$). Values represent the mean \pm SD of data from three independent steady-state chemostat cultivations. DW, dry weight; nd, not determined.

- There was more yeast growth on the ammonium-limited media.
- Amount of trehalose was equal in the 12°C media and slightly higher in the 30°C ammonium-limited media.
- Overall, yields and fermentation rates were similar in all growth conditions.
 - This indicates that the growth temperature did not affect the growth efficiency.

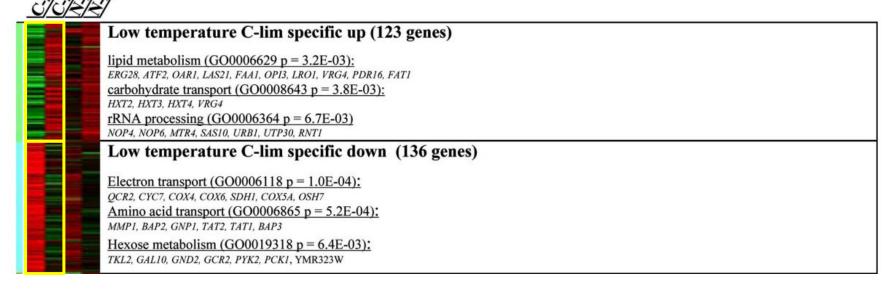

Higher Transcription Levels in Ammonium-limited Cultures

Figure 1. Global transcriptome responses to anaerobic growth at 12 and 30°C in anaerobic glucose- and ammonium-limited chemostat cultures (D = 0.03 h^{-1}). The Venn diagram shows the number of significant differentially expressed genes between 12 and 30°C in both C and N limitations.

- Of the 1065 genes, 644 genes were down-regulated and 421 up-regulated genes.
- 235 genes showed a consistent down-regulation and up-regulation in the glucose-limited and ammonium-limited conditions

More Genes Were Induced in the Glucose-Limited Cultures

- Temperature-responsive genes were screened for enrichment of specific functional categories.
- C-lim cultures showed the most activity in these categories

Greater Transcriptional Regulation in N-Lim

Low temperature N-lim specific up (202 genes)

Protein synthesis (GO0006412 p = 9.8E-06)/protein complex assembly (GO0006461 p = 6.2E-06):

RPL43B, CAX4, ECM39, GCD10, GYP5, IMP3, MEF1, MRPL20, MRPL3, NIP1, OST2, RPL12A,, RPL13A, RPL15A, RPL17B, , RPL3, RPL40B, RPL41B, RPL8B, RPL9A, RPL9B, RPS10A, RPS16B, RPS21A, RPS21B, RPS26B, RPS28A, RPS9B, RSM26, SUII, TEF4, TIF5, YGL068W, YFL034C

Ribosome biogenesis and assembly (GO0042254 p = 2.0E-25)/RNA processing (GO0006396 p = 7.4E-11)/ rRNA processing (GO0006364 p = 1.0E-18):

ARXI, BRXI, CBF5, CIC1, DBP3, DRSI, ENP1, ERB1, GAR1, HAS1, HCA4, IMP3, IMP4, LTV1, MAK5, MRT4, MTR3, NIP7, NOB1, NOC2, NOC4, NOP1, NOP2, NOP58, NOP7, NUG1, POP3, PWP1, RCL1, REX4, RIX1, RIX7, RLP24, RPL12A, RPL3, RPL40B, RRB1, RRP12, RSA3, SIK1, SNU13, TIF5, UTP15, UTP21, UTP23, UTP9, YTM1

Low temperature N-lim specific down (369 genes)

Nitrogen compound metabolism (GO0006807 p = 5.4E-04) and catabolism (GO0044270 p = 2.8E-05))/amine transport (GO0015837 p = 1.6E-03) / allantoin metabolism (GO0000256 p = 8.5E-05):

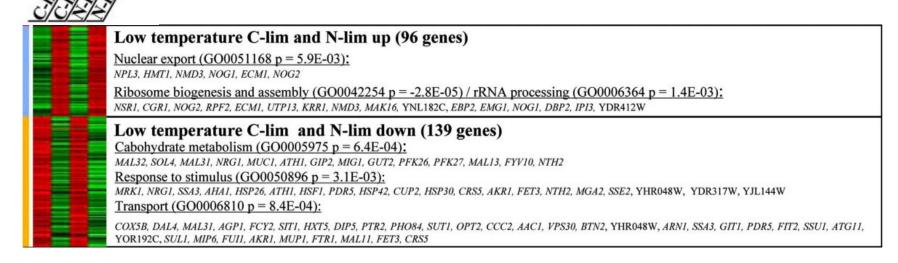
ALD2, ALD3, ADY2, DAL3, DAL1, DUR1,2, CAR2, CHA1, CHA4, SHC1, EKI1, GAT1, PUT4, MET4, DAL7, DAL80, ARG1, CAR1, DCG1, ASP3-1, GLT1, CPS1, ARO10, YIL167W, GLN3, PUT1, DAL2, DTR1, GAP1, AVT6, CAN1, PTK2, YMR088C, DUR3, MEP1, MEP2

Polysaccharide (GO0005976 p = 3.1E-03) and trehalose metabolism (GO0005991 p = 1.1E-03): SHC1, GSY2, GSY1, PCL10, PIG2, GSC2, GAC1, TPS2, NTH1, TPS1, TSL1

<u>M phase of mitotic cell cycle (GO000087 p = 5.5E-05) and chromosome segregation (GO0007059 p = 2.8E-03):</u>

CDC16, PDS5, ALKI, SICI, PDS1, TOP1, IRR1, SMC1, SMC3, SUM1, KAR3, RTT101, KEL1, YCG1, TFB1, ASE1, CTF4, GAC1, KIP2, YNL116W

Cellular morphogenesis (GO0000902 p = 2.8E-03):


TCO89, KCC4, TOR1, DOP1, TAO3, TOR2, LGE1, SLA1, KEL1, WHI4, BOI2, SCH9, VRP1, RAXI, RNY1, GIN4, WHI5, ZDS1, ABP1

Response to stimulus (GO0050896 p = 3.5E-05):

ABF1, ALD3, ASP3-1, BDF1, CAD1, CDC39, CIN5, CTF4, DNA2, FAB1, FAR11, FRT2, FYV6, GAC1, GRE3, HSP104, HSP78, IRE1, ISW2, ITC1, MDG1, MET4, MGT1, MLF3, MLH3, MSH6, NCE4, NTH1, PDS1, POL1, POL2, PRB1, PTR3, RAD28, RPN4, RRD1, RRD2, SAN1, SCH9, SHU2, SIN3, SMC1, SPL2, SSA4, TFB1, TPS1, TPS2, TSL1, UBA4, VRP1, WSC4, WWM1, YGK3, YKL075C

S. cerevisiae in N-lim cultures showed stronger transcriptional regulation in these categories.

Strong Transcriptional Regulation in Both N-Lim and C-Lim

 C-lim and N-lim cultures showed similar regulation trends in nuclear export, ribosome biogenesis/assembly, carbohydrate metabolism, and other categories.

Overall, More Transcription Factors were Overrepresented

Table 3

Regulatory cluster	Motif name	Putative-binding protein	Promoter element	occa	Expected occ ^b	occ Ec
I Towns of City II		* 1				
Low Temperature C-lim Up			_			
Low Temperature C-lim Up			constraints of the same			
Low Temperature N-lim Up	_	_	TGAAAAA	206	113.04	2.30E-1
•	PAC	_	CGATGAG	57	17.49	6.1E-1
	_	_	TGAGATG	49	16.3	4.1E-07
Low Temperature N-lim Down	GATAA	Gln3/Gat1/Dal80/Gzf3	AGATAAG	203	102.57	3.1E-15
	STRE	Msn2/Msn4	ACCCCTT	29	8.73	1.6E-03
Low Temperature C- and N-lim Up	PAC	_	CGATGAG	30	8.39	5.0E-05
Low Temperature C- and N-lim Down		_	CGTCCAC	13	2.85	7.8E-0

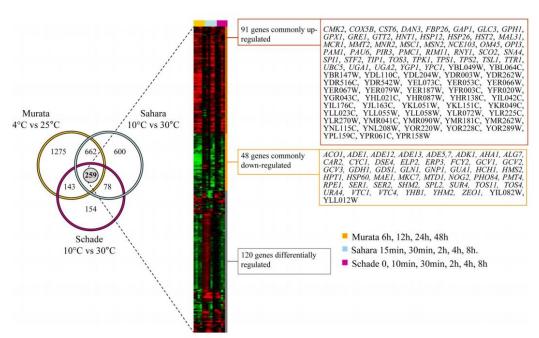
(B) Overrepresentation of transcription factors (TF) binding targets

Regulatory cluster	Factor	p value	K ^d	Fe
Low Temperature C-lim Up	Mbp1p	1.6E-03	10	65
Low Temperature C-lim Down	Hap2-Hap1	3.9E-05	3	4
	Hap3-Hap1	9.9E-06	3	3
Low Temperature N-lim Up	Fhl1p	3.4E-05	19	203
	Sfp1p	1.3E-03	7	51
Low Temperature N-lim Down	Gln3p	2.1E-07	20	92
	Gln3-Dal82	5.5E-07	8	15
	Hap2-Dal82	6.8E-05	5	9
Low Temperature C- and N-lim Up	1			
Low Temperature C- and N-lim Down	Aft2p	7.5E-04	10	34
	Hsf1p	3.0E-08	16	133
	Nrg1p	7.6E-07	14	128
	Phd1p	3.3E-04	9	99
	Rcs1p	1.1E-04	9	86
	Rox1p	6.0E-05	8	62
	Sok2p	5.7E-05	9	79
	Nrg1-Aft2	6.0E-05	5	20
	Phd1-Nrg1	1.4E-05	7	37
	Rox1-Phd1	7.8E-05	5	21
	Sok2-Nrg1	4.3E-07	8	33

(A) Significantly overrepresented cis-regulatory binding motifs in 5' upstream regions. (B) Significantly overrepresented promoter elements that bind known transcription factors (TF) or TF pairs according to ChiP-on-chip analysis (Harbison et al., 2004). C-Lim, glucose-limited; N-Lim. ammonium-limited.

- There were significantly overrepresented cis-regulatory binding motif in the 5' upstream regions.
- There were significantly overrepresented promoter elements that bind known transcription factors or transcription factor pairs according to the ChiP-on-chip analysis.

^a The number of occurrences of promoter element in the regulatory cluster.


b Expected number of occurrences of the promoter element in a randomly chosen cluster of genes of the same cluster size.

^c The probability of finding the number of patterns with the same level of overrepresentation, which would be expected by chance alone.

d Number of genes in category in cluster.
 e Number of genes in category in genome.

- Background Information
- Goal of the Present Study
- Methods and Procedures
- In chemostat based cultures, nutrient limitation affected the transcriptional regulation of genes at low temperatures.
- Comparing this chemostat study to other batch culture studies revealed inconsistent gene expression.
- Is the environmental stress response (ESR) an obligatory response to growth at low temperatures?

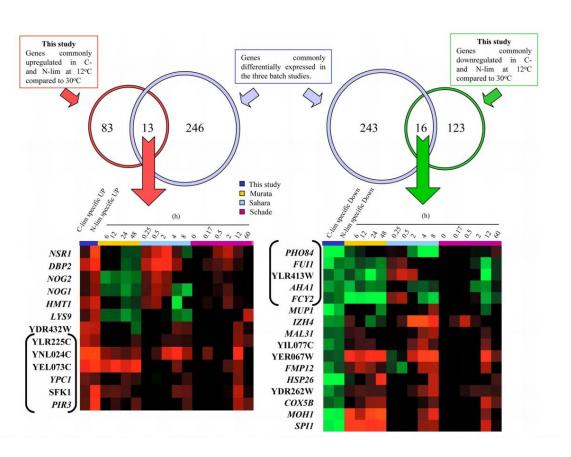
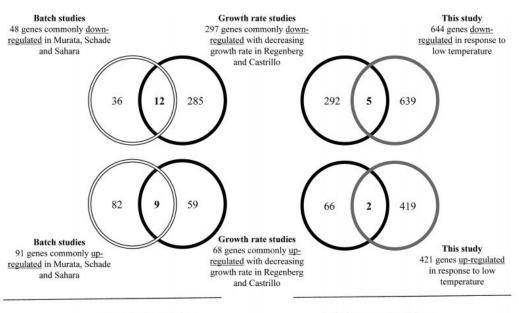

259 Genes Found in Common in Three Batch-Culture Studies

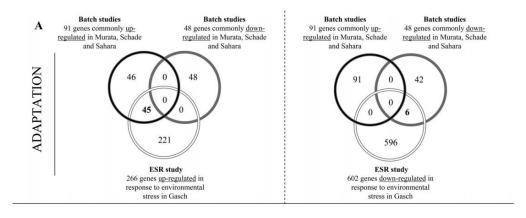
Figure 3. Genes differentially expressed in batch cultures during adaptation to low temperature. (A) Venn diagram showing the number of genes that are common to three batch-culture studies on low-temperature transcriptional adaptation (Sahara *et al.*, 2002; Schade *et al.*, 2004; Murata *et al.*, 2006). (B) Heat map representing the transcript ratio of 259 genes found in common in the three batch-culture low-temperature transcriptome datasets.


- Venn diagram compares the genes from the three different batch culture studies.
- Responses of genes was not consistent.
- The heat map shows the transcript ratio of the 259 genes found in common.

11 Genes Show Consistent Regulation

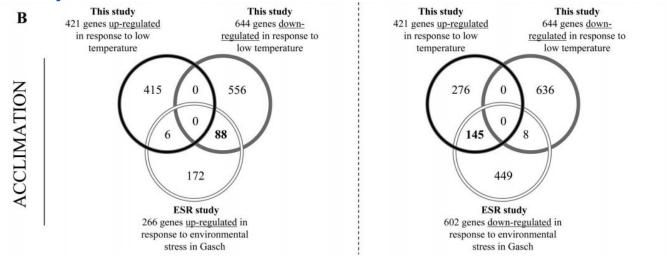
- Three genes that were consistently up-regulated are involved in lipid metabolism.
 - SFK1, YPC1, and YEL073C
- Three genes that were consistently down-regulated encode transporters.

More Genes Regulated in Chemostat-Cultures


ADAPTATION

ACCLIMATION

- Genes were taken from Castrillo et al (2007) and Regenberg et al (2006).
- 25% of low-temperature down-regulated genes had altered transcript levels.
- 10% of the low-temperature up-regulated genes had altered transcript levels.


- Background Information
- Goal of the Present Study
- Methods and Procedures
- In chemostat based cultures, nutrient limitation affected the transcriptional regulation of genes at low temperatures.
- Comparing this chemostat study to other batch culture studies revealed inconsistent gene expression.
- Is the environmental stress response (ESR) an obligatory response to growth at low temperatures?

Extensive Overlap between the ESR Genes and the Genes in the Batch-Cultures

- 50% of consistently low-temperature up-regulated genes and 13% of low-temperature down-regulated genes found in the batch-culture studies were found in the ESR genes from Gasch et al. (2000)
- Proposed that the ESR mechanism becomes induced with the growth temperature is decreased.

Comparison of Gene Regulation in the Gasch et al. (2000) and the Chemostat Cultures

• 233 genes up-regulated and down-regulated in the study by Gasch et al. (2000) had an opposite transcriptional response in the low-temperature chemostat cultures.

Chemostat Cultures Offer a New Perspective on Transcriptional Regulation at Low Temperatures

- Genes that were consistently up- or down-regulated in both the batch cultures and the chemostat cultures coded for crucial cell functions
- Prior studies had different results because they used batch-cultures and Tai et al. (2007) used chemostat-cultures.
- ESR is not the main response to low temperatures.
- Transcriptional responses to low-temperature and low specific growth rate can be dissected by the use of chemostat cultures.

Works Cited

Tai, S. L., Daran-Lapujade, P., Walsh, M. C., Pronk, J. T., & Daran, J. M. (2007). Acclimation of Saccharomyces cerevisiae to low temperature: a chemostat-based transcriptome analysis.
 Molecular biology of the cell, 18(12), 5100-5112.

Acknowledgments

Dr. Kam Dahlquist

Dr. Ben Fitzpatrick

LMU Department of Biology

LMU Department of Mathematics

